Physicists Quality Control for MR Equipment

Similar documents
2017 ACR Computed Tomography Quality Control Manual FAQS

Administration Division Public Works Department Anchorage: Performance. Value. Results.

Monitoring validated processes by using SPC

ISO Monitoring and Measurement Nonconformance and Corrective and Preventative Action

CDASH Clinical Data Acquisition Standards Harmonization

Service Level Agreement Policy. Table of Contents

Energy Market Outlook

Leading Canadian Pediatric Hospital Continues to Drive Dose Down for Sick Children

Energy Market Outlook

Union College Combined Cooling, Heat and Power Project

ROUTINE MAINTENANCE EMERGENCY SERVICES EQUIPMENT REPAIR

IAF Advisors Energy Market Outlook Kyle Cooper, (713) , October 31, 2014

MAGNETOM Skyra: The Mannheim Perspective

Application Note 6: On-line Reaction Monitoring of Alcoholic Fermentation

Cattle Outlook. January, 2018

Quality Assurance for particle beam therapy

Our Profile. LPPM/ Pt & Pd Certified Reference Materials (CRM) Project Update

Vantage Titan 1.5T MR. The Intelligent Choice.

Ingenia MR-RT. MR Systems. The comprehensive MR-sim solution to fit your planning

International Journal of Applied Science and Technology Vol. 2 No. 3; March 2012

Introduction: what do we mean by Quantitative MRI?

Meter Data Management System (MDMS) Sharing. Ricky Ip CLP Project Manager

Investigation of metal contacts via thermal treatment at Interfaces between low temperature Ag pastes and TCO layer for HIT solar cell

Advantages of Financing Continuous Commissioning As An Energy Conservation Retrofit Measure

QUICK START GUIDE. SQF Implementation. for.

Understanding The Provider Registration Scorecard. Powered By

John H. Kerr Dam and Reservoir Virginia and North Carolina (Section 216)

Precision Measurement of Small Gap within Closed Components by Industrial Computed Tomography

Fertility management in organic strawberries

Composition Analysis of Animal Feed by HR ICP-OES

Organics Collection Program and Yard Material Pile Collection Update

Optimization of Low-Dose CT Protocol in Pediatric Nuclear Medicine Imaging

COURSE LISTING. Courses Listed. with Customer Relationship Management (CRM) SAP CRM. 15 December 2017 (12:23 GMT)

MONTHLY OPERATIONS REPORT

Pumped hydro Storage Plants

Field Performance of. Forrest Collins juwi solar Inc. February 2 nd, 2010

COURSE LISTING. Courses Listed. 4 February 2018 (12:50 GMT) SAPSCM - SAP SCM. SCM200 - Business Processes in Planning (SCM)

Utilization of the SWAT Model and Remote Sensing to Demonstrate the Effects of Shrub Encroachment on a Small Watershed

Internal Medicine Faculty Affairs Staffing Analysis Program & Operations Analysis University of Michigan Health System

Regional Habitat Indicators Project. Workshop #1. Nov 9, 2016

CHP Case Studies. Midwest CHP Application Center (MAC) .org (312) University of Illinois at Chicago Energy Resources Center UIC

COURSE LISTING. Courses Listed. with Business Intelligence (BI) Crystal Reports. 26 December 2017 (18:02 GMT)

Reliability Improvement using Defect Elimination

5 Star London Hotels - Example Report

ESCI-61 Introduction to Photovoltaic Technology

The Service Desk Balanced Scorecard

The Call Center Balanced Scorecard

Feed Grain Outlook June 2, 2014 Volume 23, Number 33

November 28, Dear Mr. Bechtold:

Analytical Methods Development and Validation

Project Report: SunMaxx Commercial Case Studies

Personal Temperature Drift Monitoring System For Thermal Cycling Instruments Product Info

COURSE LISTING. Courses Listed. with SAP ERP. 3 January 2018 (00:08 GMT) SCM600 - Business Processes in Sales and Distribution

Magnetic Resonance Imaging (MRI) Safety for Boston Scientific Products. 1. WALLSTENT Iliac Endoprosthesis with Unistep Plus Delivery System

FDA Experience with the Sentinel Common Data Model: Addressing Data Sufficiency

European Freight Forwarding Index

Sustainable Livelihood Program (SLP) of Philippines: Linking Cash Transfer to Sustainable Livelihood Development

Facilities Management. FM Key Performance Indicators

Giuseppe Giordano Founder & CEO

HHS Public Access Author manuscript Abdom Imaging. Author manuscript; available in PMC 2016 February 01.

McGraw-Hill Education, Inc. Where We Came From

USAF CAD/PAD Program Overview CAD/PAD Industrial Summit

SALTON SEA SOLAR PONDS PILOT PROJECT

% Change. Total. Total Retail Sales Index* Estimate ($M)

Low Cost Building Automation System for Small- and Medium- Sized Commercial Buildings

COURSE LISTING. Courses Listed. Training for Applications with Integration in SAP Business One. 27 November 2017 (07:09 GMT) Advanced

rotarian 2018 Media Kit the Audience 2 Circulation Demographics Publisher s Statement Open Rates... 4 Ad Specifications.. 5 Printing Specifications

Settlement Agreement Report

I-class. All together a better way to work. MAGNETOM Avanto.

ROTEK. IIInnInstI Instrument Corp. ISO 9001 Quality System Manual

2017 Contact Center Overflow Vendor Request for Proposals Responses to RFP Questions

ecqm Implementation and Submission Insights Cerner Corporation Nebraska Methodist Health System

Call Center Benchmark India

Cargo Training International

Freedom of Information Request Reference No: I note you seek access to the following information:

Approved by the Board on July 27, 2017 Page 1

Streamline workflow for higher productivity and patient throughput. DirectView. Classic CR System

Case Study. BiOWiSH Aqua has Positive Long-Term Effects. Biological Help for the Human Race

Does Water Resources Management in the Snake River Basin Matter for the Lower Columbia River? Or Is the Snake River Part of Another Watershed?

COMOS Training Calendar 2017/2018

QIBA Profile: Diffusion-Weighted Magnetic Resonance Imaging (DWI)

Measure What You Manage. Michael Cowley, CPMM President CE Maintenance Solutions, LLC

SSI ACTIVITIES ON SALMONELLA FOR ECDC

IASI AND IASI NG, MERLIN, MICROCARB FOR CH 4 AND CO 2 OBS. IN THE TROPOSPHERE

Zugspitze Solar FTIR: NDSC Primary-Status Instrument cm-1 resolution (OPD = 486 cm) Bruker IFS120HR FT-spectrometer

COURSE LISTING. Courses Listed. with Quality Management SAP ERP. 15 February 2018 (23:55 GMT) SAP01 - SAP SAP01E - SAP Overview

Years of THE SUGAR INDUSTRY'S PREMIER MAGAZINE SINCE MEDIA KIT

BHPBilliton Iron Ore Port Sweating the assets. September 2003

Robust Design for a Sustainable Future

ABB ServicePro 4.0 Service Management System

Retrofit of an Existing Californian Hospital to Immediate Occupancy Standards One Year Later Again R. Jay Love, S.E.

Backbone Transportation Service

Refuse Collections Division Solid Waste Services Department Anchorage: Performance. Value. Results.

Premium Sample Reports

Clinical Translation of Tumor Acidosis Measurements with AcidoCEST MRI

Transcription:

Physicists Quality Control for MR Equipment Geoffrey D. Clarke, Ph.D. University of Texas Health Science Center at San Antonio 1

Overview ABR and the role of the Qualified Medical Physicist/ MR Scientist Phantom selection and the degree of latitude given the QMP/MRS Annual survey tests: Magnetic field homogeneity RF Coil SNR, image uniformity & ghosting Roles of physics assistants & technologists 2

ACR MRI Accreditation Program Overview Evaluates effectiveness of quality control measures Collects findings to further the development of quality control information Promotes the Qualified Medical Physicist / MRI Scientist as individual responsible for overseeing the equipment quality control program 3

ACR Position on QMP/MRS Starting July 1, 2005, sites applying for MRI accreditation must submit an annual MRI system performance evaluation performed by a medical physicist or MR scientist. The medical physicist/mr Scientist will follow the ACR MRI Quality Control Manual in order to perform a complete annual system performance evaluation. 4

ACR Position on QMP/MRS This evaluation includes an evaluation of the weekly QC performed by a technologist. A technologist may still perform the ACR phantom portion of the accreditation submission the ACR strongly recommends the services of a medical physicist or MR scientist for this also. 5

Qualified Medical Physicist or MR Scientist? Qualified Medical Physicist : ACR recommends that the individual be certified in the appropriate subfields* by: the American Board of Radiology the Canadian College of Physics in Medicine, or for MRI, by the American Board of Medical Physics in MRI physics *The appropriate subfields of medical physics for this standard are Diagnostic Radiological Physics and Radiological Physics. ACR Technical Standard for Diagnostic Medical Physics Performance Monitoring of Magnetic Resonance Imaging (MRI) equipment (amended 2006) 6

Qualified Medical Physicist Qualified MRI Scientist or MR Scientist? obtained graduate degree in a physical science involving nuclear MR or MRI Should have 3 yrs. of documented experience in a clinical MRI environment. Physicist/MR scientist shall be knowledgeable in: principles of MR safety, FDA & other regulations Nuclear physics & MRI technology clinical imaging protocols and their methods of optimization ACR Technical Standard for Diagnostic Medical Physics Performance Monitoring of Magnetic Resonance 7 Imaging (MRI) equipment (amended 2006)

Initial MRAP Applications Initial Applications by Site Total Number of Units Applying for ACRMRAP 7000 6000 5000 4000 3000 2000 1000 0 J- 98 D- 98 J- D- 99 99 J- 00 D- 00 J- D- 01 01 J- 02 D- 02 J- D- 03 03 Date J- 04 D- 04 J- D- 05 05 J- 06 D- 06 J- D- 07 07 J- 08 D- 08 Estimate of initial applications based on numbers of units submitting MRAP phantom studies for review 8

ACR Magnetic Resonance Imaging Quality Control Manual (rev. 2004) 9

MRI Accreditation Standard Phantom Design Goals Easy to Use Multiple inserts Not too bulky Applicable to all MRI systems Moderately Priced $1050 10

ACR Standard MRI Phantoms ACR MRI Phantoms Produced Number of Phantoms Produced 8000 7000 6000 5000 4000 3000 2000 1000 0 J- J- F- A- M- S- A- N- M- D- J- J- J- F- S- M- O- A- N- M- D- J- J- 97 9798 98999900 000101 02 03 0304 04050506 060707 0809 Month-Year ~1000/yr 11

MRAP Standard Phantom Models S/N 2256 S/N 2857 12

ACR MRAP Small Phantom Small version of standard ACR MRAP phantom designed for use is clinics that have dedicated extremity imagers that allow application for ACR Accreditation of knee module only. Phantom Test Guidance for Use of the Small MRI Phantom for the ACR MRAP 13

MRAP Small Phantom Specs inside length 100 mm inside diam. 100 mm filled with a solution of NiCl & NaCl 10 mm NiCl2 and 0.45% by weight aqueous NaCl. A separate vial is filled with 20 mm NiCl2 but no aqueous NaCl. Saggital image show positions for seven slices acquired with small ACR MRAP phantom Phantom Test Guidance for Use of the Small MRI Phantom for the ACR MRAP 14

MRAP Small Phantom Specs Slices are nominally 5mm with 3 mm gaps 12 cm FOV; matrix size is nominally 192 (fe) 152 (pe) High contrast resolution arrays are 0.9mm, 0.8mm & 0.7mm Crossed wedges have 45 o slopes - the bar length difference is twice the actual slice displacement error 15

MRI Phantoms: General Features Nonsignalproducing container Proton density similar to water Shorten T1: NiCl & CuSO 4 Mimic Conductivity of tissues: NaCl 16

Phantoms Developed by Users Uniform Spherical Phantoms Agarose Gel Phantom with Inserts 17

Responsibilities of the Medical Physicist / MRI Scientist Write Purchase Specifications Perform Acceptance Testing Baseline Measurements Determine Action Limits Set up Daily/Weekly QC Tests MRI equipment performance review 18

MRI Annual Performance Review Should be performed by a qualified medical physicist or MRI scientist Should be done at least once a year Also after major hardware repair and/or upgrades 19

Annual Survey Tests Magnetic Field Homogeneity Slice Position Accuracy Slice Thickness Accuracy See ACR MRI QC Manual Radio Frequency Coil Checks Inter-Slice RF Interference Soft Copy Displays (monitors) 20

Magnetic Field Homogeneity Ideal Homogeneity Good Homogeneity Poor Homogeneity FWHM FWHM ω o Denotes a totally uniform magnetic field. All signal is at resonant frequency, ω o. ω o Fourier transform of signal produces a Lorentzian peak in well-shimmed magnet ω o Magnet firld homogeneity can be characterized using FWHM of resonance peak 21

Is it required to perform the homogeneity test for the annual system performance evaluation? Yes, a homogeneity test of some kind is required as part of the annual system performance evaluation for all accredited magnets, and those applying for accreditation. The ACR QC Manual describes this in the Medical Physicist s/mr s/mr Scientist s s section. 22

Is it required to perform the homogeneity test for the annual system performance evaluation? If the methods in the QC Manual can t t be performed, a field map or equivalent field homogeneity assessment that has been performed within the last 12 months from the service engineer may be submitted. The QMP/MRS may use alternate method of accurately assessing homogeneity but must include a description of the methodology. 23

Is it required to perform the homogeneity test for the annual system performance evaluation? A potential alternate method that may be used with systems that do not provide access to either phase-angle angle images or spectroscopy is the Bandwidth- difference method. 24

ACR Phantom Phase Maps Axial Phase and Unwrapped Phase Images Sagittal 180 o phase variation Best homogeneity is in center, edges of phantom degrade uniformity of B-field in phantom 25

Magnetic Field Homogeneity spectral line widths phase-difference map Data from MRI System Manufacturer s Phantom 26

Magnetic Field Homogeneity Overall, the phase mapping technique provides the best mechanism for evaluating field homogeneity. Phase-maps in several planes can be obtained to determine the spherical harmonic coefficients and allows a means of shimming the magnet. 27

Spherical Homogeneity Phantom saggital coronal axial Photo of homogeneity phantom 28

Bandwidth-Difference Method MFH ( x, y) = γ The MFH is measured from the change in distance between landmarks in the phantoms between the two bandwidths. FOV = field of view in m BW1 BW2 ( d FOV ( BW 1 2 d2) BW d 1 ) γ = γ/2π = 42,567 Hz/mT Chen HH et al. Medical Physics, 2006, 33(11): 4299-4306. 29

Optimization of Parameters Minimum ppm Measured 1.2 minimum ppm 1 0.8 0.6 0.4 0.2 BW2 = 10000 Hz BW2 = 25000 Hz BW2 = 50000 Hz FOV = 330 mm d 1 -d 2 = 1 mm 0 0 5000 10000 15000 BW1 (Hz) 30

Magnetic Field Homogeneity For some systems, service personnel may provide use of phase-mapping acquisition and analysis tools. Filmed copy of vendor s s final homogeneity map and shim coefficients is useful for documenting initial conditions and establishing a baseline. 31

Radio Frequency Coil Checks Volume coils Signal-to to-noise ratio Percent integral uniformity Percent signal ghosting Surface Coils Maximum SNR Tests 32

Bird-Cage Head Coil RF coils produce uniformity patterns characteristic of their design. 33

Volume RF Coil Measurements ACR Phantom Slice #7 34

Image Intensity Uniformity Performance criteria: PIU 87.5% except 3T (82%) percent integral uniformity = 100 Measurement Considerations: Display may not show signal values 1 ( high low ) ( high + low) Display may not allow user to set signal display level There may not be a well-defined high/low intensity level 35

100% Percent Integral Uniformity - T1-Weighted 90% 80% Percent Integral Uniformity 70% 60% 50% 40% 30% 20% 10% 0% 1-31- 30-30- 29-28- 29-28- 28-27- 27-26- 25-25- Oct Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Date of Measurement System #1 System #2 System #3 36

Percent Integral Uniformity - T2-Weighted 100% 90% 80% Percent Integral Uniformity 70% 60% 50% 40% 30% 20% Metal found in head coil 10% 0% 1-31- 30-30- 29-28- 29-28- 28-27- 27-26- 25-25- Oct Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Date of Measurement System #1 System #2 System #3 37

Uniformity Patterns Birdcage Coil High Field Solenoid Coil Low Field 38

Uniformity at 3 Tesla 1.5T 3 T 3 T Requirement for percent integral uniformity (PIU) for a 3T MRI system is equal to or greater than 82%. B1 field maps in a conductive saline phantom (18 cm diameter) RL Greenman et al. JMRI 2003, 17(6): 648-655 39

Phased- Array Coils The signal is viewed from more angles Using four channels does not produce 4 * S/N Abdomen-pelvis phased-array Torso Phased Array Cervical-Cranial Phased Array 40

Surface RF Coil Measurements 41

Volume Coil Data % Image Uniformity Signal-to to-noise Percent Signal Ghosting Max Signal Min Signal Mean Signal SD of Background Signal Ghost Signal Mean Signal Background Signal Surface Coil Data Maximum Signal-to to- Noise Maximum signal SD of Background Signal 42

MRI Physics Assistants QMP/MRS may be assisted in obtaining QC test data by properly trained individuals. These individuals must be trained and approved by the QMP/MRS in the: techniques of performing the tests function and limitations of the imaging equipment and test instruments reasons for the tests importance of the test results. The QMP/MRS must review and approve all measurements. 43

MRI QC Program Roles MRI Physicist runs baseline tests of system performance sets action criteria for routine ACR phantom tests performs annual calibration checks with appropriate phantoms reviews QC program 44

MRI QC Program Roles Technologist performs daily tests to assess image quality using ACR phantom Weekly checks of hard copy output All measurements made, problems discovered, and actions required to resolve the problems are recorded for review 45

Summary As of June 2009, ACR s MRAP has about 7000 participating sites The qualified medical physicist/mri scientist plays an important role in the QC aspects of the MRAP The ACR phantom is not adequate for all QC test the QMP/MRS must use other phantoms & methods MRI magnet homogeneity is an important but problematic test 46

Summary All radiofrequency coils must be tested in every mode of operation used clinically This may pose a challenge for newer, many-channel systems It is advisable to use coil manufacturer s phantoms and tests where available ACR has posted all Testing & QC Forms for download at: http://www.acr.org/accreditation/mri/mri_qc_for ms.aspx 47