Thin film deposition for next generation DRAM structures

Similar documents
Families on the Periodic Table

Groups of Elements 3B 5B 6B 7B 2 C. 10 Na. 36 Rb. 54 Cs. 86 Fr. 57 Ac. 71 Th. Nitrogen group. Alkali metals. Alkaline earth metals.

Dr Nick Voulvoulis. Presentation at the Industrial Waste & Wastewater Treatment & Valorisation conference May 2015, Athens, Greece

UK Baseline Geochemistry: A Key Environmental Yardstick

Evidence of Performance regarding the requirements for float glass according to EN 572

Part 1. Preparation and Color of Solutions. Experiment 1 (2 session lab) Electrons and Solution Color. Pre-lab Report, page 29

Chem. 451 (Spring, 2005) Final Exam (100 pts)

Lower Cost Higher Performance Graphite for LIBs. Prepared by: Dr. Edward R. Buiel President and CEO Coulometrics, LLC. Date: March 23, 2017

AIM: SWBAT determine the location of metals, nonmetals and metalloids on the periodic table. What is another name for a column in the periodic table?

XRF DRIFT MONITORS DATA CALIBRATION MATERIAL

Thermodynamic and Mobility Databases Overview

A fivefold increase of carbon efficiency is easily available. How can we prevent it from being gobbled up by additional consumption?

SCOPE OF ACCREDITATION TO ISO GUIDE 34:2009

Soil quality and links to health

systematic table of elements

Periodic Table of the Elements Current View MCHS Periodic Table of the Elements

WHERE SHOULD ALUMINUM GO IN THE PERIODIC TABLE?.pdf

In situ spectroscopic ellipsometry as a versatile tool to study atomic layer deposition

The Helmholtz Institute Freiberg Resource Technology Made in Germany

Technological Aspects of Metal Nanopowders

Specification for Phase VII Benchmark

Energy Materials. Antonio Terrasi. Physics and Astronomy Dept. University of Catania. Catania - ITALY

Database. Sept , 2014, Aachen, Germany. Thermo-Calc Anwendertreffen

High Purity Acids Trace Elemental Analysis. Detect as low as 1 to 100 ppt

Application of the Concepts of Exclusion, Exemption and Clearance

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

SUB-Programs - Calibration range Fe Base for "PMI-MASTER Pro" Spark - mode Fe 000

The image part with relationship ID rid4 was not found in the file. Welcome

Metals enable a sustainable society (Cu) Product & mineral centric systems. System integration & Design for Recycling

Advanced Gate Stack, Source/Drain, and Channel Engineering for Si-Based CMOS 6: New Materials, Processes, and Equipment

Chemistry I. Final Examination Reference Materials

INORGANIC CHEMISTRY LANTHANIDES

Electronic structure and x-ray-absorption near-edge structure of amorphous Zr-oxide and Hf-oxide thin films: A first-principles study

New GCSE 4462/02 SCIENCE A HIGHER TIER CHEMISTRY 1

CLASSIFICATION OF METALS INTO FAMILIES WITH COMMON CHEMICAL CHARACTERISTICS

Lecture 8. Deposition of dielectrics and metal gate stacks (CVD, ALD)

Solid Solutioning in CoCrFeNiMx (M= 4d transition metals) High-Entropy Alloys

Supplementary Information

Lecture Day 2 Deposition

New Materials as an enabler for Advanced Chip Manufacturing

WG 5: Radionuclide Transfer to wildlife

Lecture 4. Oxidation (applies to Si and SiC only) Reading: Chapter 4

Water Vapor and Carbon Nanotubes

Fundamental Aspects of Atomic Layer Deposition (ALD) and Molecular Layer Deposition (MLD) Micro/Nano-Electromechanical Transducers (imint) 2

An Organized Table Worksheet Due Thursday Name: Date: Period:

Synthesis and Evaluation of Electrocatalysts for Fuel Cells

SPECTRAL INTERFERENCE IN X-RAY FLUORESCENCE ANALYSIS OF COMMON MATERIALS

Core Analysis with the Tracer

STANDARD DI VETRI E MATERIALI CERAMICI

State of the art quality of a GeOx interfacial passivation layer formed on Ge(001)

Introduction Materials scarcity in general, exponential growth

SPECTRO XRF Report. SPECTRO xsortxhh03. Analysis of Solid Metal Samples. Summary

Protective Metal Oxides that Electronically Couple Catalysts to Efficient Light Absorbers

A New Liquid Precursor for Pure Ruthenium Depositions. J. Gatineau, C. Dussarrat

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Electrical Characteristics of Rare Earth (La, Ce, Pr and Tm) Oxides/Silicates Gate Dielectric

Issue February 2017 Valid to December ISO 9001 Registered Quality Management

2006 UPDATE METROLOGY

Electrochemical refining of silicon in molten salts

Certified Reference Materials. Minerals Industrial XRF Drift Monitors Coal ROHS/Plastics

Section 4: Thermal Oxidation. Jaeger Chapter 3. EE143 - Ali Javey

AP Chemistry A. Allan Chapter 18 - The Representative Elements: Groups 1A through 4A

Atomic Layer Deposition

Supporting Information

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film

Donald Neamen 물리전자 / 김삼동 1-1

Low temperature deposition of thin passivation layers by plasma ALD

METALLIC MATERIALS SPECIFICATION HANDBOOK

Isolation Technology. Dr. Lynn Fuller

Ionic Conductivity and Solid Electrolytes II: Materials and Applications

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity?

RWTH Aachen workshop on green resources & processing concepts for rare earth metals

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009

Primitive cells, Wigner-Seitz cells, and 2D lattices. 4P70, Solid State Physics Chris Wiebe

Towards scalable fabrication of high efficiency polymer solar cells

1. Introduction. What is implantation? Advantages

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator

Umicore Precious Metals Refining. Excellence in recycling

Academic Research for French Industrial Vitrification

ATI FLAT ROLLED PRODUCTS Brackenridge, PA for technical competence in the field of

AAS - Atomic Absorption Mono Element ppm Standard Solutions (Spectro ECON)

Visit

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity?

Silicon Wafer Processing PAKAGING AND TEST

Separation of Rare Metal Fission Products in Radioactive Wastes in New Directions of Their Utilization

Surface Preparation and Cleaning Conference April 19-20, 2016, Santa Clara, CA, USA. Nano-Bio Electronic Materials and Processing Lab.

Laser Spike Annealing for sub-20nm Logic Devices

Surface Analysis of Electrochromic Switchable Mirror Glass Based on Magnesium-Nickel Thin Film in Accelerated Degradation Test

ANALYTICAL REFERENCE MATERIALS INTERNATIONAL Part of LGC Standards 3 Perimeter Road, Unit 9 Manchester, NH USA

High-Resolution, Electrohydrodynamic Inkjet Printing of Stretchable, Metal Oxide Semiconductor Transistors with High Performances

ACTIVITY SHEETS ACTIVITY SHEET 1. THE UNIVERSE ACTIVITY SHEET 2. PLANET EARTH ACTIVITY SHEET 3. LIVING THINGS ACTIVITY SHEET 4.

Crystal Structures of Interest

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

Al 2 O 3 SiO 2 stack with enhanced reliability

VLSI Technology. By: Ajay Kumar Gautam

PEFC cathode electrocatalysts: model system study

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

X-ray Diffraction Study on Structural Characteristics of Pure and Doped Perovskite BaTiO 3

High Temperature Oxygen Out-Diffusion from the Interfacial SiOx Bond Layer in Direct Silicon Bonded (DSB) Substrates

X-ray Photoelectron Spectroscopy

Transcription:

Thin film deposition for next generation DRAM structures ISPR 2017 13.09.2017 J. Torgersen, F. Berto, F. Prinz, W. Cai NTNU Trondheim/ Stanford University

NTNU 10/16/2017 40000 students 50 faculties Nobel prize winner 2014

NTNU 10/16/2017

NTNU Team Our group: 3 Faculty 10 PhD students 15 Master Students/ year Addlab, Fatigue and Nanolab ~ Supported by workshop and admin staff Research Directions: Material Design Material Property Prediction Surface and Interface Science Biocompatible Implants Light weight components Protective Coatings 10/16/2017

Atomic Layer Deposition- Motivation Moore s law One of humanity s greatest achievements Over 40 years of exponential improvement What is the limit? 10/16/2017

Atomic Layer Deposition- Motivation 10/16/2017 How to Increase the Capacitance? U = 1 2 CV 2 C = e 0 e r A d

Atomic Layer Deposition- Motivation Smallest die size: 0.683 mm 0.683 mm at the 90 nm 151.527 dies Average die size 2.130 mm 2.130 mm at the 65 nm 1434 dies Biggest die size: 20.253 mm 20.253 mm at the 65 nm 127 dies Core i3-2310e Transistors: 624 million Die size: Average (149 mm²) 10/16/2017

Atomic Layer Deposition- The principle Surface reactive sites Precursor pulse H 2 O oxidant Oxidant pulse 8

Atomic Layer Deposition- Scale Up Crossflow Single Injector Self-limiting nature enables easy scale up Showerhead 9

Atomic Layer Deposition- Scale Up ASM A400C Batch size of 125 8-inch wafers Dual tube for material stacks Process line integration Different wafer sizes processable Major applications for silicon nitride, amorphous silicon, doped polysilicon Wide range of metals and dielectrics processable http://www.asm.com/publishingimages/solutions/products/low-pressure-chemicalvapor-deposition-and-diffusion-products/advance-vertical-furnace/a412-plus.png 10

Atomic Layer Deposition- Scale Up Solaytec Wafer moves back and forth performing 4 cycles at a time 8 depositions/s with one head 5000 wafers/h Atmospheric pressure, no pump required Deposition rate 1nm/s per module Only TMA and H 2 O so far http://www.solaytec.com/images/stories/flexicontent/l_solaytec-2919-v1.jpg 11

Atomic Layer Deposition- The materials Depositing elements all across the periodic table Period 1 I A 18 VIII A 1 1s H 2 II A 13 III A 14 IV A 15 V A 16 VI A 17 VII A He 2 2s Li Be 2p B C N O F Ne 3 3s Na Mg 3 III B 4 IV B 5 V B 6 VI B 7 VII B 8 VIII B 9 VIII B 10 VIII B 11 I B 12 II B 3p Al Si P S Cl Ar 4 4s K Ca 3d Sc Ti V Cr Mn Fe Co Ni Cu Zn 4p Ga Ge As Se Br Kr 5 5s Rb Sr 4d Y Zr Nb Mo Tc Ru Rh Pd Ag Cd 5p In Sn Sb Te I Xe 6 6s Cs Ba 5d Hf Ta W Re Os Ir Pt Au Hg 6p Tl Pb Bi Po At Rn 7 7s Fr Ra 6d Rf Db Sg Bh Hs Mt Ds Rg Cn 7p Uut Fl Uup Lv Uus Uuo lanthanides (rare earth metals) 4f La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu actinides 5f Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Intel s 45-nm high-k transistor Nanoprobe for protein detection in cells Thin film solid oxide fuel cell 500 nm Mistry, K. et al, Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pp.247-250 Shambat et al.; Nano Lett. 2013, 13, 4999-5005. Chao, C. C., Hsu, C. M., Cui, Y., Prinz, F. P., ACS Nano, 5, 5692-5696 (2011).

High-k thin films for DRAMs How to Increase the Capacitance? U = 1 2 CV 2 C = e 0 e r A d 13

High-k materials C = e 0 e r A d 14

Leakage current High-k thin films for DRAMs Dielectric constant Pt top electrode evaporation Amorphous? Pt Pt Pt T-ALD BTO p-si Al (200 nm) Poly Crystalline P. Schindler et al., Scripta Mater. (2015) 15

High-k thin films for DRAMs (a) (b) (c) Crystallites buried in amorphous matrix of 7 nm thick BaTiO 3 P. Schindler et al., Scripta Mater. (2015) 16

High-k thin films for DRAMs Reaction limited Diffusion limited Recombination limited s << 1 r = 0 AR independent s = 1 r = 0 AR dependent s independent r > 0 AR dependent Knoops et al. J. El. Chem. Soc. 2010 17

High-k thin films for DRAMs GPC ~ 0.45 Å/cycle Acharya, Torgersen et al 2016 J. o. Material Chemistry C 18

High-k thin films for DRAMs Thickness (Å ) Thickness (Å ) 60 (a) (b) 50 50 40 40 30 20 30 10 20 1 2 3 0 0 2 4 6 8 10 No. of precursor exposures No. of H 2 O pulses Self-limiting mode of growth in both half cycles of reaction Acharya, Torgersen et al 2016 J. o. Material Chemistry C 19

High-k thin films for DRAMs Period 1 I A 18 VIII A 1 1s H 2 II A 13 III A 14 IV A 15 V A 16 VI A 17 VII A He 2 2s Li Be 2p B C N O F Ne 3 3s Na Mg 3 III B 4 IV B 5 V B 6 VI B 7 VII B 8 VIII B 9 VIII B 10 VIII B 11 I B 12 II B 3p Al Si P S Cl Ar 4 4s K Ca 3d Sc Ti V Cr Mn Fe Co Ni Cu Zn 4p Ga Ge As Se Br Kr 5 5s Rb Sr 4d Y Zr Nb Mo Tc Ru Rh Pd Ag Cd 5p In Sn Sb Te I Xe 6 6s Cs Ba 5d Hf Ta W Re Os Ir Pt Au Hg 6p Tl Pb Bi Po At Rn 7 7s Fr Ra 6d Rf Db Sg Bh Hs Mt Ds Rg Cn 7p Uut Fl Uup Lv Uus Uuo lanthanides (rare earth metals) 4f La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu actinides 5f Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 20

Reprinted with permission from: An et al. ACS Appl. Mater. Interfaces 2014 Data from Schindler et al. Scr. Mat. 2016 Modified from Hayashi et al. Jpn. J. Appl. Physics 1994 1000 900 800 700 r 600 500 400 300 200 200 250 300 350 400 450 500 550 600 Thickness Thickness 45 40 RuO2 SiO2 35 Dielectric Constant 30 25 20 Substrate ε r Ba/Ti ratio 15 10 0.40 0.45 0.50 0.55 0.60 0.65 Composition [Ti/(Ba+Ti)] Postdeposition treatment Torgersen et al 2016 J.o. Physical Chemistry Letters 21

ALD characterization in the SSRL What is the chemical and structural nature for thin film performance modifications? Provides Chemical Identity Oxidation State Coordination Local geometric Structure Local Density of unoccupied States XANES Quantum Simulations Allows studying Interfaces Structural distortions Dopant atoms Nucleation process Torgersen et al 2016 J.o. Physical Chemistry Letters 22

ALD characterization in the SSRL Photoelectron E= hv - binding energy Ejected to unoccupied state Photo e- Auger e- Ev B X-ray with energy hv Fluorescent photon A Beer s law: Absorbance= log(i 0 /I t ) or log(i 0 /I f ) 23

X-ray absorption near edge structure (XANES) Absorption (normalized) Pre-edge: Molecular symmetry Forbidden transitions Weak intensity Featureless 2 Post-edge: Multiple scattering paths Photo e- longer than Zn-S bond Zn-S-Zn ZnS_300 1 0 2460 2470 2480 2490 2500 2510 Enegy (ev) Edge-jump: Oxidation state Unoccupied state in valence orbitals Empty S 3p and Zn 4 sp orbitals 24

XANES of ALD BTO Mixing of BaO and TiO 2 to form BaTiO 3 vs. Torgersen et al 2016 J.o. Physical Chemistry Letters 25

XANES of ALD BTO Ba Rich Ti Rich Stoichiometric Changing Ba/Ti composition vs. vs. Torgersen et al 2016 J.o. Physical Chemistry Letters 26

XANES of ALD BTO Leakage current and band gap (b) Ti rich Stoichiometry Ba rich Density of States (a.u) 0 2 4 6 E (ev) Torgersen et al 2016 J.o. Physical Chemistry Letters 27

Atomic percentage (%) High-k thin films for DRAMs 1 Top Bottom side 2 Ti Ba 3 80 Aspect ratio of the trench ~ 1:3.9 Step coverage (d bottom /d top ) ~ 90% Uniform composition distribution. 60 40 20 0 1 2 3 Positions Acharya, Torgersen et al 2016 J. o. Material Chemistry C 28

Summary ALD for reaching the ultimate limit in downascaling ALD high-k Barium Titanate for next generation DRAM structures Novel chemistry for self limiting growth of BTO Explanation of dielectric properties with electronic structure revealed by synchroton based X-ray absorption Shinjita Yongmin Ioannis Anup

Ongoing activity with TU Wien Additive Manufacturing Technical Commitee ESIS Technical committee 15 (Chief) ESFRI HORIZON 2020 PROPOSAL (180 ME, 13 PARTNERS)