Research Article Development and Validation of Acyclovir HPLC External Standard Method in Human Plasma: Application to Pharmacokinetic Studies

Similar documents
N. Tamilselvi *, Dona Sara Kurian. Department of Pharmaceutical Analysis. KMCH college of pharmacy Coimbatore

Validated Stability-indicating assay method for determination of Ilaprazole in bulk drug and tablets by high performance liquid chromatography

Size Exclusion Chromatography of Biosimilar and Innovator Insulin Using the Agilent AdvanceBio SEC column

A Sub-picogram Quantification Method for Desmopressin in Plasma using the SCIEX Triple Quad 6500 System

Bioanalytical method validation: An updated review

Research Paper Development of Stability Indicating Reverse Phase HPLC Method for Aripiprazole from Solid Dosage form

RP-HPLC METHOD FOR QUANTITATIVE ESTIMATION OF GLATIRAMER ACETATE FOR INJECTION IN PHARMACEUTICAL DOSAGE FORMS

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

Research Article. Optimization and validation of rapid and simple method for determination of Isoniazid and Pyrazinamide in plasma by HPLC-UV

Genotoxicity is the property of a compound

A green HPLC technique with a 100% water mobile phase for detecting imidacloprid and its metabolite 6-chloronicotinic acid

Concentration of Human Hormones in Drinking Water Using Solid Phase Extraction and Analysis by High Performance Liquid Chromatography

Quality-by-Design-Based Method Development Using an Agilent 1290 Infinity II LC

Available Online through (or) IJPBS Volume 2 Issue 3 JULY-SEPT Research Article Pharmaceutical Sciences

DETERMINATION OF MYCOTOXINE DEOXYNIVALENOL IN WHEAT FLOUR AND WHEAT BRAN

Method Translation in Liquid Chromatography

Chem 321 Lecture 23 - Liquid Chromatography 11/19/13

AppNote 5/2006 ABSTRACT

Optimizing the Purification of a Standard Chiral Compound Utilizing a Benchtop, Multi-Purpose, Semi-Preparative to Preparative HPLC System

Developing and Validating Dissolution Procedures for Improved Product Quality

Exploring Extra Sensitivity Using ionkey/ms with the Xevo G2-XS Q-Tof HRMS for Small Molecule Pharmaceutical Analysis in Human Plasma

mab Titer Analysis with the Agilent Bio-Monolith Protein A Column

PART II: SAMPLING AND SALIVA SAMPLE PRETREATMENT

INTERNATIONAL PHARMACOPOEIA MONOGRAPH ON ARTEMETHER AND LUMEFANTRINE CAPSULES REVISED DRAFT FOR DISCUSSION

HPLC METHODOLOGY MANUAL

Improved SPE for UPLC/MS Determination of Diquat and Paraquat in Environmental

A Modular Preparative HPLC System for the Isolation of Puerarin from Kudzu Root Extracts

LC/MS. Why is it the fastest growing analytical technique?

Converting a Liquid-Liquid Extraction Method for Vitamin D to a 96-Well Plate Supported Liquid Extraction Format

Protocol for Quantitative Determination of Residual Solvents in Cannabis Concentrates Prepared by: Amanda Rigdon, May 23 rd, 2016

Developing Robust and Efficient IEX Methods for Charge Variant Analysis of Biotherapeutics Using ACQUITY UPLC H-Class System and Auto Blend Plus

Validation of a concentration assay using Biacore C

Analysis of the bioactive components from different growth stages of Fritillaria taipaiensis P. Y. Li

Fast mass transfer Fast separations High throughput and improved productivity Long column lifetime Outstanding reproducibility Low carryover

Improving Resolution and Column Loading Systematically in Preparative Liquid Chromatography for Isolating a Minor Component from Peppermint Extract

Development of Quality Control Method for Dissolution Analysis of Tapentadol and paracetamolin tablet

Disulfide Linkage Analysis of IgG1 using an Agilent 1260 Infinity Bio inert LC System with an Agilent ZORBAX RRHD Diphenyl sub 2 µm Column

Preparative HPLC is still the

BIOANALYTICAL METHOD DEVELOPMENT AND ITS VALIDATION

ab83355 ATP Assay Kit (Colorimetric/ Fluorometric)

Quantitative determination of residual 2-(2-chloroethoxy) ethanol (CEE) in quetiapine fumarate by gas chromatogaraphy

Empore. Solid Phase Extraction Cartridges. Technical Information. Product Description. Product Characteristics. Sorbents Available

Thermo Scientific TSQ Quantum Access MAX

Fundamentals and Techniques of Preparative HPLC. Parto Zist Behboud Tel: 42108

Certified Reference Material - Certificate of Analysis

Fast Preparative Column Liquid Chromatography (PCLC)

Qualification of High-Performance Liquid Chromatography Systems

Rapid Soft Spot Analysis using the SCIEX Routine Biotransform Solution

Department of Research and Development of Dharmais Hospital National Cancer Center, Jakarta, INDONESIA.

C196-E067A. Prominence UFLCXR. Shimadzu Ultra Fast Liquid Chromatograph

A Validated Stability Indicating HPTLC Method for Determination of Cephalexin in Bulk and Pharmaceutical Formulation

Protein-Pak Hi Res HIC Column and HIC Protein Standard

Validation Report 19

Peptide Mapping: A Quality by Design (QbD) Approach

Analytical Methods Development and Validation

IgG Purity/Heterogeneity and SDS-MW Assays with High- Speed Separation Method and High Throughput Tray Setup

Application Note. Author. Abstract. Small Molecule Pharmaceuticals. Sonja Krieger Agilent Technologies, Inc. Waldbronn, Germany

Technical Overview. Author. Abstract. Edgar Naegele Agilent Technologies, Inc. Waldbronn, Germany

EPA Method 543: Selected Organic Contaminants by Online SPE LC/MS/MS Using the Agilent Flexible Cube

QUESTIONS AND ANSWERS TO ICH S3A: NOTE FOR GUIDANCE ON TOXICOKINETICS: THE ASSESSMENT OF SYSTEMIC EXPOSURE IN TOXICITY STUDIES FOCUS ON MICROSAMPLING

Canine Cortisol(COR)ELISA Kit

Human IgG Antigen ELISA Kit

HPLC to UPLC Method Migration: An Overview of Key Considerations and Available Tools

ImmuLux Human IL-6 Fluorescent ELISA Kit

HIC as a Complementary, Confirmatory Tool to SEC for the Analysis of mab Aggregates

Gas Chromatography Assignment Chem 543/443

Automated Real-Time Determination of Bromate in Drinking Water Using LC-ICP-MS and EPA Method Application

The residue then is redissolved in HPLC solvent, e.g. in 400 µ l in example calculation see below, and a aliquot is finally injected into the system.

Maximizing Chromatographic Resolution of Peptide Maps using UPLC with Tandem Columns

Thermo Scientific Transcend System

Application Note. Author. Abstract. Biopharmaceuticals. Verified for Agilent 1260 Infinity II LC Bio-inert System. Sonja Schneider

Bivalirudin Purification:

ab Glutamine Assay Kit (Colorimetric)

Liquid Chromatograph Liquid Chromatograph Mass Spectrometer. CL Series. for In Vitro Diagnostic Use

Analysis of 16 Pesticide Residues in Broccoli Using CarbonX dspe QuEChERS AOAC Kits Using GC/MS

RAM Direct Injection. (Restricted Access Media) A Tool for the Separation of Small Molecules in the Presence of Large Biomolecules

ICH Guideline S3A: Note for guidance on toxicokinetics: the assessment of systemic exposure in toxicity studies - questions and answers

Polyvidone Polyvinylpyrrolidone H 2 C H C N

Porcine IgM (Immunoglobulin M) ELISA Kit

Expanding EPA 544: Addition of Seven Microcystin Congeners for Analysis of Lake Erie Beach Samples, a Comparative Study with ELISA

International Journal of Pharma Research & Review, Feb 2014; 3(2):11-16 ISSN:

Characterization of mab aggregation using a Cary 60 UV-Vis Spectrophotometer and the Agilent 1260 Infinity LC system

ab Plasmin Activity Assay Kit (Fluorometric)

LabChip GXII: Antibody Analysis

PAHs in Surface Water by PDA and Fluorescence Detection

Simultaneous in vivo Quantification and Metabolite Identification of Plasma Samples Using High Resolution QTof and Routine MS E Data Analysis

ReverTra Ace qpcr RT Master Mix

International Journal of Medicine and Nanotechnology

Development of a Clinical Research Method for the Measurement of Testosterone. Dihydrotestosterone

Fraction Analysis of Cysteine Linked Antibody-Drug Conjugates Using Hydrophobic Interaction. chromatography. Agilent 1260 Infinity II Bio-Inert System

Investigation of Solid Phase Microextraction as an Alternative to Dried Blood Spot

Automated Online SPE for LC/MS/MS Analysis of Trace Organic Contaminants in Water Using the Agilent 1290 Infinity Flexible Cube Module

Method development and validation for the quantitative estimation of cefixime and ofloxacin in Pharmaceutical preparation by RP- HPLC

Human Serum Albumin Assay

Current Best Practices in Commercial Kit Evaluation and Validation for Biomarker Assays

Mouse Collagen Type III ELISA

Forced degradation studies and validated stability indicating HPTLC method for determination of miconazole nitrate in soft lozenges

APPLICATION NOTE. UOP : Analysis of Trace CO and CO 2 in bulk H 2 and Light Gaseous Hydrocarbons by GC

ab MDR Assay Kit (Fluorometric)

Human IL-6 EasyTest TM ELISA Kit

Transcription:

Advances in Pharmaceutics, Article ID 284652, 5 pages http://dx.doi.org/10.1155/2014/284652 Research Article Development and Validation of Acyclovir HPLC External Standard Method in Human Plasma: Application to Pharmacokinetic Studies Selvadurai Muralidharan, Jayarajakumar Kalaimani, Subramani Parasuraman, and Sokkalingam Arumugam Dhanaraj Pharmaceutical Chemistry Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah, Malaysia Correspondence should be addressed to Selvadurai Muralidharan; murali23pharm@hotmail.com Received 1 August 2014; Revised 9 October 2014; Accepted 11 October 2014; Published 31 December 2014 Academic Editor: Farid Abedin Dorkoosh Copyright 2014 Selvadurai Muralidharan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A simple, rapid, and selective RP-HPLC method was developed for the estimation of acyclovir in human plasma. The method involves a simple protein precipitation technique. Chromatographic separation was carried out on a reverse phase C 18 column using mixture of 5 mm ammonium acetate (ph 4.0) and acetonitrile (40 : 60, v/v) at a flow rate of 1.0 ml/min with UV detection at 290 nm. The retention time of acyclovir was 4.12 minutes. The method was validated and found to be linear in the range of 25.0 150.0 ng/ml. Validation studies were achieved by using the fundamental parameters, including accuracy, precision, selectivity, sensitivity, linearity and range, stability studies, limit of detection (LOD), and limit of quantitation (LOQ). It shows recovery at 91.0% which is more precise and accurate compared to the other method. These results indicated that the bioanalytical method was linear, precise, and accurate. The new bioanalytical method was successfully applied to a pharmacokinetic linearity study in human plasma. 1. Introduction Acyclovir, 9-[(2-hydroxyethoxy)-methyl]-guanosine, is an acyclic guanosine derivative which exhibits a selective inhibition of herpesviruses replication with potent clinical antiviral activity against the herpes simplex and varicella-zoster viruses [1, 2].Therearemanyworkspublishedforthedetermination of acyclovir in biological fluids of different species. For a laboratory, to develop a method is sometimes a compromise between cost, time consumption, and purpose of study. Some of the reported methods about acyclovir quantification in human plasma supposed to be expensive sample extraction method by using liquid-liquid extraction. Several HPLC methods have been reported for determination of acyclovir in human serum using UV [3 13] or fluorescence detection [14 18]. We present herein for the first time, a sensitive and selective HPLC method for the acyclovir assay in human plasma. This paper describes a new sensitive bioanalytical method for acyclovir using RP-HPLC method. By this method, chromatographic conditions have been optimized and validated in accordance with FDA guidelines. This results in a more sensitive, less time consuming, and easier method of quantification compared to the other existing methods and it gives better recovery from the human plasma, which is 91.0%. The present method was found reliable and applicable for the bioequivalence studies. 2. Reagent and Materials Gift sample of acyclovir was obtained from Ranbaxy Pharmaceuticals, Sungai Petani, Malaysia. Acetonitrile (HPLC grade) was obtained from Merck, Germany. Ammonium acetate (molecular biology reagent grade) was obtained from Systerm Malaysia. Methanol obtained from QREC and HPLC grade water was used throughout. 2.1. Instrumentation. HPLC chromatographic separation was performed on a Shimadzu liquid chromatographic system

2 Advances in Pharmaceutics (mau) 1750 1500 1250 1000 750 500 250 0 250 0.0 1.0 2.0 3.0 4.0 5.0 6.0 (min) 4.152 (mau) 300 250 4.252 200 150 100 50 0 50 0.0 1.0 2.0 3.0 4.0 5.0 6.0 (min) Figure 2: Typical chromatogram of sample solution. Figure 1: Typical chromatogram of standard solution. equipped with an LC-20AD solvent delivery system (pump), SPD-20A photo diode array detector, and SIL-20ACHT injector. LC solution version 1.25 was applied for data collecting and processing (Shimadzu, Japan). 2.2. Standard Solutions. A stock solution of acyclovir was prepared by dissolving the appropriate amount in acetonitrile and water (1 : 1) in order to obtain a final concentration of 1.0 mg/ml solution of acyclovir and stored at 8 C. Working standards were freshly prepared, diluted (serial dilution of 25 to 150 ng/ml), and used for the analysis. 2.3. Chromatographic Technique. All chromatographic experiments were carried out in the isocratic mode using Thermo C 18 (250 4.6 mm i.d., 5 μ) column. The mobile phase consisted of a mixture of 5 mm ammonium acetate (ph 4.0) and acetonitrile (40 : 60% v/v). The flow rate was 1 ml/min and the volume injected was 50 μl using autoinjector. The analytes was detected using UV detection at 290 nm. The standard chromatogram is presented in Figure 1. 2.4. Sample Preparation. At the time of validation, the samples were removed from the deep freezer and kept in the room temperature and allowed to thaw. A volume of 0.5 ml of sample was pipetted into 2.0 ml centrifuge tube and 0.5 ml of precipitating agent (10% perchloric acid) was added. The resulting solution was vortexed for 2 minutes and centrifuged at 4000 RPM for 7 min. Supernatants from the above solutions were evaporated and dryness to the residue was reconstituted with mobile phase and used for the analysis. The sample chromatogram is presented in Figure 2. 2.5. Validation 2.5.1. System Suitability. The column efficiency, resolution, and peak asymmetry were calculated for the standard solutions. The values obtained demonstrated the suitability of the system for the analysis of this drug combination and the system suitability parameters fall within ±3% standard deviation range during routine performance of the method. (mau) 500 400 300 200 100 0 100 0.0 1.0 2.0 3.0 4.0 5.0 6.0 (min) Figure 3: Typical chromatogram of blank plasma. 2.5.2. Selectivity. The selectivity of the method was evaluated by comparing the chromatograms obtained from the samples containing acyclovir standard with those obtained from blank samples (Figure 3). 2.5.3. Sensitivity. Determine sensitivity in terms of lower limitofquantification wheretheresponseoflowerlimitof quantification should be at least five times greater than the response of interference in blank matrix at the retention time of the analyte. 2.5.4. Plasma Extraction Method. Three methods have been tried such as protein precipitation (PPT), solid phase extraction, and liquid-liquid extraction. In these three methods PPT method achieved more % recovery compared to other methods. The SPE and LLE methods of plasma interferences eluted near to drug peak retention time it affected the drug peak. 2.5.5. Linearity Range. The linearity different concentrations of standard solutions were prepared to contain 25, 50, 75, 100, 125, and 150 ng/ml of acyclovir. These solutions were

Advances in Pharmaceutics 3 Table 1: Sensitivity. Nominal concentration ng/ml 25.0 Mean 24.69 SD 0.03 RSD (%) 4.85 Nominal (%) 98.62 N 5 analysed and the peak areas were calculated. The calibration curvewasplottedusingpeakareaversusconcentrationofthe standard solutions. The standard curve fitting is determined by applying the simplest model that adequately describes the concentration-response relationship using appropriate weighing and statistical tests for goodness of fit. 2.5.6. Precision and Accuracy. The precision of the method was determined by intraday precision and interday precision. The intraday precision was evaluated by analysis of blank plasma sample containing acyclovir three different concentrations of LQC, MQC, and HQC using five replicate determinations for three occasions. The interday precision was similarly evaluated over two-week period. 2.5.7. Standard Stock Solution Stability. Standard stock solutions of 1.0 mg/ml acyclovir were prepared separately using a mixture of water and acetonitrile (1 : 1 v/v), from the standard stock solution used for the further analysis. 2.5.8. Room Temperature Stock Solution Stability. Room temperature stock solution stability was carried out at 0, 3, and 8 hours by injecting four replicates of prepared stock dilutions of acyclovir equivalent to middle quality control sample concentration and the stock dilution of internal standard equivalent to the working concentration. Comparison of the mean area response of acyclovir and internal standard at 3 and 8 hours was carried out against the zero hour value. 2.5.9. Refrigerated Stock Solution Stability. Refrigerated stock solutionstabilitywascarriedoutat7,14,and27daysby injecting four replicates of prepared stock dilutions of the analyte equivalent to the middle quality control sample concentration and the stock dilution of internal standard equivalent to the working concentration. 2.5.10. Freeze-Thaw Stability and Short-Term Stability. The stability studies of plasma samples spiked with acyclovir were subjected to three freeze-thaw cycles, short-term stability at room temperature for 3 hrs, and long-term stability at 70 C over four weeks. In addition, stability of standard solutions was performed at room temperature for 6 hrs and freeze condition for four weeks. The stability of triplicate spiked human plasma samples following three freeze-thaw cycles was analysed. The mean concentrations of the stability samples were compared to the theoretical concentrations. The stability of triplicate (n =5) short-term samples spiked with acyclovir was kept at room temperature for 1.00 to 3.00 hours before extraction. Table 2: Intraday precision and accuracy. Nominal concentration ng/ml 25.0 100 150 Mean 24.56 99.02 149.84 SD 0.05 0.06 0.04 RSD (%) 7.65 9.05 6.87 Nominal (%) 98.62 99.01 98.94 N 5 5 5 Table 3: Interday precision and accuracy. Nominal concentration ng/ml 25.0 100 150 Mean 24.92 98.74 149.91 SD 0.02 0.04 0.01 RSD (%) 9.15 7.82 6.10 Nominal (%) 98.93 98.21 99.16 N 5 5 5 Table 4: Stock solution stability of acyclovir. Room temperature Below 12 C Number of hours Initial (%) Number of days Initial (%) 0 100.00 0 101.25 3 104.49 7 106.14 8 110.10 14 102.39 Mean 104.86 103.26 SD 4.89 5.15 %RSD 6.01 4.89 3. Result and Discussions System suitability test was performed daily before the run of analyticalbatchtocheckdetectorresponsetotheanalyte. 3.1. Selectivity. No interfering endogenous compound peak was observed at the retention time of drug and internal standard. 3.2. Recovery Studies. The sample was prepared by adding 0.5 ml of plasma containing drug and followed by adding 100 μl of 10% perchloric acid, which was vortexed followed by centrifugation at 4000 RPM for 7 min. The supernatant solution was separated and injected. There is no endogenous source of interference was observed at the retention times of the analytes (Figure 2). The precision and accuracy for acyclovir ranged from 4.85% to 98.62%, respectively (Table 1). 3.3. Linearity. The linearity of each calibration curve was determined by plotting the peak area ratio of drug versus nominal concentration of acyclovir. For linearity study six different concentrations of acyclovir were analyzed (25.0, 50.0, 75.0, 100.0, 125.0, and 150.0 ng/ml). The peak area response was linear over the concentration range studied. Each experiment at all concentrations was repeated three times on three separate days to obtain the calibration data. Thecoefficientofcorrelationrwasfoundtobe0.999.The limit of quantification and limit of detection were 23.0 and

4 Advances in Pharmaceutics Table 5: Stability studies. Nominal concentration ng/ml (N =5) Concentration found ng/ml Precision (%) Accuracy (%) Short-term stability for 3 h in plasma 25.0 24.5612 2.01 98.43 150.0 148.9627 2.54 94.59 Long-term stability for 3 h in plasma 25.0 23.6984 2.57 93.52 150.0 146.9013 3.18 92.04 Freeze-thaw cycles ( 70 C) 25.0 23.98 3.21 95.52 150.0 147.74 8.54 92.47 Table 6: System suitability studies. Serial number Parameters Acyclovir 1 Number of plates/meter 4867 2 Asymmetric factor 0.91 3 LOD (ng/ml) 8 4 LOQ (ng/ml) 24 7.0 ng/ml, respectively. The mean extraction recoveries of acyclovir determined over the concentration of 25.0, 100.0, and 150.0 ng/ml were 96.98 ± 3.17, 98.91 ± 1.72,and98.42 ± 0.79%. 3.4. Accuracy and Precision Studies. Inter- and intraday precision and accuracy results are shown in Tables 2 and 3. Intraday precision for acyclovir ranged from 6.87% to 9.05% and the intraday accuracy for acyclovir ranged from 98.62% to 99.01%. Interday precision for acyclovir ranged from 6.10% to 9.15% and the interday accuracy for acyclovir ranged from 98.21% to 99.16%. In the stock solution stability, freeze-thaw stability, short-term stability, and long-term stability studies, no tendency of degradation result is shown in Table 4. 3.5. Stability Studies. The stability studies of plasma samples spiked with Acyclovir were subjected to three freeze-thaw cycles, short-term stability at room temperature for 3 h and long-term stability at 70 C over four weeks. In addition, stability of standard solutions was performed at room temperature over 6 h and after freezing for four weeks. The stability of triplicate (n =5) spiked human plasma samples following three freeze-thaw cycles was analysed. The mean concentrations of the stability samples were compared to the theoretical concentrations. The stability of triplicate shortterm samples spiked with acyclovir was investigated at room temperature for 1.00 to 3.00 h before extraction. The plasma samples for long-term stability were stored in the freezer at 70 C until the time of analysis. The stability studies are shown in Table 5. System suitability test was performed daily before the run of analytical batch to check detector response to the analyte (Table 6). 4. Conclusion In summary, HPLC method for the quantitation of acyclovir in human plasma was developed and fully validated as per FDA guidelines [19]. This method offers significant advantages over those previously reported, in terms of improved sensitivity and selectivity, faster run time (5 min) and lower sample requirements. Hence, this method may be useful for single and multiple ascending dose studies in human subjects. The current method has shown acceptable precision and adequate sensitivity for the quantification of acyclovir in human plasma. The developed method has excellent sensitivity, reproducibility, and specificity. The method has been successfully used to provide the bioequivalent study of acyclovir in human plasma. The developed assay showed acceptable precision, accuracy, linearity, stability, and specificity. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgment The authors are thankful to Ranbaxy Malaysia Sdn., Bhd., Sungai Petani, Malaysia, for the provided gift sample of acyclovir reference standard. References [1] G. B. Elion, P. A. Furman, J. A. Fyfe, P. de Miranda, L. Beauchamp,andH.J.Schaeffer, Selectivityofactionofanantiherpetic agent 9-[(2-hydroxyethoxy)-methyl]-guanosine, Procedddings of the National Academy of Sciences,vol.7,pp.45716 45720, 1977. [2]H.J.Schaeffer,L.Beauchamp,P.deMiranda,G.B.Elion,D. J. Bauer, and P. Collins, 9-(2-Hydroxyethoxymethyl)guanine activity against viruses of the herpes group, Nature, vol. 272, no. 5654, pp. 583 585, 1978. [3]R.A.Bangaru,Y.K.Bansal,A.R.M.Rao,andT.P.Gandhi, Rapid, simple and sensitive high-performance liquid chromatographic method for detection and determination of acyclovir in human plasma and its use in bioavailability studies,

Advances in Pharmaceutics 5 Chromatography B, vol. 739, no. 2, pp. 231 237, 2000. [4]K.J.Swart,H.K.L.Hundt,andA.M.Groenewald, Automated high-performance liquid chromatographic method for the determination of acyclovir in plasma, JournalofChromatography A,vol.663,no.1,pp.65 69,1994. [5] J.M.Poirier,N.Radembino,andP.Jaillon, Determinationof acyclovir in plasma by solid-phase extraction and column liquid chromatography, Therapeutic Drug Monitoring, vol. 21, no. 1, pp.129 133,1999. [6]N.M.Volpato,P.Santi,C.Laureri,andP.Colombo, Assay of acyclovir in human skin layers by high performance liquid chromatography, JournalofPharmaceuticalandBiomedical Analysis,vol.16,pp.515 520,1997. [7] C. M. McMullin, B. Kirk, J. Sunderland, L. O. White, D. S. Reeves, and A. P. MacGowan, A simple high performance liquid chromatography (HPLC) assay for aciclovir and ganciclovir in serum, Antimicrobial Chemotherapy, vol. 38, no. 4, pp. 739 740, 1996. [8] C. Pham-Huy, F. Stathoulopoulou, P. Sandouk, J. M. Scherrmann, S. Palombo, and C. Girre, Rapid determination of valaciclovir and acyclovir in human biological fluids by highperformance liquid chromatography using isocratic elution, Chromatography B,vol.732,pp.47 53,1999. [9] P. Nebinger and M. Koel, Determination of acyclovir byultrafiltration and high performance liquidchromatography, Journal of Chromatography B: Biomedical Sciences and Applications,vol. 619, no. 2, pp. 342 344, 1993. [10] M. Fernandez, J. Sepulveda, T. Aranguiz, and C. V. Plessing, Technique validation by liquid chromatographyfor the determination of acyclovir in plasma, Chromatography B, vol. 791, pp. 357 363, 2003. [11] G. Bahrami, S. Mirzaeei, and A. Kiani, Determination of acyclovir in human serum by high-performance liquid chromatography using liquid-liquid extraction and its application in pharmacokinetic studies, Chromatography B: Analytical Technologies in the Biomedical and Life Sciences,vol. 816,no.1-2,pp.327 331,2005. [12] D. Teshima, K. Otsubo, T. Yoshida, Y. Itoh, and R. Oishi, A simple and simultaneous determination of acyclovir and ganciclovir in human plasma by high-performance liquid chromatography, Biomedical Chromatography, vol. 17, no. 8, pp. 500 503, 2003. [13] P. D. Tzanavaras and D. G. Themelis, High-throughput HPLC assay of acyclovir and its major impurity guanine using a monolithic column and a flow gradient approach, Pharmaceutical and Biomedical Analysis, vol.43,no.4,pp.1526 1530, 2007. [14] L.Zeng,C.E.Nath,P.J.Shaw,J.W.Earl,andA.J.McLachlan, HPLC-fluorescence assay for acyclovir in children, Biomedical Chromatography,vol.22,no.8,pp.879 887,2008. [15] A.Jankowski,A.L.Jankowska,andH.Lamparczyk, Determination and pharmacokinetics of acyclovir after ingestion of suspension form, Pharmaceuticaland Biomedical Analysis, vol. 18, no. 1-2, pp. 249 254, 1998. [16] K. K. Peh and K. H. Yuen, Simple high-performance liquid chromatographic method for the determination of acyclovir in human plasma using fluorescence detection, Chromatography B: Biomedical Sciences and Applications, vol. 693, no. 1, pp. 241 244, 1997. [17] J. O. Svensson, L. Barkholt, and J. Säwe, Determination of acyclovir and its metabolite 9-carboxymethoxymethylguanine in serum and urine using solid-phase extraction and highperformance liquid chromatography, Chromatography B: Biomedical Sciences and Applications,vol.690,no.1-2,pp. 363 366, 1997. [18] H. Mascher, C. Kikuta, R. Metz, and H. Vergin, New, highsensitivity high-performance liquid chromatographic method for the determination of acyclovir in human plasma, using fluorometric detection, Chromatography, vol. 583, pp. 122 127, 1992. [19] Guidance for Industry: Bioanalytical Method Validation, US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Rockville, Md, USA, 2001.

Tropical Medicine The Scientific World Journal Scientifica Autoimmune Diseases International Antibiotics Anesthesiology Research and Practice Toxins Submit your manuscripts at Advances in Pharmacological Sciences Toxicology MEDIATORS of INFLAMMATION Emergency Medicine International Pain Research and Treatment Stroke Research and Treatment Addiction Vaccines BioMed Research International International Pharmaceutics Drug Delivery Medicinal Chemistry