U.S. General Services Administration Historic Preservation Technical Procedures. Galvanized Iron And Steel: Characteristics, Uses And Problems

Similar documents
GALVANIZED IRON PIPE

Prevention Strategies Design and Coatings

Revere Copper Products, Inc.

Corium Brick Rainscreen System Specifications

Corrosion Control and Cathodic Protection Data Sheet

Ohio s Historic Courthouses

SECTION METAL BUILDING SYSTEMS

Condensed Study Guide

Experimental Investigation of the Galvanization. Effects on the Properties of. Low Carbon Alloy Steel

Exterior Stucco and Siding Installation

Galvanized Steel TECHNICAL BULLETIN #1

ELECTROGALVANIZED STEEL

AQA GCSE Design and Technology 8552

Metal and Non Metals

SECTION ALUMINUM COMPOSITE WALL PANEL SYSTEM

SECTION 1043 FENCE MATERIAL

Introduction of a Japan Concrete Institute Guideline: Practical Guideline for Investigation, Repair and Strengthening of Cracked Concrete Structures

An Inexpensive Corrosion Laboratory Experiment - Suitable for All Ages.

Valspar InspireME Coil and Extrusion Product Guide Specification Section Shop-Applied Coatings for Metal

Rivet nut fully installed

1 COMMON DEFECTS AND THEIR CAUSES

LP SmartSide Perfection Shingle

MECHANICAL AND PHYSICAL PROPRIETIES

Northpointe Renovation EPN #1701 F/A Project #17027 September 8, 2017

Properties A Metal B Non- metal Electronic configuration?? Nature of oxides?? Oxidizing or reducing action?? Conduction of heat and electricity??

CONCRETE STEPS, HANDRAILS, AND SAFETY RAIL

Vertigo Cladding Board

DESIGN GUIDELINES COMMERCIAL BUILDING FACADES. Provided by Community Development Program Of Beaver County

Structural Assessment and NDT Procedures

Historic Preservation Commission

Methods of Corrosion Control. Corrosion Control or Corrosion Management?

Technical Data Sheet

Architectural Uses Of Copper

ROOFING CONTRACTORS GENERAL TRADE KNOWLEDGE EXAMINATION CONTENT INFORMATION

Real estate managers and

ICDS12 International Conference DURABLE STRUCTURES: from construction to rehabilitation LNEC Lisbon Portugal 31 May - 1 June 2012 DURABLE STRUCTURES

VALVES. Hank Litchfield, Regional Director of Commercial/Industrial Product Sales, Nibco Inc., Houston, Texas Zinc, the metallic element popular

Metal Roof and Wall Panel Components in Contact with Preservative Treated Lumber A position paper

Why Does Rust Occur? 7.1 IN GENERAL

SECTION GUTTERS AND DOWNSPOUTS

Lime Render & Why Buildings Need to Breathe

MAINTENANCE PLAN Wing Village Hall, Morcott Road, Wing, Oakham LE15 8SA

SECTION 1045 PAINT FOR STRUCTURAL STEEL

FACT SHEET #2 DECK INFORMATION

Louis Armstrong New Orleans International Airport NOAB Project # North Terminal Development Program Phase 1

Scibond SL-23 Polymeric Lubrication System for Tube Drawing


VITRABOND Aluminum Composite Panel Façade System Specification Template

March 26, 2017 Page 1 PRODUCT DESCRIPTION PRODUCT FEATURES

MM SCIENCE JOURNAL I 2016 I NOVEMBER a) b)

Lithia Dodge East 5500 L St. Omaha, NE

Aluminum Component Pipe Railings

GUIDE SPECIFICATION EXETER SECURITY SHIELD SECURITY WINDOW BARRIER SYSTEM

by Rollfab Metal Products

CORROSION OF GALFAN IN SOIL AND CONCRETE PROJECT #ZM PROGRESS REPORT PREPARED FOR:

YEARS WATER PROOFING AND PERFORMANCE WARRANTY*

APPLICATIONS OF ELECTROCHEMISTRY

SECTION COPPER WALL PANELS. ***This section has been updated to IBC. Verify for specific project conditions.***

ASTM Volume 02.05, May 2017 Metallic and Inorganic Coatings; Metal Powders and Metal Powder Products

INSTALLATION MANUAL Heritage Series

Page 1 of 5

DIVISION: THERMAL AND MOISTURE PROTECTION SECTION: WATER RESISTIVE BARRIERS/WEATHER BARRIERS REPORT HOLDER: PAREX USA, INC.

STAYFLEX CORROSION CONTROL AND THERMAL INSULATION SYSTEM

SECTION TURBINE VENTILATORS

GUIDE SPECIFICATION EXETER VERSA SHIELD SECURITY SCREEN SYSTEM

SECTION SLOPED TRANSLUCENT METAL SKYLIGHT SYSTEM

TRANSPORT II " 10.5" MOUNTING POSTS FENCE LINE POST. Classic gate shown GATE OPENING CANTILEVER GATE SAFETY WARNING

Re tinning Components for Hi Rel Assembly

The Leader in Oilfield Coating Technology ISO 9001:2008.

Typical Applications: Chimneys, bridges, tubular bridges, façades, containers, tanks.

Industrial Coatings: HIGHLY DURABLE, SUPERHYDROPHOBIC AND OLEOPHOBIC. (White Paper) NeverWet LLC

Weatherproofing & Sealing Systems

A STUDY OF CASTING CHARACTERISTICS FOR DIE-CAST ALUMINUM ALLOY

PIPE AND TUBE RAILINGS

Concrete. What is it? Ancient history. Recent history. Portland cement Reinforced concrete Pre-stressed concrete. Properties of concrete

1.2.1 Section Cold-Formed Metal Framing: Metal framing for support of aluminum soffits.

SECTION CAST-IN-PLACE CONCRETE

Author: M Shaw, Sika Limited. Construction. A Guide to the Concrete Repair European Standards BS EN 1504 Series

Finishing Wood Decks

Metropolitan Water Reclamation District of Greater Chicago 10/19/ Mark Joyce Senior Mechanical Engineer Engineering Department

Galvanic Corrosion Prevention Guide for Water Cooling Systems

Prospective Construction Systems for Mass Housing

NatureWood Construction Product Specification Guide

Solutions. for Severe Corrosion

TECHNICAL ADVICE. PREPARATION Efflorescence in Masonry

of iron. The bug has a magnet attached to its bottom. The magnet in the bug sticks to the door.

Introducing a complete line of Limestone Classics TM Building Veneers from Indiana Limestone Company. Genuine Indiana Limestone the natural and

HOT DIP GALVANIZED STEEL. Agricultural Equipment. Transportation

Intergranular Corrosion (IGC)

Carport built using Galvalume

2018 British Columbia Building Code Public Review of Proposed Changes

Tile on Existing. Viewpoint

Sterilization of Schweickhardt Instruments

METAL HANDRAILS AND RAILINGS. A. Properly identified manufacturer's literature, including shop and erection drawings before starting work.

GHD Materials Technology

ELASTOFLEX ELASTOMERIC TEXTURED ACRYLIC WALL COATING SPECIFICATION

General Applications Before applying, mix the pre-measured catalyst* into Liquid Roof by following label directions.

SECTION PLATE CONNECTED WOOD TRUSSES

SPECIFICATIONS: Architectural Aluminum Railings


Transcription:

U.S. General Services Administration Historic Preservation Technical Procedures Galvanized Iron And Steel: Characteristics, Uses And Problems 05010-09 GALVANIZED IRON AND STEEL: CHARACTERISTICS, USES AND PROBLEMS This standard includes general information on the characteristics and common uses of galvanized iron and steel and identifies typical problems associated with these materials along with common causes of its deterioration. INTRODUCTION Galvanizing is a process of coating iron or steel with zinc in order to provide greater protection against corrosion for the iron or steel base. The process of galvanizing sheet iron was developed simultaneously in France and England in 1837. Both of these methods employed a "hot dipping" process to coat sheet iron with zinc. Like tinplate, early galvanized metals were hand dipped. Today almost all galvanized iron and steel is electroplated. The following are the most common methods for applying protective coatings of zinc to iron and steel: 1. Hot-dip Galvanizing: The immersion of iron or steel in molten zinc, after the surface of the base metal has been properly cleaned. a. This process gives a relatively thick coating of zinc that freezes into a crystalline surface pattern known as spangles. b. During the process, a multiple layered structure of ironor steel-zinc alloys is formed between the inner surface of the zinc coating and the iron or steel. These middle layers tend to be hard and brittle and may peel or flake if the iron or steel element is bent. 2. Electrogalvanizing: The immersion of iron or steel in an electrolyte, a solution of zinc sulfate or cyanide. Electrolytic action deposits a coating of pure zinc on the surface of the iron or steel. a. The thickness of the coating can be accurately controlled using this process. Page 1 of 6

Limitations: a. The thick coatings provided by the hot-dip galvanizing process are not usually possible with this method. 3. Sherardizing: The placing of a thoroughly cleaned iron or steel element in an air-free enclosure where it is surrounded by metallic zinc dust. The architectural element is then heated and a thin, zinc alloy coating is produced. a. The coating will conform to the configurations of the element. Limitations: a. This process is usually limited to relatively small objects. Spraying Zinc Rich Primer 4. Metallic Spraying: The application of a fine spray of molten zinc to a clean iron or steel element. The coating can then be heated and fused with the surface of the iron or steel to produce an alloy. a. Coating is less brittle than those produced by some of the other processes. b. Coating will not peel or flake on bending. Limitations: a. The coating is more porous and becomes impermeable with time as products of corrosion fill in the pores. 5. Painting: Paint containing zinc dust pigments may be applied as a protective coating to galvanized iron and steel. a. The paint may be applied in situ. Limitations: a. This is a less effective method of zinc coating than the others listed above. b. Paint does not adhere well to pure zinc, nor to galvanized iron or steel. c. When paint peels from galvanized iron and steel, it usually comes off completely along with the primer, exposing a clean metal surface. Page 2 of 6

d. If sheetmetal features are well-painted, it is difficult to identify whether they are zinc or galvanized iron or steel. 1) If the metal is galvanized, it will have a spangled appearance and may show some rust or rust stains from the iron or steel base metal. Both galvanized iron and steel are magnetic. 2) If the metal is cast or pressed zinc, it will have a grayish-white appearance. Pure zinc is not magnetic so a magnet will not stick. 3) A magnet test will also reveal whether a painted sheetmetal feature is zinc or galvanized iron or steel. Both galvanized iron and steel are magnetic, pure zinc is not. TYPICAL USES Typical historical uses for galvanized iron and steel included: - Cornices and other wall ornaments - Door and window hoods - Decorative formed shingles and pantiles designed to imitate other materials - Roof ornaments such as crestings and finials Typical uses today include: - Sheetmetal for flashing, and gutters and downspouts. - Hot-dipped galvanized steel nails. PROBLEMS AND DETERIORATION Problems may be classified into two broad categories: 1) Natural or inherent problems based on the characteristics of the material and the conditions of the exposure, and 2) Vandalism and human-induced problems. Although there is some overlap between the two categories, the inherent material deterioration problems generally occur gradually over long periods of time, at predictable rates and require appropriate routine or preventive maintenance to control. Conversely, many human induced problems, (especially vandalism), are random in occurrence; can produce catastrophic results; are difficult to prevent, and require emergency action to mitigate. Some human induced problems, however, are predictable and occur routinely. Page 3 of 6

NATURAL OR INHERENT PROBLEMS CORROSION: Galvanized iron and steel's resistance to corrosion depends largely on the type and thickness of the protective zinc coating and the type of corrosive environment. The zinc coating on galvanized iron and steel may be corroded by: Acids, strong alkalis, and is particularly vulnerable to corrosion by sulfur acids produced by hydrogen sulfide and sulfur dioxide pollution in urban atmospheres. 1. Natural Corrosion: a. The zinc coating on galvanized iron and steel develops a natural carbonate on its surface by exposure to the atmosphere and by the action of rainwater. This coating, however, is usually not thick enough to protect the metal from further corrosion. b. The carbonate can become brittle and crusty and eventually split, exposing fresh zinc for corrosion. Since the zinc coating on the iron or steel is very thin, it can corrode up to the base metal exposing the base to the atmosphere as well. c. In industrial atmospheres, the zinc carbonate coating can be broken down by the same acids that attack zinc. These acids convert the carbonate to zinc sulfate, which is water soluble and washes away with rainwater, often staining the adjacent building elements. 2. Chemical Corrosion: a. Galvanized iron and steel have good corrosion resistance to: Concrete, mortar, lead, tin, zinc and aluminum. b. Galvanized iron and steel have poor corrosion resistance to: Plasters and cements (especially Portland cements) containing chlorides and sulfates, acidic rainwater runoff from roofs with wood shingles (redwood, cedar, oak, and sweet chestnut), moss, or lichen, condensation on the underside of zinc plates and ponded water on the exterior surfaces of the zinc features 3. Galvanic (Electrochemical) Corrosion: This type of corrosion is an electrolytic reaction between the zinc coating and dissimilar metals when in the presence of an electrolyte such as rain, dew, fog or condensation. a. To prevent the corrosion of the zinc coating due to galvanic action, contact between galvanized items and copper or pure iron or steel should be avoided. b. Galvanized iron and steel are corrosive to all metals except lead, tin, zinc and aluminum. Page 4 of 6

c. Applying a protective coating such as paint to galvanized iron and steel will alleviate the problems caused by corrosion of the protective zinc coating. VANDALISM OR HUMAN-INDUCED PROBLEMS Mechanical or Physical Deterioration: 1. Abrasion: Causes removal of the protective metal surface. The soft zinc coating on galvanized iron and steel make it vulnerable to abrasion damage, especially at roof valleys and gutters where the coating can be worn paper-thin by the scouring of rainwater. 2. Fatigue: A type of deterioration caused by cyclical expansion and contraction of sheet metal features, especially roofs, without adequate provisions for this movement. a. Zinc is very vulnerable to fatigue failure because it has a relatively high coefficient of thermal expansion. b. Fatigue failure may also occur when the metal sheets are too thin to resist buckling and sagging. It results in the bulging and tearing of the zinc coating and resembles a cut or a crack. 3. Creep: The permanent distortion of a soft metal which has been stretched due to its own weight. Thin areas of the metal are especially prone to failure. Creep may be prevented by the use of properly sized individual sheets and bays, properly designed joints, and an adequate number of fasteners. In hot climates, the zinc cannot expand and will crack and then corrode. Cracks are prone to corrosion. 4. Distortion: Permanent deformation or failure may occur when a metal is overloaded beyond its yield point because of increased live or dead loads, thermal stresses, or structural modifications altering a stress regime. Connection Failure: 1. Wind and thermal stress can damage a roof by pulling joints apart and loosening fasteners. Page 5 of 6

Welcome to the GSA's Historic Federal Buildings Program The Historic Preservation Programs protect and preserve National Historic Landmarks and nationally significant buildings across the country. This historic architecture is symbolic not only of design excellence in Federal architecture, but also of our historical heritage. You may view this database by state or by architect. In addition, you may perform a keyword search to locate properties under GSA's jurisdiction. Data is current and accurate according to existing information in GSA files. Additional information is welcome. Images are included whenever available, and are updated on a continuing basis. Historic Preservation Technical Procedures for preventive maintenance and repair of materials used in historic buildings. Page 6 of 6