With the influx of plastic

Similar documents
High Performance UV Curable Organic- Inorganic Hybrid Coatings for Plastics

Understanding the Basics of Electrocoat. Kelly Moore Development Chemist

Development of a Gel Coat With Improved UV Stability

Keeping that shine on your automobile is important to you. Our products help you maintain it.

ADVANCED PROTECTIVE COATING SYSTEM Breakthrough Protective Top Coat and High Performance Epoxy Primer

UV/EB Thermoset Polymers Intended for. Thermoforming Applications

Liquid Optically Clear Adhesive for Display Applications

Optimizing the Assembly Process with Cure-On-Demand UV/Visible Light-Curable Adhesives

CROMAX PRO WB9908 SUPER JET BLACK BASECOAT

The Best of Both Worlds!

Innovations in Hybrid Structural Instant Adhesive Technologies

Gently shake the Autowave can prior to use. Prior to clearcoat application: Until completely matt at 25 C 15 minutes at 25 C

Technology Presentation 2013

Frank D. Rea Director of Coatings Services / Chief Chemist

Achieving premium product appeal. Metasheen Superior mirror and liquid metal effects

POWDER COATING. Capabilities & Product Offerings. T: +1 (416) E: W:

Refer to Substrates & Surface Preparation.

Performance and Benefits of Architectural Coatings on 21st Century Facades. Ben Mitchell, Marketing Manager, AkzoNobel

AquaEC Electrodeposition Coatings

Bringing coatings to life. Performance-engineered precipitated silicas

Product Information: HIGH PERFORMANCE ANTI-FOG COATING (HTAF-308) 02/11

PDS N5.9.1 March 2005 P HS CLEARCOAT PRODUCT DESCRIPTION

Scotch-Weld Metal Bonder Acrylic Adhesive DP8407NS Gray

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015

Guidance for the use of printing inks for paper and board packaging used for contact with food

SECTION 1045 PAINT FOR STRUCTURAL STEEL

Thermal Management of LEDs: Looking Beyond Thermal Conductivity Values

3M TM Decorative Radiant Film 76929SR

Light-emitting diodes for ultravioletcuring

PS-101 Preparing for Your Success

Kapcibase 670 Basecoat Mixing System

Aliphatic Acrylic-Polyester Polyurethane

Products for powder coating resins. Long-lasting environmentally friendly esthetics

Carboguard 890 PRODUCT DATA SHEET SELECTION & SPECIFICATION DATA. Generic Type. Cycloaliphatic Amine Epoxy

UV-LED: Beyond the Early Adopters

DATA SHEET HK312 SEALANT TAPE

DuPont ChromaClear G2-4700S (Hyper Cure - Air Dry and Express Bake)

Wind Turbine Technologies. Sika Wind Turbine Technologies Imagine New Solutions. Renewable Energies_1

High Performance, Cost Effective Waterborne Epoxy Concrete Protection

Developing Formable Properties in Energy Curable Flexographic Inks

LOCTITE 648 LOCTITE 638 LOCTITE 6300 LOCTITE 620. Is disassembly required? What service temperature is required? Up to 230 C.

CROMAX MOSAIC BASECOAT

Recycled Content & Certifications. Green Building Standards. Total 3 rd Party Recycled. Certifications Content

Modern 2K PU waterborne coatings: Efficiently and with high-performance - Sustainability from megatrend to business

3M Fast Tack Water Based Adhesive 1000NF

SuperChrome PVD Coating

1.4 kg/l (11.4 lb/us gal) Maximum 272 g/kg (Directive 1999/13/EC, SED) Maximum 420 g/l (3.5 lb/gal) To 650 C (1200 F) To 538 C (1000 F)

A Critical Study On Scratch Resistance Test Methods. George Drazinakis, Agnes Lechwar Performance Coatings International Laboratories, LLC

PAYING ATTENTION TO DETAIL by Bob Cusumano

NCI for Industrial Applications. Restore Highly Oxidized & Colors. Extend Freshly Painted or Existing Paint by 10+ Years

Sprayon Liqui-Sol is your option for safety, storage and disposal. Preserve, Prevent and Protect your equipment safely with Sprayon s new and

Strength in unity. Quelle/Publication: European Coatings Journal. Seite/Page:

1.4 kg/l (11.4 lb/us gal) Maximum 295 g/kg (Directive 1999/13/EC, SED) Maximum 420 g/l (3.5 lb/gal) 50 to 63 μm (2.0 to 2.

ONE LINE DOES IT ALL PUT NORTON TO THE TEST

LIQUID PENETRANTS USER S MANUAL in accordance to specifications: EN 571, ASTME 1417, AMS 2644, MIL, ASME, DIN, UNI, BS, AFNOR, etc..

Binders for industrial coatings

POLYGUARD RD-6 A FAIL SAFE PIPELINE COATING SYSTEM FOR REHABILITATION OR GIRTH WELDS ON CATHODICALLY PROTECTED PIPELINES

RHOPLEX SG-10M 100% Acrylic Emulsion For Interior/Exterior Semigloss Latex Paints

Acrylic Structural Adhesives. Features and Recent Advancements

TECH MANUAL TABLE OF CONTENTS

New Raw Material for Thermoformable UV/EB Inks and Coatings

HS CLEAR

Two component solvent-free epoxy system for creation of self-levelling floors. Gloss <4% <70% IR4

Avery Dennison Supreme Wrapping Film ColorFlow Series Easy Apply RS Long Term Removable - StaFlat Revision: 0EU Dated: 05/07/16

PRODUCT DATA SHEET Sika Unitherm Platinum

PULSED LASER WELDING

Features Conductive Room Temperature Cure. Product Ref IP 4525IP Low viscosity adhesive & coating. High thermal conductivity

DPHS521 FL301. Low VOC Primer

Amazon FILTRATION SOLUTIONS PHARMACEUTICAL MANUFACTURING

PLAFORIZATION AND TORAN

Mix ratio (by volume): (base component) (activator component) (thinner component)

PIPELINE PRODUCTS. RD-6 Anti-Corrosion Coating System. Sales and Support:

POWDER COATING RESINS

UV and/or visible light absorbing

Where ideas take shape. LIGHTING

UCECOAT Waterborne UV Resins for Field Applied Wood Floor Finishes

FILM ADHESIVES NOMINAL CURE TEMP F (C ) / TIME. 250 (121) / 60 min Cream. 250 (121) / 60 min Cream. 250 (121) / 60 min Cream. 260 (126) / 20 min Cream

Black 1:1 Epoxy, Encapsulating & Potting Compound

DP4101 / DP4104 / DP4107 HS PRIMER

3M Form-in-Place Gasket (FIPG) 1688 B/A (Two-Part System)

STANDARD NO.: Z0254. ECO 13848: Added revision table and standard format. Minor corrections made through out the document.

NORTH AMERICA EPOXY CURING AGENTS EPOXY

Architectural Coatings & Finishes (ACF) Acrylic Finishes Elastomeric Finishes Acrylic Coatings Elastomeric Coatings ACF Assemblies

32 Sq ft Kit Technical Data Sheet

3M Optically Clear Adhesives

MAKE ROOFS LAST LONGER

Corlar 2.1 PR-P High Solids Productive Epoxy Primer

Corlar 2.1 PR-P High Solids Productive Epoxy Primer For Use With FG-040, FG-041 or FG-042 Activators

SECTION EXPANSION CONTROL

January 2007 Product Information ENVIROBASE HIGH PERFORMANCE

Product Information D8120

Joining & Bonding of Composite Parts The Structural Adhesive Advantage

Extreme Sealing Tape

Technical Data Sheet StoLevell Duo plus

SECTION SLOPED TRANSLUCENT METAL SKYLIGHT SYSTEM

Radiation Curing AIPI Milano, 15 May 2014 DELO Stefano Farina. Stand: 10/10

Two component solvent-free epoxy system for creation of self-levelling floors. Gloss >4% <70% 83mg IR4

Characteristics Mechanical strength Air leakage Filter by-pass leakage Thermal transmittance Thermal bridge factor

Transcription:

UV-Curable Basecoats and Clearcoats for Automotive Lighting By Eileen Weber and Phil Abell With the influx of plastic into automotive lighting in the early 198s, a fresh market for coatings quickly emerged. UV-curable coatings were a very attractive match for this market partially due to the superior properties they offered, but also due to many Due to continuous improvement of coating properties and their strong application advantages, today s lighting market both domestically and globally has become well established with UV-curable products. processing related advantages such as reduced cycle times, smaller space requirements and elimination of pot life issues. The popularity of UV-curable coatings soon grew even further with the introduction of recyclable coatings. This was first done in the 198s in the basecoat arena with both spray and flowcoat applications, and has successfully been a standard process in the spray lens coating market since 1994. Additionally, some recyclable lens coatings applied through a flowcoat application have been available for several years, and continue to grow in popularity. Due to continuous improvement of coating properties and their strong application advantages, today s lighting market both domestically and globally has become well established with UV-curable products (Figures 1-4). UV clearcoats hold over 8% of the lens market and UV basecoats hold over 9% of the reflector/extension market. Basecoats In lighting applications, basecoats are defined as a coating applied directly Figure 1 World lens coating market breakdown 2% World Coating Market for Lenses 8% NOVEMBER/DECEMBER 23 RADTECH REPORT 59

Figure 2 U.S. lens coating market breakdown 19% Figure 3 World reflector/bezel coating market breakdown Figure 4 8% U.S. Coating Market for Lenses World Coating Market for Reflectors and Extensions U.S. reflector/bezel coating market breakdown U.S. Coating Market for Reflectors and Extensions % 1% 92% 81% to the reflector or bezel substrate. The purpose of this coating is to provide a smooth, high-gloss surface so that when metal, most commonly aluminum, is deposited via a vacuum process, the finished part exhibits an ornate, lustrous appearance. Typically, a protective topcoat is applied over the metal to create a sandwich and prevent oxidation of the metal (Figure 5). The requirements of the basecoat are fairly basic. Among the more critical factors is to provide a smooth finish that accepts metallization, be able to withstand high heat and environmental cycling requirements, and have adhesion to the substrate. Because of its high crosslink density and ability to cure in a matter of seconds, UV is better able to meet these stringent heat resistance and environmental cycling properties. In addition to the basic performance requirements, lamp design also plays a major role in formulation development. Many of the original lamp designs incorporated the flutes needed for optics in the lens (Figure 6). Because of this design, reflectors contained very few if any Class a surfaces; thus, many of the first UV-curable basecoats for automotive lighting were rudimentary. The majority of the first basecoats were based solely on the quickest curing resins available. Among these UV resins were epoxy acrylates or highly functional urethane acrylates blended with monomers. However, in today s lighting world, the function of the lamps has changednot only must the lamps fulfill safety requirements, which continue to become more stringent, but they must do this in an aesthetically pleasing way. Thus, during the last 2 years, the coating has evolved from a solely functional purpose to a combination of function and design. Lamp designs considering both the reflector and the extension have become more complex 6 RADTECH REPORT NOVEMBER/DECEMBER 23

Figure 5 Vacuum metallization diagram Vacuum Metallization Protective Topcoat Metallization Metallization Diagram Substrate with many models having deeper recesses. In addition, the majority of optics are now molded into the reflector rather then the top lens leaving no room for molding defects or environmental dirt (Figure 7). Further, hotter high intensity discharge (HID) bulbs, which translate into higher heat resistance needs, are more prevalent. Finally, there is a demand for more cosmetic finishes. The majority of these finishes are chrome looks, which because they require different metal alloys and deposition process, tend to introduce more stress into the coating sandwich on the final part. This increased stress typically reveals itself with increased cracking or haze in heat or environmental cycling tests. What does all this mean for the coatings world? Coatings must continue to become more robust without increasing costs. To meet the increasing heat requirements and the critical appearance requirements on complex parts, it has become necessary to diversify from traditional UVbasecoat strategy. The challenge is to develop coatings with excellent flow and leveling characteristics that are capable of hiding molding defects UV Basecoa without building film too much, which could affect the optics. All this must be accomplished on thermosets such as glass reinforced bulk molded compound (BMC) and thermoplastics such as PET/PBT blends that are inherently more difficult to adhere to. UV basecoat technology has so far been able to step to the plate and meet all of these challenges. Flowcoat technology has been improved by developing coatings that are not as dramatically affected by the Figure 6 Optics molded into the lens heat incurred in the flash zones (Figure 8). This allows for fewer runs and better coverage of airborne dirt or molding defects even at film builds as low as 15-2µ m. For spray applications where often higher film builds are desired, coatings have been developed to allow for these high-film builds with reduced runs and sags. These improvements can be seen when viewing viscosity differences at temperatures, which mimic the heated flash zone (Figure 9). These new technologies as well as many others in the market make use of improved resin technologies such as modified acrylates, enhanced photoinitiators, and different curing mechanisms or by blending conventional resins with traditional UV technology. However, just as important as improved coating technology, improved processing techniques have also played a vital role in meeting the OEM s expectations. The two most important aspects of processing UV coatings are cleanliness and following manufacturer processing recommendations. With the cosmetic requirements of headlamp reflectors increasing exponentially, it is very important to process UV coatings with as little contamination as possible. To NOVEMBER/DECEMBER 23 RADTECH REPORT 61

Figure 7 Optics molded into the reflector do this certain steps must be implemented. One good way to reduce the particulate contamination. A second the coating system must be free of contamination is to reduce airborne way to reduce contaminations is to particulates via air filtration. All air filter the coatings. A fine filter as small being supplied directly or indirectly to as 1µ m absolute is better at filtering for it will remove practically all foreign materials. Proper filtration is especially important for flowcoating and reclaim systems. Because the coating is reused multiple times in these type systems, proper filtering is a critical step needed to ensure that all foreign material from the previous application and recovery is removed. A second important item in UV processing is following recommendations set by the coating manufacturer. Because the various coatings manufacturers formulate differently, and because the various raw materials may react differently to UV exposure, it is important to follow recommendations set forth by the manufacturer rather than assume all UV formulations are identical. For example, a system based on highly functional acrylates would be more sensitive to UV light than a Figure 8 Rheology comparison of two flowcoat basecoats. FC2 is less effected by increased heat..9 Rheology Comparison of Two Flowcoat Basecoats at 25 C and 55 C.8 FC 1 at 25 C.7 Viscosity (cps).6.5.4 FC 2 at 25 C.3.2.1 FC 1 at 55 C FC 2 at 55 C. 1. 2. 3. 4. 5. 6. Sheer Stress (Pa) 62 RADTECH REPORT NOVEMBER/DECEMBER 23

Figure 9 Rheology comparison of two flowcoat basecoats. FC2 is less effected by increased heat. 4 Rheology Comparison of Three Spray Basecoats at 55 C 3.5 3 SC 1 Viscosity (cps) 2.5 2 1.5 1 SC 2.5 SC 3. 1. 2. 3. 4. 5. 6. Sheer Stress (Pa) system based on lower functionality components or one containing non-uv technology (dual cure). Such systems then may not require much UV energy in order to achieve full cure. Further, a dual cure system could require a different heat profile in the pre-uv flash zone or a post-uv heat cycle in order to cure properly into the film. The overall solids content of the coating and the type of solvents used in formulation can also dramatically affect the pre-uv flash requirement. In general, coatings require the following processing steps: application, ambient flash, heated flash, and UV cure. The times, temperatures and UV energies vary depending on the specific coating and the intended application. It is important to monitor process conditions using periodic checks and to incorporate these into a control plan. Clearcoats The most scrutinized automotive lens application is by far that of forward lighting. When polycarbonate was introduced as a replacement for glass in the early 198s, the challenges quickly unfolded to develop coatings that would mask its inherently weak weathering properties and poor scratch and chemical resistance. Opportunely, this has been done with success for many years, first with thermal coatings and now largely with UV-curable technology due to the performance and processing advantages that UV offers. Thus, just as UV-basecoat technology has had to evolve to meet the ever changing demands of the automotive world, so too has UV-clearcoat technology for these lens applications. Because of the location of the lens on the vehicle, it is subject to much harsher performance requirements. Critical among the long list of performance requirements are weatherability, scratch and abrasion resistance, and resistance to a variety of environmental stresses. Some of the standard testing parameters are accelerated weathering by Xenon arc, natural weathering of three years Florida and Arizona monitoring changes in yellowness and haze, scratch resistance measured with steel wool, and water soak at elevated temperatures. When the first UV-curable hardcoat for forward lenses was introduced in the late 198s, meeting all of these requirements was quite a difficult challenge because extremely scratch resistant and weatherable resins were competing forces. However, materials available today offer much more resilience, marrying these competing NOVEMBER/DECEMBER 23 RADTECH REPORT 63

Figure 1 Evolution of UV hardcoat development in Florida weathering forces to provide more robust materials. Additionally, the availability of enhanced photoinitiators and superior stabilizer blends allow for better properties across a much wider process window. The difference can especially be seen in weathering testing (Figure 1-11). This increased process window is essential because the trend is to apply less coating. Previously, film build targets varied greatly by manufacturer, but more stringent safety and testing requirements has narrowed the common target to 1µ m or less. Just as UV-basecoat technology success hinges on processing knowledge, so does UV-curable clearcoat technology. Very similar to basecoats, UV clearcoats have the same general pattern for cosmetics and processing. It is very important to maintain a clean environment to produce parts with the desired appearance and performance. All air flows into the process must be free of contamination; this includes any recycled process air or compressed air streams. Paint filtration is also a necessity, especially if the UV clearcoat was reclaimed and rebalanced in house. A typical filtration process for clearcoat reclaim is four stages. Stage one includes a stainless steel wire mesh filter to remove any large pieces of contamination. Stages two through four include bag or cartridge filters gradually decreasing in size to ensure that all dirt contamination is removed. Commonly used filter sizes in these stages are 25µ m, 1µ m, and finally 3µ m absolute. Recommended pumping pressures should be obtained from the filter manufacturer. A final important item on filtering UV coatings is the use diaphragm pumps. Diaphragm pumps, unlike centrifugal and gear pumps, will not sheer the coating; paint sheering can result in a multitude of processing and performance problems. Proper processing is more important for weatherable UV-cured coatings versus basecoats, due to their exposure to the environment. Process checks should be performed on a regular basis. It is important to follow recommended processing parameters 64 RADTECH REPORT NOVEMBER/DECEMBER 23

Figure 11 Evolution of UV hardcoat development in accelerated weathering 8 7 7 6 HC-2 6 5 % Haze 5 4 3 4 3 Yellowness Index 2 2 1 HC-2 1 1 2 3 4 5 6 7 ** Under Development Months %Haze Yellowness Index to obtain the optimum performance of these coatings. An example of the process steps for UV clearcoats are application, ambient flash, heated flash and UV cure. The values for time, temperature and UV energy are dependant on the coating and the enduse. The processing of UV coatings is becoming easier with better control technology and better measurement capabilities as well as more reliable and cost effective equipment. Conclusion Due to the changing automotive lighting market, it is increasingly important to develop more robust coatings that are cost effective yet remain easy to process. In a market where reduced cycle times, increased productivity, and leaner manufacturing are critical success factors, it is imperative for UV-curable coatings to meet these demands and continue to push the performance envelope. Further, with its proven success in the lighting market, UV-curable coatings have become a viable option for other automotive applications. Eileen Weber is a UV research a manager and Phil Abell is an applications engineer at Red Spot Paint and Varnish Co., Evansville, Ind. NOVEMBER/DECEMBER 23 RADTECH REPORT 65