How to use genetic methods for detecting linkage. David D. Perkins. Background

Similar documents
How to recognize and diagnose chromosome rearrangements. David D. Perkins. Background

Chapter 4 Gene Linkage and Genetic Mapping

Gene Linkage and Genetic. Mapping. Key Concepts. Key Terms. Concepts in Action

Concepts of Genetics Ninth Edition Klug, Cummings, Spencer, Palladino

four chromosomes ` four chromosomes correct markers (sister chromatids identical!)

Chapter 6 Linkage and Chromosome Mapping in Eukaryotes

Linkage & Genetic Mapping in Eukaryotes. Ch. 6

Recombination. The kinetochore ("spindle attachment ) always separates reductionally at anaphase I and equationally at anaphase II.

Genetics - Problem Drill 05: Genetic Mapping: Linkage and Recombination

-Genes on the same chromosome are called linked. Human -23 pairs of chromosomes, ~35,000 different genes expressed.

Concepts: What are RFLPs and how do they act like genetic marker loci?

Human linkage analysis. fundamental concepts

OBSERVATIONS ON THE POLARON MODEL FOR GENETIC RECOMBINATION

LECTURE 5: LINKAGE AND GENETIC MAPPING

LINKAGE AND CHROMOSOME MAPPING IN EUKARYOTES

Genetics II: Linkage and the Chromosomal Theory

The Chromosomal Basis of Inheritance

Mutations during meiosis and germ line division lead to genetic variation between individuals

R1 12 kb R1 4 kb R1. R1 10 kb R1 2 kb R1 4 kb R1

Linkage & Crossing over

Bio 311 Learning Objectives

Problem Set 2B Name and Lab Section:

Problem set questions from Exam 1 Unit Basic Genetic Tests, Setting up and Analyzing Crosses, and Genetic Mapping

Sept 2. Structure and Organization of Genomes. Today: Genetic and Physical Mapping. Sept 9. Forward and Reverse Genetics. Genetic and Physical Mapping

7 Gene Isolation and Analysis of Multiple

Respiratory-deficient Mutants in

Answers to additional linkage problems.

Chapter 14: Genes in Action

3I03 - Eukaryotic Genetics Repetitive DNA

CHAPTER 4 STURTEVANT: THE FIRST GENETIC MAP: DROSOPHILA X CHROMOSOME LINKED GENES MAY BE MAPPED BY THREE-FACTOR TEST CROSSES STURTEVANT S EXPERIMENT

Using mutants to clone genes

Introduction. Thomas Hunt Morgan. Chromosomes and Inheritance. Drosophila melanogaster

Mutants of Yeast Sensitive to Ultraviolet Light

-4 PERICENTRIC INVERSION IN NEUROSPORA, WITH

F 11/23 Happy Thanksgiving! 8 M 11/26 Gene identification in the genomic era Bamshad et al. Nature Reviews Genetics 12: , 2011

An introduction to genetics and molecular biology

Indentification and Mapping of Unknown Mutations in the Fruit Fly in Drosophila melanogaster. By Michael Tekin and Vincent Saraceno

Crossing-Over and Recombination

THE MANIFESTATION OF CHROMOSOME REARRANGEMENTS

Gregor Mendel. Austrian Monk Worked with pea plants

Received May 23, 1968

MAS refers to the use of DNA markers that are tightly-linked to target loci as a substitute for or to assist phenotypic screening.

Genetics Lab Biology 322 Fall 2013

Neurospora crassa fmf-1 encodes the homologue of the Schizosaccharomyces pombe Ste11p regulator of sexual development

Kosambi and the Genetic Mapping Function

Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms

The Fertility Factor, or F

GENETICS. I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide chains wrap around each other to form a

3. human genomics clone genes associated with genetic disorders. 4. many projects generate ordered clones that cover genome

DESIGNS FOR QTL DETECTION IN LIVESTOCK AND THEIR IMPLICATIONS FOR MAS

Model Organism. l Saccharomyces cerevisiae as a Genetic OVERVIEW CULTURE CONDITIONS

Einführung in die Genetik

Figure 1: Testing the CIT: T.H. Morgan s Fruit Fly Mating Experiments

Trasposable elements: Uses of P elements Problem set B at the end

CS273B: Deep Learning in Genomics and Biomedicine. Recitation 1 30/9/2016

DO NOT OPEN UNTIL TOLD TO START

Association Mapping in Plants PLSC 731 Plant Molecular Genetics Phil McClean April, 2010

Chapter 6. Linkage Analysis and Mapping. Three point crosses mapping strategy examples. ! Mapping human genes

Observing Patterns in Inherited Traits. Chapter 11

Solve Mendelian Genetics Problems

Chapter 15 Gene Technologies and Human Applications

The principles of QTL analysis (a minimal mathematics approach)

Transformation of yeast (gene exchange/hybrid plasmid/integration)

Sordaria Lab Report. Sordaria Fimicola reproduce through the process of meiosis. This process entails

Programmed Ascospore Death in the Homothallic Ascomycete Coniochaeta tetraspora

CLAUDE L. RHYNE2 Received November 24, 1959

(b) Draw a genetic linkage map showing map distances between met, thi, and pur.

By the end of this lecture you should be able to explain: Some of the principles underlying the statistical analysis of QTLs

POPULATION GENETICS Winter 2005 Lecture 18 Quantitative genetics and QTL mapping

1a. What is the ratio of feathered to unfeathered shanks in the offspring of the above cross?

Mapping Genes Controlling Quantitative Traits Using MAPMAKER/QTL Version 1.1: A Tutorial and Reference Manual

DO NOT OPEN UNTIL TOLD TO START

Human disease genes summary. Some examples of single-gene diseases

Conifer Translational Genomics Network Coordinated Agricultural Project

Random Allelic Variation

L a histidine-requiring mutant of Neurospora by means of a variation ih

Saccharomyces cerevisiae (gene mapping/nonsense suppression/transfer RNA)

Ascus dysgenesis in hybrid crosses of Neurospora and Sordaria (Sordariaceae)

BENG 183 Trey Ideker. Genome Assembly and Physical Mapping

2054, Chap. 13, page 1

Spontaneous recombination; males; Drosophila bipectinata.

164 Teaching Notes Dros. Inf. Serv. 91 (2008)

& Practice

Genomes summary. Bacterial genome sizes

LS50B Problem Set #7

Observing Patterns In Inherited Traits

Genes Code for Proteins

4 Fungal Genetics Newsletter

Conifer Translational Genomics Network Coordinated Agricultural Project

AP Biology. Lab Review

MICROSATELLITE MARKER AND ITS UTILITY

Structural variation. Marta Puig Institut de Biotecnologia i Biomedicina Universitat Autònoma de Barcelona

The Rice Genome. How to Map a Marker Associated with a Major Gene. How do I start finding a marker in all this? About 430 million bp of DNA in genome

T pected a priori to interfere with the normal homologous pairing of that

Bio 121 Practice Exam 3

Inheritance Biology. Unit Map. Unit

Basic Concepts of Human Genetics

Quantitative Genetics

Genome-Wide Association Studies (GWAS): Computational Them

Biology Slide 1 of 18

Transcription:

How to use genetic methods for detecting linkage. David D. Perkins Background It took 75 years using classical genetic methods to assign the first 1000 loci in N. crassa to the seven linkage groups (Perkins et al. 2001), but following completion of the draft genome sequence, only months were needed to add another 1000 loci (Borkovich et al. 2004; see also http://www.bioinf.leeds.ac.uk/~gen6ar/newgenelist/genes/gene_list.htm). However, despite the speed and facility of determining gene location on the basis of DNA sequence, genetic methods will continue to be needed.on occasion. For example, suppressors and mutant genes that are known only by phenotype will need to be mapped.. Genetic mapping can help distinguish the members of redundant gene families, and genetic methods will probably continue to be the most convenient way to locate rearrangement breakpoints. Linkage of mutant or polymorphic markers: Linkage of any two markers is indicated if parental combinations are significantly more frequent than recombinants among progeny from ascospores isolated at random, or if parental ditypes are in excess over nonparental ditypes when asci are analyzed.. Random isolates are generally more efficient that tetrads for detecting linkage, both because of the labor involved in isolating asci and separating the ascospores and because each randomly isolated ascospore has originated from a different meiosis (Perkins 1953). Centromere linkage: When Neurospora first came into use, the ability to use ordered asci for mapping centromeres was a novelty and it was given much prominence. Linearly ordered asci were often isolated laboriously when the same information could have been obtained more economically either with random isolates or with unordered asci. For most current problems, centromere linkage is irrelevant. Ascus analysis to provide knowledge of centromere location can be important, however, in special situations such as in studies of chromosome rearangements or of genetic factors that effect chromosome behavior in meiosis and ascus development. Mapping of centromeres relative to other loci depends on the fact that the when chromosomes of a bivalent disjoin at the first meiotic division, the two centromeres remain undivided, holding the two chromatids of each half-bivalent together. Only at the second division do centromeres separate as in 1

mitosis. Tetrad or half-tetrad analysis is thus essential for centromere mapping. Crossing over occurs at the four-chromatid stage. Marker alleles at a locus proximal to the first chiasma in a chromosome arm will segregate with the parental centromeres at the first division while markers that lie distal to a single chiasma will segregate at the second division. In all eight-spored Neurospora species, ascus development is programmed to deliver products of the first division to opposite halves of the linear ascus, whereas marker alleles that segregated at the second division will both be present in each half of the linear ascus, producing staggered or symmetric arrangements of the two alleles. Physically unordered asci can be used to map centromeres in any chromosome of the complement if a recognizable marker is present at any one of the seven centromeres. This is because second-division segregation of a marker that is centromere-distal to a single exchange will result in asci that are tetratypes with respect to the centromere marker. When a Sk-2 or Sk-3 Spore killer haplotype is present at the centromere of linkage group III, all ascospores in the distal or the proximal half of each linear ascus are inviable and fail to blacken. First- and second-division segregation of a marker can therefore be determined readily by scoring it in the surviving half ascus (Perkins et al. (1986). See How to use Spore killer for distinguishing 1st- and 2nd-division segregation with unordered asci. Genetic evidence that markers are located in nonhomologous chromosomes: When random progeny from two segregating markers show parental:recombinant ratios indistinguishable from!:1, the loci are known to be either in different chromosomes or very far distant from one another in the same chromosome. These alternatives can often be distinguished if tetrads are analyzed, because only a fraction of multiple crossover meioses result in nonparental ditype (NPD) asci. whereas tetratype (T) asci are produced not only by single crossover meioses but also by many of the multiples. Two genes are unlikely to be in the same linkage group if the NPD:T ratio is significantly greater than 1:4, which is the maximum expected for genes far apart in the same chromosome If genes are in nonhomologous chromosomes, there is no upper limit to the NPD:T ratio. For rational, see Barratt et al. (1954). Genetic mapping of sequenced fragments: Any sequenced gene or DNA fragment can be mapped genetically by RFLP, using hybridization with a heavily marked set of meiotic progeny from a reference cross as a basis for comparison. (See Nelson and Perkins 2000. See How to use RFLP for mapping cloned genes.) Procedures 2

Increasing the efficiency of random isolates by using multiply marked testers: Rather that testing an unknown by crossing it to markers in the seven linkage groups one or two at a time, it is more efficient to use multiply marked strains. Testers have been developed that incorporate markers tagging all seven linkage groups. Linkage group assignment of an unmapped marker is most economically accomplished using alcoy; csp-2 testers, which contain four readily scored visible markers, three of which tag unlinked reciprocal translocations. Each of the translocation-linked markers enables detection of linkage to one or another of the two translocation chromosomes (Perkins 1991). Follow-up testers are available for determining which of the two linkage groups is involved. The four visible alcoy markers do not affect viability and are readily scored without transfer to test media. When an unmapped gene is crossed by alcoy; csp-2 and 100 ascospores are isolated, about two thirds of new mutants show linkage to one or another of the alcoy markers. For details, see How to use alcoy for linkage group assignment. Normal sequence strains with centromere linked markers in all seven linkage groups are also available (Perkins 1990). These multicent strains have been especially useful for identifying the chromosomes involved in translocations. Scoring is more laborious than with alcoy; csp-2, however, and marker allele ratios are not as good. For details, see How to use multicent linkage testers. Linkage between mutant or polymorphic markers Random isolates: Linkage is indicated by a significant excess of Parental over Recombinant progeny. Figures 1 and 2 are convenient tally sheets for recording numbers of random ascospore isolates from 2-point and 3-point crosses It is wise to control against differences in viability or ripening speed by scoring complementary classes of both parental and recombinant progeny.. Asci: Linkage is indicated by an excess of Parental ditype over Nonparental ditype asci. Ordered asci also provide information on centromere linkage, but this is often irrelevant or of peripheral interest when linkage between genes is being assayed in two-point or multipoint crosses. Random isolates (or unordered asci) will generally be preferred over ordered asci for evaluating linkage between phenotypically distinguishable markers. This is because they provide the required Parental:Recombinant (or PD:NPD) information with minimal effort. Mapping rearrangement breakpoints Random isolates: Scoring of isolates as Rearrangement, Normal sequence, or Barren is accomplished by fertilizing normal-sequence fluffy testers in plates or small slants and scoring as described in How to recognize and diagnose chromosome rearrangements. See also How to 3

isolate ejected ascospores at random. If ascus patterns indicate a putative translocation (see Perkins 1974), the easiest first option in identifying the linkage group groups of a putative rearrangement is to cross the strain by alcoy; csp-2 on the chance that linkage will be detected between two alcoy markers. If no alcoy markers are linked and if ascus patterns in Rearrangement Normal indicate that the breakpoints are centromere-linked, the rearrangement is then crossed by a normal-sequence multiply marked multicent tester (Perkins 1990. See How to use multiply marked multicent strains for mapping genes and translocation breakpoints. If two multicent markers show linkage, proximity of breakpoints to markers can then be determined by using ascospore abortion to score for presence of the rearrangement in progeny recombinant for the two linked markers. Asci: See How to obtain asci as unordered groups of ascospores ejected from the perithecium. See How to isolate ascospores in order from the ascus. Ascertaining deviations from a 1:1 ratio: Table 1, taken from Perkins (1994), can be used for determining linkage, either with Parental:Recombinant random isolates or with Parental ditype:nonparental ditype tetrads. References Barratt, R. W., D. Newmeyer, D. D. Perkins, and L.Garnjobst. 1954. Map construction in Neurospora crassa. Advan. Genet. 6: 1-93. Mosteller, F., and J. W. Tukey. 1949. The uses and usefulness of binomial probability paper. J. Am. Stat. Assoc. 44: 174-212. Nelson, M. A., and D. D. Perkins. 2000. Restriction polymorphism maps of Neurospora crassa: 2000 update. Fungal Genet. Newslett. 47: 25-39. Perkins, D. D. 1953. The detection of linkage in tetrad analysis. Genetics 38: 187-197. Perkins, D. D. 1974. The manifestation of chromosome rearrangements in unordered asci of Neurospora. Genetics 77: 459-489. 4

Perkins, D. D. 1990. New multicent linkage testers for centromere-linked genes and rearrangements in Neurospora. Fungal Genet. Newslett. 37: 31-32. Perkins, D. D. 1994. Deviations from 1:1 and numbers of progeny necessary for establishing linkage. Fungal Genet. Newslett. 41: 69-70. Perkins, D. D. 1991. Neurospora alcoy linkage tester stocks with group VII marked, and their use for mapping translocations. Fungal Genet. Newslett. 38: 83. Perkins, D. D., N. B. Raju, V. C. Pollard, J. L. Campbell, and A. M. Richman. 1986. Use of Neurospora Spore killer strains to obtain centromere linkage data without dissecting asci. Can. J. Genet. Cytol. 28: 971-981. Perkins, D. D., A. Radford, and M. S. Sachs. 2001. The Neurospora Compendium: Chromosomal Loci. Academic Press. (alcoy: Fig.9, p.24; RFLP mapping: Appendix 3, pp. 231-239) Warwick, B. L. 1932. Probability tables for Mendelian ratios with small numbers. Texas Agr. Exper. Sta. Bull. 463:1-28. 5