Strain Capacities Limits of Wrought Magnesium Alloys: Tension vs. Expansion

Similar documents
The Effect of Crystallographic Texture on the Wrap Bendability in AA5754-O Temper Sheet Alloy

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b

ERC/NSM Activities. Research for Industry and Government

Simulation Technique for Pre-forming of AHSS Edge Stretching

Influence of Texture on the Plastic Anisotropy of Mg Alloy Determined by Experimental and Numerical Investigation

Single Point Incremental Forming of Polymers

ISSN No MIT Publications

Characterization of Mechanical Properties of SiC/Ti-6Al-4V Metal Matrix Composite (MMC) Using Finite Element Method

Formability and Crystallographic Texture in Novel Magnesium Alloys

3. Mechanical Properties of Materials

Available online at ScienceDirect. Procedia Engineering 183 (2017 )

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS

Tensile/Tension Test Fundamentals

True Stress and True Strain

WEEK FOUR. This week, we will Define yield (failure) in metals Learn types of stress- strain curves Define ductility.

Properties in Shear. Figure 7c. Figure 7b. Figure 7a

Abstract. 1 Introduction

EFFECT OF LOCAL WALL THINNING ON FRACTURE BEHAVIOR OF STRAIGHT PIPE

On the Portevin-Le Chatelier instabilities in the industrial Al-2.5%Mg alloy

Evolution of texture in an ultrafine and nano grained magnesium alloy

Simulation studies on Deep Drawing Process for the Evaluation of Stresses and Strains

Sheet Metal Forming FUNDAMENTALS. Edited by Taylan Altan and A. Erman Tekkaya

Hot-crack test for aluminium alloys welds using TIG process

Optimizing the Shape and Size of Cruciform Specimens used for Biaxial Tensile Test

Superplasticity in a rolled Mg 3Al 1Zn alloy by two-stage deformation method

Rate Dependency Plastic Modeling

Design of High Strength Wrought Magnesium Alloys!

Mechanical and Forming Properties of AA6xxx Sheet from Room to Warm Temperatures

Mechanical behavior of crystalline materials- Comprehensive Behaviour

1) Fracture, ductile and brittle fracture 2) Fracture mechanics

Mechanical Properties of Metals. Goals of this unit

Texture Characteristics and Anisotropic Superplasticity of AZ61 Magnesium Alloy

EFFECT OF LOCAL PLASTIC STRETCH OM TOTAL FATIGUE LIFE EVALUATION

Study of Roll Forming Bending in Different Temperature

The strength of a material depends on its ability to sustain a load without undue deformation or failure.

Comparison of Energy Absorption Characteristics of Thermoplastic Composites, Steel and Aluminum in High-Speed Crush Testing of U-Beams

Factors Affecting Bend Formability of Tempered Copper Alloy Sheets

MECHANICAL CHARACTERIZATION OF SANDWICH STRUCTURE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1

Simulation of Hot Extrusion of an Aluminum Alloy with Modeling of Microstructure

Product Design Considerations for AHSS Displaying Lower Formability Limits in Stamping - With Sheared Edge Stretching

Practice Problems Set # 3 MECH 321 Winter 2018

Effect of anisotropy on the hydroforming of aluminum alloy AA6061-T6 using newly developed method

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN

Springback Prediction in Bending of AHSS-DP 780

ME -215 ENGINEERING MATERIALS AND PROCESES

ENGINEERING MATERIAL 100

MECHANICAL PROPERTIES OF ALUMINUM WELDS FOR AUTOMOTIVE STRUCTURAL APPLICATIONS

STRENGTH OF MATERIALS laboratory manual

Investigations of fracture process in concrete using X-ray micro-ct

Residual Stress Measurements Using Neutron Diffraction in Magnesium Alloy Laser Welded Joints

Lab 4: Creep, Stress-Strain Response, and Stress Relaxation of Polymer Samples in Tensile Loading

PUNCH FORCE BEHAVIOR DURING MICRO V-BENDING PROCESS OF THE COPPER FOIL

1. Consider the following stress-strain responses of metallic materials:

Axial Tensile Testing of Single Fibres

Use of Forming Limit Curve as a Failure Criterion in Maritime Crash Analysis

Application of Mechanical Trimming to Hot Stamped 22MnB5 Parts for Energy Saving

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July ISSN

ScienceDirect. Springback of extruded 2196-T8511 and 2099-T83 Al-Li alloys in stretch bending

Behaviour of Magnesium Alloy Under Load-Control Cyclic Testing

STRUCTURAL CHARACTERISTICS OF CONCRETE-FILLED GLASS FIBER REINFORCED COMPOSITE PILES. Abstract

Application of The Finite Volume Method to Upset Forging of Cylinders. Introduction. Nomenclature. Arjaan J. Buijk

HYDROGEN RELATED BRITTLE CRACKING OF METASTABLE TYPE-304 STAINLESS STEEL

Microstructural refinement and properties of metals processed by severe plastic deformation

Cyclic Fatigue Testing of Wrought Magnesium AZ80 Alloy for Automotive Wheels

Prediction of fatigue crack propagation in aluminum alloy with local yield strength gradient at the crack path

where n is known as strain hardening exponent.

YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION

Effect of Draw Ratio and Sheet Thickness on Earing and Drawability of Al 1200 Cups

THE TEXTURE STRENGTHENING EFFECT IN A MAGNESIUM ALLOY PROCESSED BY SEVERE PLASTIC DEFORMATION

Detailed experimental and numerical analysis of a cylindrical cup deep drawing: pros and cons of using solid-shell elements

Tensile Testing. Objectives

Local buckling of slender aluminium sections exposed to fire. Residual stresses in welded square hollow sections of alloy 5083-H111

Progress report Material characterization and impact performance of Semi Impregnated Micro-Sandwich structures, SIMS

Effect of Molybdenum Content on Mechanical Properties of Sintered PM Steels. Candido Ruas, Sylvain St-Laurent Quebec Metal Powders Limited

NON-LINEAR FEM ANALYSIS FOR CES SHEAR WALLS

In-plane testing of precast concrete wall panels with grouted sleeve

Numerical analysis of wrinkling phenomenon in hydroforming deep drawing with hemispherical punch

Deformation behavior of electro-deposited pure Fe and its texture evolution during cold-rolling and subsequent annealing

Characterization of AMAG AL6-CHA sheet material for Chassis application in the automotive industry

Cost effective manufacturing of tungsten heavy alloy foil and sheet material

IMPROVEMENT OF THE DEFORMATION CAPACITY BY THE USE OF FIBERS

Buckling of beverage cans under axial loading

Modeling of Coupled Nonlinear Shear and Flexural Responses in Medium-Rise RC Walls

Develop Experimental Setup of Hydroforming to Reduce Wrinkle Formation

INFLUENCE OF SECUNDARY AGEING ON MECHANICAL PROPERTIES OF AN AA7050 ALUMINUM ALLOY

Residual Stress Pattern of Stainless Steel SHS

Texture development during cold and warm rolled samples of AZ31B magnesium alloy

Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips

Available online at ScienceDirect. Procedia Engineering 183 (2017 )

Finite element simulation of the warm deep drawing process in forming a circular cup from magnesium alloy sheet

Materials Engineering 272-C Fall 2001, Lectures 9 & 10. Introduction to Mechanical Properties of Metals

Chapter 16. Sheet-Metal Forming Processes. Sheet-Metal Parts. Shearing with a Punch and Die. Shearing. Die-Cutting Operations

MULTI-AXIAL YIELD BEHAVIOUR OF POLYMER FOAMS

4.4 Single Load Path Structure

Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions

Deformation characterization of cartridge brass

University of Huddersfield Repository

Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components

Joining Plastic Sheets bypunch Riveting

Transcription:

Materials Sciences and Applications, 213, 4, 768-772 Published Online December 213 (http://www.scirp.org/journal/msa) http://dx.doi.org/1.4236/msa.213.41297 Strain Capacities Limits of Wrought Magnesium Alloys: Tension vs. Expansion R. Boissiere 1*, P. Vacher 2, J. J. Blandin 3, A. Khelil 1 1 Institut Jean Lamour, Université de Lorraine, Nancy, France; 2 SYMME, Université de Savoie, Annecy-le-Vieux, France; 3 SIMAP, Université de Grenoble CNRS, Grenoble, France. Email: * remi.boissiere@univ-lorraine.fr Received September 26, 213; revised October 29, 213; accepted November 12, 213 Copyright 213 R. Boissiere et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Lightening structure is one of the goals of many fields of research. As a result, magnesium alloys are studied due to their low density. However, one drawback of these alloys is their low formability at room temperature due to their hexagonal closed-packed structure. In the present work, the forming capacity of an Mg alloys has been studied using a mini deep-drawing device, image correlation techniques and tests (tension and expansion) at temperatures contained between 2 C and 2 C. To investigate formability limits of Mg alloys in expansion, major and minor strains data were generated using hemispherical punch tests and analyzed with 3D digital images correlation techniques. Thanks to images correlation, strains on the surface of the samples were observed by means of a double digitization of the sample in three dimensions before and after deformation by using stereoscopic vision and triangulation. Image correlations have also been used in 2D to measure strains on the surface of the tensile test samples. These tests gave interesting information on the evolution of various parameters such as hardening coefficient, strain rate sensitivity parameter, and Lankford coefficient, which may affect the behavior of the alloys. Finally, the forming limits in both configurations (tension and expansion) were compared and discussed. Keywords: Tension; Expansion; Image Correlation; Magnesium Alloys; Strain Measurements; 3D Digitization; Hemispheric Punch; Deep-Drawing 1. Introduction Magnesium alloys have a renewal of interest in research due to their light weight and quite high specific strength. However, forming of wrought magnesium sheets still limits the development of Mg alloys because of the low deformation capacity at room temperature due to the hexagonal closed-packed structure. Determining the forming limits of these alloys is then a priority. Several methods can be used to identify such forming limits as they can be determined via different strain situations. The most widely used method to test materials is the tensile tests, but multi-axial tests must be realized as behaviors might be slightly different from one situation to the other. In this paper, interest is given to the establishment of the forming limits diagram in the case of an (Mg-3Al- 1Zn, wt.%) alloy thanks to tensile and deep-drawing tests. * Corresponding author. These tests were performed using images correlation techniques. In the case of multi-axial solicitations, the forming diagram is drawn using the major and minor strains observed at the surface of the sample. Data related to Forming Diagram have been reported in the literature (see for instance [1]). Ghosh et al. [2] and Shu et al. [3] have underlined that the maximal strains are depending on the punch geometry. Boissiere et al. [4] completed this study by showing that scale has a little effect on the limit strains when using a spherical punch. In the present work, to investigate formability limits of Mg, major and minor strains data were generated using hemispherical punch tests. Both tensile and deep-drawing devices allow undertaking tests at various temperatures. As those two types of strain situations give slightly different results, it is of interest to try to understand the reason of the differences between uni-axial tension and multi-axial.

Strain Capacities Limits of Wrought Magnesium Alloys: Tension vs. Expansion 769 2. Experimental Devices 2.1. Material State and Important Factors The studied alloy was obtained as a rolled sheet displaying a grain size close to 1 µm. The rolling of the metal sheet gives it a marked anisotropy in mechanical properties. This strain anisotropy was measured by the Lankford coefficient r defined as follows: width r thickness This factor is important for strain capacities as it drives the thickness reduction that leads to the fracture of the specimen. It will be seen that this is a key factor for comparing tension and expansion capacities. Rolling also gives a strong fiber texture to the alloy which has some effect on mechanical properties. Two other important factors are studied here: hardening coefficient n and strain sensitivity factor m that are controlling the material behavior with a relative influence mostly depending on temperature. 2.2. Mechanical Devices 1) Tensile tests The main tool used to characterize materials, and especially metallic alloys, is tensile test. To carry out these tests, a 5 kn Instron tensile test machine was used with the help of a camera system to measure displacements in order to calculate strain fields. The settings of the machine allowed driving it at a constant displacement rate. The chosen geometry was an aeronautical standard. In order to study anisotropic effects, samples were machined according to various orientations towards the rolling direction ( for rolling direction and 9 for transverse direction). 2) Deep-Drawing Tests An original deep-drawing device was developed and adapted on the tensile test machine. This system allowed testing small samples with a punch diameter between 1 and 1 mm. On this device, the punch was fixed and the sample was clamped between the blank holder and the die. This assembly was moved up at a constant velocity of 1 mm/min that is close to the one used in tension. This tooling has two interesting features: first, it works in tension (preventing buckling), secondly it keeps constant the distance between the punch and the fixed camera. This last point is essential if strains are measured by using only one camera (for flat punch applications). A layer of PTFE was inserted between the specimen and the punch in order to limit friction. The thickness of the sheet used, which was initially of 2 mm was reduced to.5 mm by using electro-spark cutting techniques. In order to obtain various strain distributions, samples were not necessary circular. 2.3. Strain Measurement Tools 1) Tensile measurements in 2D Multiple tests realized on alloys showed that strains were almost never homogeneous along the sample. This heterogeneity was more important for high strains. Whereas a conventional extensometer would only give average results, image correlation technique allows obtaining longitudinal and transversal strain for a huge number of locations in the sample that exhibit either uniform or non-uniform strain. Strain in the thickness can then be estimated with the formula assuming a constant volume: thickness length width It is then possible to confirm that the main strain direction in the tensile sample is confused with the longitudinal one. Figure 1 shows an example of strain distribution on a nearly fractured specimen with x,y, the plan corresponding to the initial image plan and the z axe showing longitudinal local strains. This figure shows that the mechanical behavior of a metallic alloy is not limited to its macroscopic behavior. To describe a material behavior, two types of strains are studied: the maximal local strain and the average strain of the material. 2) Expansion measurements in 3D Strain fields on the surface were obtained by using images correlation techniques and stereoscopic visions. With this system allowing access to bi-axial stretching, it will be shown in the following that various strain distributions exist. 3D measurement is adapted to determine the whole range of these strain situations. The chosen comparisons were realized by exploiting these strain fields calculated between the state of the sample before deformation and after the apparition of the first crack. Displacement field measurements and calculation of Figure 1. Local longitudinal strain distribution on each point of an 9 sample tested in tension showing significant necking.

77 Strain Capacities Limits of Wrought Magnesium Alloys: Tension vs. Expansion strain fields along non planar surfaces requires a double 3D digitization of this part before and after the forming operation. Correlation software 7D developed by P. Vacher et al. [5] was used. In the present investigation, forming diagrams (E max E min ) will be shown as comparison results with E min corresponding to the minimal principal strain and E max related to the maximal principal strain. 3. Results from Tensile Tests 3.1. Formability at Room Temperature Details concerning the results provided here can be found in [6]. As image correlation was used, it was possible to have access to all strains on the surface of the sample. Samples were deformed until a strain of.27 for 9 samples and.22 for sample (average strain, Figure 2) and.35 ( ) to.5 (9 ) (maximum strain, Figure 1). These results were completed by measurements of the hardening coefficient n, strain rate sensitivity factor m and the Lankford coefficient r, as described in paragraph 2.1. Concerning the effect of strain rate, results have shown that m is very low (.3) and has consequently little expected effect on the behavior of the material at room temperature. The hardening effect has to be taken into account as its value is not negligible and is close to.2, independently of the orientation. As a consequence, anisotropy is only detectable by a variation of the elastic limit and the Lankford coefficient. For samples, the elastic limit is 15 MPa and r is close to 2 whereas for 9, the elastic limit is 17 MPa and r is closed to 4. This difference is a result of the non-symmetry of the fiber texture. It has been observed that 9 sample displays larger deformation than the one. It can be observed that higher Lankford coefficient provide higher strain. It is then possible to assume that fracture is controlled by the thickness reduction. 3.2. Effect of Temperature on Strain Capacities during Tension Hexagonal closed-packed structures and especially Mg wrought alloys are known to exhibit low ductility. As a consequence, one of the factors that can improve formability is an increase of forming temperature. Figure 3 displays the effect of temperature (up to 4 C) on the stress strain curves in tension when the alloy is deformed at a constant strain rate equal to 6 1 4 s 1. As expected, strain to fracture increases with the temperature. When the temperature is higher than 2 C, it has been shown that new mechanisms of deformation could be activated in the studied alloy, involving new slip systems (than the basal system which is preferentially activated at room temperature), dynamic recrystallization or even grain boundary sliding for the upper studied (MPa) 35 3 25 2 15 1 5.5.1.15.2.25.3 9 Room temperature 1 Température ambiante 55x1 ⁴ 4 ss -1 5x1-4 s Average -1 strain strain Déformation moyenne Figure 2. Tensile test curves for two orientations and 9. Figure 3. Tensile test curves at different temperatures (9 orientation). temperatures. The raise of temperature induces a variation of the parameters m and n. As temperature is increasing, the strain rate sensitivity m is increasing and becomes a key parameter of the improvement of formability of the specimen. The hardening effect is still active but becomes less essential for the forming of the material. 4. Results from Expansion Tests 4.1. Room Temperature Results Details concerning these results can be found in [6]. Deep-Drawing tests were carried out using a hemispherical punch and 3D images correlation. This method allows to measure strains on the surface. Figure 4 displays a forming diagram with the maximal surface strain called E max and the minimal surface strain named E min. Thanks to image correlation, a set of points is obtained to

Strain Capacities Limits of Wrought Magnesium Alloys: Tension vs. Expansion 771 cover many strain situations. Then, the calculation of the strain in the thickness is performed as follows E max + E min = E thickness. From this equation, it can be deduced that the highest strain is the one in the thickness when tested in expansion. Figure 4 shows a forming diagram with strain distribution from tensile situation (sample at 9 from the rolling direction, room temperature) to expansion and it can be seen that expansion strain capacities are limited to.1. What can be observed here is that the limits in tension are much higher than the ones in expansion. As the hardening coefficient is not affected by the anisotropy of the material, it can be assumed that its effect is the same for both types of solicitations as expansion can be described as multi-axial tension. As the strain rate sensitivity parameter is very low, it is expected to have a very limited effect on multi-axial forming. 4.2. Effect of Temperature on Expansion Thanks to the mini deep-drawing device deep-drawing tests were performed for temperatures up to 2 C. The results presented Figure 5 show only the behavior of points that exhibits a near expansion situation. As magnesium alloys are often compared to aluminum ones, it is of interest to show also points corresponding to the behavior of an Al 224 alloy tested at room temperature [4]. It can be observed that at room temperature, aluminium is able to support significantly higher strains than the alloy, but, it also revealed that the forming capacity of the magnesium alloy for a temperature as low as 2 C could overpass the forming capacity of the Al 224 alloy at room temperature. At 2 C the strain rate sensitivity parameter m is close to.2 which leads to improve the formability of the material as much as the effect of the hardening coefficient (.2 at room temperature) as n is decreasing when temperature is increased. 5. Comparison and Discussion Results have shown that important differences in strain limits could be observed between tensile and expansion conditions. For instance, Figure 4 showed that the strain observed at the surface was significantly higher for the uni-axial tension than for the multi-axial tension. Various explanations can be suggested as many factors can affect the formability of such alloys. Three main factors controlling strain capacities have been studied: the hardening coefficient n, the strain rate sensitivity m, and the Lankford coefficient r. First of all, it has been underlined that hardening is controlling strain capacities at room temperature whereas strain rate sensitivity has a main role when temperature is increasing. Despite the fact that these two factors are affecting the limit strain, their study is not likely to explain the differences between limit strains in tension and expansion as no variations have Figure 4. Forming diagram with local strain situations from tension to expansion. Emax.6.5.4.3.2.1 1 mm/min AZ 31 AZ 31 2 C 1 C AZ 31 15 C Al 224 2 C AZ 31 2 C.1.2.3.4 E min Figure 5. Forming diagram with local expansion situation in function of temperature. been detected in these parameters when changing from one solicitation to the other one. Indeed, it has been shown that m has little effect at room temperature and n shows no variation when changing the strain direction toward rolling direction ( and 9 ). As a consequence, it is of interest to detail the role of the Lankford coefficient on the forming limits. It has been underlined that the fracture is mainly controlled by the variation of thickness. Thus, Lankford coefficient plays an efficient role to postpone fracture in tensile tests. Eventually, the width reduction can be much higher when r grows and consequently the reduction of thickness is more limited. Another explanation can be found when looking at true strains in the thickness. Concerning tension, if we consider that.5 (9 ) and.3 ( ) are the limit longitudinal strain; one can detect the strain in the thickness. For transverse samples (9 ) and a Lankford coefficient equal to 4 (ε width = 4 ε thickness ),.5 length width thickness (4 ).5 length thickness thickness

r 772 Strain Capacities Limits of Wrought Magnesium Alloys: Tension vs. Expansion length thickness.1 5 For longitudinal samples ( ) and a Lankford coefficient equal to 2 (ε width = 2 ε thickness ): length thickness.1 3 This observation suggests that the forming limit behavior of these types of alloys is preferentially guided by the thickness strain. Now, if one have a look on the strain in the thickness induced by expansion and considering strains on the surface E max (.1) and E min (.7), it leads to: E E.17 thickness Max Min As a consequence, sheets can support a higher deformation in the thickness under expansion than in tension. The appearing strong limits detected in expansion deals with the facts that only surface strains are measured. Concerning the temperature effect, it is interesting to consider the variation of anisotropy (r coefficient) since we saw that a high value of the Lankford coefficient could have a beneficial effect on deformation in tensile situations. Figure 6 shows a reduction of r when the temperature is increasing. The reduction of r is supposed to limit the strain capacities in tension. However, it was underlined that strain rate sensitivity parameter is controlling forming limits at high temperature in tension. As a consequence, forming limits are raised due to this new effect which remains negligible at room temperature but which can activate new mechanisms. Concerning the comparison with expansion, the lowering of r means that the material tends to exhibit a nearly isotropic behavior at high temperature (T 25 C). If one consider the temperature studied here (25 C - 2 C), Lankford coefficient is roughly varying from 4 to 1.5. As r 4.5 4,5 4 3.5 3,5 3 2.5 2,5 2 1.5 1,5 1.5,5 1 2 3 4 5 T Puissance () 9 Figure 6. Variation of Lankford coefficient r with temperature T. a consequence, differences observed between tension and expansion behavior must be lowered. In tension, a longitudinal strain of.6 is obtained whereas it is limited to.4 in expansion. The limits are converging when temperature rises, as the reduction of r provides a leveling of the strain observed on the surface in various solicitations. As a consequence, is can be assumed that the Lankford coefficient r contributes to the observed differences of surface strains limit between uni-axial tension and multiaxial tension. 6. Conclusion The objective of this work is to try to understand the differences of behavior of an wrought magnesium alloy between tensile behavior and expansion behavior. Tests have been realized using image correlation techniques, 3D digitization, and an innovative mini deepdrawing device. It appears from the results and discussions that the strain anisotropy (Lankford coefficient r) of the material plays a major role in the strain capacities of these alloys. REFERENCES [1] G. Reyes and H. Kang, Mechanical Behavior of Lightweight Thermoplastic Fiber-Metal Laminates, Journal of Material Processing Technology, Vol. 186, No. 1-3, 27, pp. 284-29. http://dx.doi.org/1.116/j.jmatprotec.26.12.5 [2] A. K. Ghosh and S. S. Hecker, Stretching Limits in Sheet Metals: In-Plane versus Out of Plane Deformation, Metallurgical and Materials Transactions B, Vol. 5, 1974, pp. 2161-2164. [3] E. Hsu, J. E. Carsley and R. Verma, Development of Forming Limit Diagrams of Aluminum and Magnesium Sheet Alloys at Elevated Temperatures, Journal of Materials Engineering and Performance, Vol. 17, No. 3, 28, pp. 288-296. http://dx.doi.org/1.17/s11665-7-9196-y [4] R. Boissière, P. Vacher and J. J. Blandin, Influence of the Punch Geometry and Sample Size on the Deep- Drawing Limits in Expansion of an Aluminium Alloy, International Journal of Forming, Vol. 3, Suppl. 1, 21, pp. 135-138. http://dx.doi.org/1.17/s12289-1-725- [5] P. Vacher, S. Dumoulin, F. Morestin and S. Mguil- Touchal, Bidimensional Strain Measurement Using Digital Images, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 213, No. 8, 21, pp. 811-817. [6] R. Boissière, Effet de la Temperature sur les Capacités de Mise en Forme d Alliages de Magnésium Corroyés, Ph.D. Thesis, Grenoble University, Grenoble, 28.