SHORT COMMUNICATION PRIMARY CULTURE OF CRUSTACEAN STOMATOGASTRIC GANGLION NEURONES IN A DEFINED MEDIUM

Similar documents
Section of Morphological and Behavioral Neuroscience Protocol for low density primary neuron cultures

Xeno-Free Culture and Differentiation of Neural Stem Cells into Neurons

Hippocampal Neuron Dissociation Transfection and Culture in Microfluidics Chambers Yang Geng *

If protein coating is acceptable in the planned experiments, there is another quick and simple way to render the surface hydrophilic.

Amaxa Chicken Neuron Nucleofector Kit

If protein coating is acceptable in the planned experiments, there is another quick and simple way to render the surface hydrophilic.

Human Skeletal Muscle Myoblast Care Manual: Maintenance and Differentiation from Myoblasts to Myocytes

Do Sensory Neurons Secrete an Anti-Inhibitory Factor that Promotes Regeneration?

Lab Module 7: Cell Adhesion

Supplementary Materials

Supplementary Information:

Human Adult Mesothelial Cell Manual

Supporting Protocols

3T3-L1 Cell Care Manual Maintenance and Differentiation of 3T3-L1 Preadipocytes to Adipocytes

LHCN-M2 cell culture, differentiation treatment, and cross-linking protocol.

CARE MANUAL INSTRUCTIONAL MANUAL ZBM SHIPPING CONDITIONS STORAGE CONDITIONS ORDERING INFORMATION AND TECHNICAL SERVICES

CULTURING OF LEECH NEURONS AND FORMING SYNAPSES IN VITRO. Italy

Barbier. European Synchrotron Radiation Facility (ESRF), Grenoble, France. For correspondence:

Seeding, culturing and assaying upcyte and vericyte cells in the Mimetix 3D scaffold

ISOLATED IDENTIFIED APLYSIA NEURONS IN CELL CULTURE

Which hydrogel preparation for immunostaining protocol should I use?

Human ipsc-derived Sensory Neuron Progenitors. For the generation of ipsc-derived sensory neurons

Human ipsc-derived Sensory Neuron Progenitors. For the generation of ipsc-derived sensory neurons

Propagation of H7 hesc From: UW (John Stamatoyannopoulos) ENCODE group Date: 12/17/2009 Prepared By: S. Paige/S. Hansen (UW)

Human Dermal Fibroblast Manual

1. Carry the microscope in an upright position with both hands and place the base of the microscope 5cm from the edge of the bench

Amaxa Basic Neuron SCN Nucleofector Kit

Cytotrophoblast Isolation from Term Placenta References:

Protocols for Neural Progenitor Cell Expansion and Dopaminergic Neuron Differentiation

axion Protocol Cell Culture on Microelectrode Arrays Cell Type: ArunA Biomedical - mmngfp+ Mouse Motor Neurons GFP+ BioSystems v. 1.

NutriStem V9 XF Medium

Human Tenocyte Care Manual

Dissolve it in water and filter it through 0.22µm. (It should dissolve pretty fast in water, just mix it well. Sometimes I let it sit for 30 min)

HUMAN IPSC CULTURE PROTOCOLS

STANDARD OPERATING PROCEDURE

Peri.4U TM Application Protocol Multiwell-MEA

User Manual. OriCell TM Mesenchymal Stem Cell Osteogenic Differentiation Medium. Cat. No. GUXMX-90021

Human Adult Mammary Fibroblast Care Manual

µ Slide Membrane ibipore Flow

Metzger Lab Protocol Book EF May 2003

PROTOCOL. Collagen I Thin Gel Coating of Alvetex Scaffold. Introduction. Method. Page 1

MiraCell Endothelial Cells (from ChiPSC12) Kit

Single Molecule FISH on Mouse Tissue Sections

Well Insert Holder in Deep Petri Dish - AVP015

Axol Guide to Culturing Axol human Neural Progenitor Cells (hnpcs) on Axion BioSystems Microelectrode Arrays. Application Protocol Version 2.

µ Slide Membrane ibipore Flow

IncuCyte S3 Neuronal Activity Assay

IncuCyte S3 Neuronal Activity Assay

All quality control test results are reported on a lot specific Certificate of Analysis which is available at or upon request.

STANDARD OPERATING PROCEDURE

MimEX TM GI Human Descending Colon Stem Cells

TRANSFORMATION OF LEECH MICROGLIAL CELL MORPHOLOGY AND PROPERTIES FOLLOWING CO-CULTURE WITH INJURED CENTRAL NERVOUS SYSTEM TISSUE

Culture of Human ipsc-derived Neural Stem Cells in a 96-Well Plate Format

Amaxa Basic Neuron SCN Nucleofector Kit

CAROUSEL CELL PASSAGING PROTOCOL OVERVIEW

WOOD CELL PASSAGING PROTOCOL OVERVIEW

Transwell Co-culture of Bone Marrow Macrophages with Tumor Cells Mackenzie K. Herroon and Izabela Podgorski *

Tube Formation Assays in µ-slide Angiogenesis

Corning BioCoat Matrigel Matrix 6-well Plates for Embryonic Stem (ES) Cell Culture. Catalog Number Guidelines for Use

Neural Cell Culturing Guide

Application Protocol: CD45 CK Immunostaining for patient blood

DOPA Maturation Media

Amaxa 4D-Nucleofector Protocol for Primary Mammalian Neurons For 4D-Nucleofector X Unit Transfection in suspension

Neural induction - Dual SMAD inhibition

Tube Formation Assays in µ-slide Angiogenesis. 1. General Information. Application Note 19

EUCOMM Protocol for ES cells

Oligodendrocyte Progenitor Cell Isolation Kit

Isolation of Resting B Lymphocytes from Sixteen Mouse Spleens AfCS Procedure Protocol PP Version 1, 02/19/02

MARINE INVERTEBRATE TISSUE CULTURE TECHNIQUES AND ITS APPLICATION IN PEARL PRODUCTION

All quality control test results are reported on a lot specific Certificate of Analysis which is available at or upon request.

ATCC ANIMAL CELL CULTURE GUIDE

ETS-Embryo Medium. In Vitro Culture Media. Version 1.0

Note that Methylene Blue-stained cultures may require an additional washing step if the second wash is still very blue in appearance.

3D Endothelial Pericyte Coculturing Kit Product Description Kit Components

SeedEZ TM PROTOCOLS. METHODS AND PROTOCOLS FOR CELL RECOVERY FROM 3D CELL CULTURES EMBEDDED IN THE SeedEZ TM.

Page 1 of 5. Product Name Label Quantity Product No. Cy 3 10 µg (~0.75 nmol) MIR Cy µg (~7.5 nmol) MIR 7901

Adult Neuron Isolation Protocol (R. Kaletsky 9/2014)

MyBioSource.com. Human Vitamin K2 ELISA USER INSTRUCTION

MyBioSource.com. Human Osteoprotegerin ELISA USER INSTRUCTION

Guide to Induced Pluripotent Stem Cell Culture

EXPERIMENT 5 - IDENTIFYING FEATURES OF MUTANT EMBRYO USING NOMARSKI MICROSCOPY (GENE ONE)

me239 mechanics of the cell me239 mechanics of the cell 3.1 biopolymers - motivation 3.2 biopolymers - polymerization

MyBioSource.com. Rat Hydroxyproline ELISA USER INSTRUCTION

Cell Lineage in the Development of the Leech Nervous System

SOP 2 Solid Tumor Processing for Cell Culture and Xenografts

Amaxa 4D-Nucleofector Protocol for Rat Hippocampal or Cortical Neurons For 4D-Nucleofector X Unit Transfection in suspension

Neural Stem Cell Characterization Kit

icell Motor Neurons User s Guide Document ID: X1004

Protocol version 6.0. Maintenance of Human ipsc-derived Cerebral Cortical Neurons in a 96-Well Plate Format

General Guidelines for Handling Feeder Free Human ipscs. Cells provided were cultured in the presence of Penicillin and Streptomycin.

Atomic Force Microscopy elasticity measurements on living / fixed cells ~ Practical Output

General Guidelines for Handling Feeder Dependent Human ipscs

Detection of Action Potentials In Vitro by Changes in Refractive Index

Part 1: Human ipsc (hipsc) culture

Individual microglia move rapidly and directly to nerve lesions in the leech central nervous system

Supporting Information

IDENTIFICATION OF AGRIN IN ELECTRIC ORGAN EXTRACTS AND LOCALIZATION OF AGRIN-LIKE MOLECULES IN MUSCLE AND CENTRAL NERVOUS SYSTEM

ANOMALOUS PREFERENCES OF CULTURED MACROPHAGES FOR HYDROPHOB1C AND ROUGHENED SUBSTRATA

LabCyte CORNEA-MODEL

Transcription:

J. exp. Biol. 149, 521-525 (1990) 521 Printed m Great Britain The Company of Biologists Limited 1990 SHORT COMMUNICATION PRIMARY CULTURE OF CRUSTACEAN STOMATOGASTRIC GANGLION NEURONES IN A DEFINED MEDIUM BY ROBERT A. GRAF AND IAN M. COOKE B k6sy Laboratory of Neurobiology and Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA Accepted 20 October 1989 The crustacean stomatogastric ganglion, consisting of about 30 identifiable neurones, produces several distinct patterned outputs governing rhythmic movements of the stomach. This system has become a model for addressing cellular properties and synaptic interactions underlying pattern generation in neural networks (see Selverston and Moulins, 1987). Studies of the system have been limited by the need to use acutely isolated intact or semi-intact ganglion preparations. Also, interesting membrane responses and synaptic interactions occur in the neuropile, but recording from sites other than the somata has been difficult using an intact preparation. Primary culture of dissociated neurones from the ganglion may yield new insights on regional membrane properties and longterm (days) responses to neuromodulators of individual neurones that have regenerated neuritic processes. This paper presents our culture methods and some observations of outgrowth from neurones that have been dissociated from the stomatogastric ganglia of two evolutionarily diverse species, the Maine lobster Homarus americanus (Fig. 1) and a tropical semi-terrestrial crab Cardisoma carnifex (Fig. 2). The only other study on stomatogastric neurones in culture of which we are aware used a freshwater crayfish (Pacifastacus leniusculus), in which neurones were plated in media supplemented with serum (Krenz and Fischer, 1988). The culturing procedure is based on that developed for crustacean X-organ neurones (Graf et al. 1988; Cooke et al. 1989) with a number of modifications that optimize conditions for culturing the larger and more delicate stomatogastric neurones. Ganglia were removed from adult animals with 0.5 cm lengths of connective, and submerged for 5min in an antibiotic crab or lobster saline containing loounitsml" 1 penicillin-g, 75 units ml" 1 streptomycin (both from frozen powder) and 0.25/imolml" 1 fungizone (all from Gibco), ph7.6. The dissection and plating were performed in a laminar horizontal flow hood (Baker) using a Wild M5 dissecting microscope equipped with fibre optic illumination. Dissected ganglia were transferred to 35 mm culture dishes containing an Key words: primary culture, defined medium, neurones, invertebrate, stomatogastric ganglion, Crustacea.

522 R. A. GRAF AND I. M. COOKE enzymatic saline: 2mgmr 1 collagenase/dispase (Boehringer Mannheim) and Oimgml" 1 elastase I (Sigma) in crab or lobster saline (ph7.6) sterilized by filtration (0.22 ^m pore size). The covered dishes were agitated (22cyclesmin" 1 ) on a shaker for lh at room temperature. Somata with neurites were further separated from their surrounding ganglionic tissues by freeing the loosened connective tissue using a fine jet of enzymatic saline blown from a capillary tube drawn down to an inner tip diameter of 10-20/xm. The dangling somata, held to the ganglion by their neurites, were rinsed of enzyme with two changes of filtered antibiotic saline. Unidentified somata were then individually aspirated using ethanol-sterilized capillary tubes, pulled and fire-polished to yield a smooth tip with an inside diameter of roughly 100/an. The neurones were plated onto 35 mm culture dishes (for substrata, see below) containing 2ml of defined medium; the fluid depth was approximately 2 mm. The defined medium was prepared by mixing sterile Leibowitz-15 (L-15, Gibco) with an equal volume of buffered doublestrength crab or lobster saline (ph7.9, 20mmoll~ 1 Hepes) containing nutrient and antibiotic constituents. At final volume, these were: nommoll" 1 D-glucose, 2mmoll~ 1 L-glutamine (from frozen stock) and O.lmgml" 1 gentamicin. Without adjustments, the final medium ph was usually near the optimal value, 7.7. Medium was usually made just prior to use. The substrata used included uncoated Primaria dishes (Falcon 3801) and Falcon 3001 dishes coated with sterile O.lmgml" 1 poly-l-lysine (Sigma). After neurone dispersal, the dishes were covered and not moved for at least 2 h to aid neuronal adhesion to the substratum. They were then transferred to a sterile, humidified portable incubator chamber (Billups Rothanberg), and placed in the dark at room temperature (20-21 C). Outgrowth generally occurred from sites where membrane was in direct contact with the substratum. If only the soma contacted the substratum, with primary neurite suspended in the medium or severed during dissociation, it sometimes adhered via sparse, thin, membraneous protrusions that clung to the dish after 1 day in culture (not shown). Extensive outgrowth occurred if the severed end of the primary neurite adhered to the substratum. Two forms of outgrowth predominated: a large, thin, veiling (lamellipodial) type (Fig. ID), and a directed branching type (Figs 1A, 2). These forms were not mutually exclusive (Fig. 1B,C) and, when both types were present, the neurone's growth was in transition, usually from veiling to branching. Maximum veil size was typically reached by day 2 and was maintained for a week in static culture. The breadth reached by the veil roughly equalled the soma diameter. The margins of veils were skirted with growth cones that appeared phase dark under phase contrast optics (not shown). Neurones displaying the more directed (linear) growth morphology (Fig. 2) developed neuritic extensions that represented the stabilization of processes following outgrowth from one or a few motile growth cones. The neuritic processes arose from the periphery of a veil within a day of plating (compare day 1 and day 2 of Fig. 2). Well-stabilized regions of the major neurites often appeared to have filamentous structures in parallel array (Fig. 2, day 2). The neurones having well-directed outgrowth continued to show process

Stomatogastric neurones in culture 523 Fig. 1. Photomicrographs of outgrowth from isolated Homarus americanus stomatogastric neurones. (A) Low-power phase contrast image of soma with residual axon and lateral processes, 2 days in culture. Arrowhead marks end of residual axon. (B) Higher-power image of the growth cone from A taken at the same time as A. (C) Same growth cone on day 3. Note directed growth extending left from the veil. (D) Composite photographs pieced together from two focal planes (soma and growth cone) to give an example of neuronal surface membrane contour. Note the large veil. Day 2 in culture. (B-D) Hoffman interference modulation contrast microscopy. All cells in defined medium. Calibration bars, 50ym.

524 R. A. GRAF AND I. M. COOKE elongation in static culture up to day 7, at which time the cultures were used for other purposes. Typical neurite extension rates may be seen from the development of the leading growth margins of the Cardisoma neurone shown in Fig. 2: from day 1 to day 2 the primary neurite elongated 165 pan, and from day 2 to day 3 the new Day 1 Day 2 Day3 Fig. 2. Hoffmann modulation contrast images of directed outgrowth from a Cardisoma carnifex stomatogastric neurone at different culture ages (as indicated) in static defined medium. At day 1,filopodiaare seen at the peripheral margin of the small veil. By day 2, there has been extensive directed outgrowth from day 1 filopodia. Further extension of several processes occurred by day 3. Note the fibrillar appearance of the stabilized major neurite. Scale bar, 50 fjm.

Stomatogastric neurones in culture 525 growth traversed 143 pan. These growth rates varied from cell to cell with a range of 80-170 ym day" 1. The stomatogastric somata and primary neurites in situ appear from ultrastructural observations to be entirely covered by an unbroken glial sheath (King, 1976), which may explain why it was necessary to change the enzymatic regime from that used for the X-organ neurones. These appear to separate more easily from surrounding glia or other material. Successful outgrowth appears to depend largely on whether conditions are provided that favour neuronal adherence and direct contact with the substratum. Since these neurones grow vigorously in a simple medium that is completely defined, exploration of conditions and factors that modify cell outgrowth and electrical responses should be facilitated. We thank Professor D. K. Hartline for supplying animals for culture experiments, encouragement and suggestions; Dr B. R. Jones for suggestions on the manuscript; and Ms B. A. Tomiyasu for demonstrating the dissection. This research was supported by National Institutes of Health grant NS15453 and National Science Foundation grant BNS84-04459 to IC, National Institutes of Health grants to the University of Hawaii (Research Centers in Minority Institutions G12 RR03O61, and Biomedical Research Support), and by the University of Hawaii Foundation. References COOKE, I., GRAF, R., GRAU, S., HAYLETT, B., MEYERS, D. AND RUBEN, P. (1989). Crustacean peptidergic neurons in culture show immediate outgrowth in simple medium. Proc. natn. Acad. Sci. U.S.A. 86, 402-406. GRAF, R. A., GRAU, S., HAYLETT, B. AND COOKE, I. M. (1988). Crustacean peptidergic neurons in primary culture show immediate outgrowth in denned media. Neurosci. Abstr. 14, 869. KING, D. (1976). Organization of crustacean neuropil. II. Distribution of synaptic contacts on identified motor neurons in lobster stomatogastric ganglion. J. Neurocytol. 5, 239-266. KRENZ, W. D. AND FISCHER, P. (1988). Ionic conductances in crustacean stomatogastric neurons in primary culture. Neurosci. Abstr. 14, 295. SELVERSTON, A. I. AND MOULINS, M. (1987). The Crustacean Stomatogastric System. New York: Springer-Verlag.