Hydrologic Analysis Techniques ( 87 Manual Hydrology Tools )

Similar documents
San Antonio Water System Mitchell Lake Constructed Wetlands Below the Dam Preliminary Hydrologic Analysis

M.L. Kavvas, Z. Q. Chen, M. Anderson, L. Liang, N. Ohara Hydrologic Research Laboratory, Civil and Environmental Engineering, UC Davis

CHAPTER FIVE Runoff. Engineering Hydrology (ECIV 4323) Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib. Overland flow interflow

THE SPAW MODEL FOR AGRICULTURAL FIELD AND POND HYDROLOGIC SI... SIMULATION

Treatment Volume: Curve Numbers. Composite CN or Not? Treatment Volume: Curve Numbers. Treatment Volume: Calculation. Treatment Volume: Calculation

Overview of the Surface Hydrology of Hawai i Watersheds. Ali Fares Associate Professor of Hydrology NREM-CTAHR

The Impacts of Climate Change on Portland s Water Supply

Hydrologic Modeling with the Distributed-Hydrology- Soils- Vegetation Model (DHSVM)

Issue paper: Aquifer Water Balance

2

Hydrology and Water Management. Dr. Mujahid Khan, UET Peshawar

East Maui Watershed Partnership Adapted from Utah State University and University of Wisconsin Ground Water Project Ages 7 th -Adult

Application of a Basin Scale Hydrological Model for Characterizing flow and Drought Trend

Lecture 19. Landfill hydrology

Irrigating Efficiently: tools, tips & techniques. Steve Castagnoli, OSU Extension Service

Continuous Simulation Modeling of Stormwater Ponds, Lakes, & Wetlands: A BUILT-IN APPLICATION OF PONDS 3.2

Groundwater Balance Study in the High Barind, Bangladesh. A.H.M.Selim Reza 1, Quamrul Hasan Mazumder 1 and Mushfique Ahmed 1

Lecture 9A: Drainage Basins

CHAPTER 3 STORMWATER HYDROLOGY. Table of Contents SECTION 3.1 METHODS FOR ESTIMATING STORMWATER RUNOFF

Runoff Processes. Daene C. McKinney

Ponds. Pond A water impoundment made by excavating a pit, or constructing a dam or an embankment.

Culvert Sizing procedures for the 100-Year Peak Flow

iswm TM Technical Manual Hydrology:

1. Stream Network. The most common approach to quantitatively describing stream networks was postulated by Strahler (1952).

URBAN FLOODING: HEC-HMS

22 Tubewell Drainage Systems

ANNUAL PLATTE RIVER SURFACE WATER FLOW SUMMARY

I/I Analysis & Water Balance Modelling. Presented by Paul Edwards

Quantification of lake water level influences for Wawasee and Syracuse lakes: Lake and watershed water budgets for 2011, 2012, and 2013

Economics of Controlled Drainage and Subirrigation Systems

Project Drainage Report

EXAMPLE Stormwater Management Plans w/ CSS BMP Sizing Calculator (v2.1)

Water Budget IV: Soil Water Processes P = Q + ET + G + ΔS

Pre-Treatment Bioretention Cells Bioswales IOWA STORMWATER MANAGEMENT MANUAL DECEMBER 16, 2015

UNIT HYDROGRAPH AND EFFECTIVE RAINFALL S INFLUENCE OVER THE STORM RUNOFF HYDROGRAPH

Introduction. Welcome to the Belgium Study Abroad Program. Courses:

6.0 Runoff. 6.1 Introduction. 6.2 Flood Control Design Runoff

Lift irrigation Using man or Animal power Using Mechanical or Electrical Power Flow irrigation a)inundation Irrigation b) Perennial Irrigation Direct

Chapter 6 Hydrology TABLE OF CONTENTS CHAPTER 6 - HYDROLOGY

Saturated Buffer. Subsurface Drainage PURPOSE N REDUCTION LOCATION COST BARRIERS

Municipal Stadium Wetland

OPERATING CONTROLLED DRAINAGE AND SUBIRRIGATION SYSTEMS

APPENDIX IV. APPROVED METHODS FOR QUANTIFYING HYDROLOGIC CONDITIONS OF CONCERN (NORTH ORANGE COUNTY)

NEW CASTLE CONSERVATION DISTRICT. through. (Name of Municipality) PLAN REVIEW APPLICATION DRAINAGE, STORMWATER MANAGEMENT, EROSION & SEDIMENT CONTROL

The Effect of Surface Texture on Evaporation, Infiltration and Storage Properties of Paved Surfaces

Nutrient Management in. A presentation to the West Metro Water Alliance

Hood River Water Conservation Strategy: achieving long-term water resource reliability for agriculture & local fish populations

Placement and Interpretation of Soil Moisture Sensors for Irrigated Cotton Production in Humid Regions SITE SELECTION IN A FIELD OBJECTIVE

Lake Houston Dam Comprehensive Evaluation of an Ambursen Dam

Stormwater Volume and Treatment Methods Simplifying the Numbers. IAFSM March 10, Presented by: Tom Powers P.E., CFM, LEED AP, CPESC

Effect of the Underlying Groundwater System on the Rate of Infiltration of Stormwater Infiltration Structures.

Does Water Resources Management in the Snake River Basin Matter for the Lower Columbia River? Or Is the Snake River Part of Another Watershed?

Rainwater Management. Dr. Iftikhar Ahmad. College of Earth and. University of The Punjab Lahore

Manure Storage for Environmental Management Systems

CEE3430 Engineering Hydrology

New Castle County, DE. Floodplain Regulations

Water Balance and Regulation Alternative Analysis for Kajakai Reservoir using HEC-ResSim

Utilization of the SWAT Model and Remote Sensing to Demonstrate the Effects of Shrub Encroachment on a Small Watershed

Definitions 3/16/2010. GG22A: GEOSPHERE & HYDROSPHERE Hydrology

Information Request 11

Chapter 6. Hydrology. 6.0 Introduction. 6.1 Design Rainfall

History of Model Development at Temple, Texas. J. R. Williams and J. G. Arnold

HYDROLOGICAL IMPACTS OF IRAQI BADUSH DAM ON GROUNDWATER

Hydrology for Folsom Dam Water Control Manual Update

Transactions. American Geophysical Union Volume 28, Number 1 February 1947

Measuring discharge. Climatological and hydrological field work

COON CREEK WATERSHED DISTRICT PERMIT REVIEW. Spring Lake Park Schools Westwood Middle School st Avenue NE, Spring Lake Park, MN 55432

8.4.2 Steady flow: Hooghoudt equation

EFFECTS OF WATERSHED TOPOGRAPHY, SOILS, LAND USE, AND CLIMATE ON BASEFLOW HYDROLOGY IN HUMID REGIONS: A REVIEW

Section 2. Mono Basin Operations

The Islamic University of Gaza- Civil Engineering Department Sanitary Engineering- ECIV 4325 L5. Storm water Management

SURFACE WATER WITHDRAWALS & LOW FLOW PROTECTION POLICY MICHAEL COLLEGE, P.E. SUSQUEHANNA RIVER BASIN COMMISSION

Water Table Monitoring Project Design

Sterling and Gilcrest/LaSalle High Groundwater Analysis

Lecture 20: Groundwater Introduction

Stormwater Treatment Wetlands

Soil Processes: SVAT, ET, and the Subsurface. Summary

Potential effects evaluation of dewatering an underground mine on surface water and groundwater located in a rural area

ABC S OF FRESHWATER WETLAND DESIGN: CONCEPT TO CONSTRUCTION

Municipal Stormwater Ordinances Summary Table

SOURCES OF WATER SUPPLY GROUND WATER HYDRAULICS

Watershed Hydrology and Water Resources Science Teacher Education Program (STEP)

BRADLEY UNIVERSITY. The Performance and Sustainability of Permeable Pavement Progress Report on the Work Performed Under IAPA Scholarship

Biogeochemistry of Wetlands: Wetland hydrology

KanSched An ET-Based Irrigation Scheduling Tool for Kansas Summer Annual Crops

DRAINAGE DESIGN AND RUTTING PERFORMANACE GUIDELINES FOR PERMEABLE PAVEMENT

Groundwater Recharge: A Role for Almonds? December 9, 2015

Estimating the Seasonal High Water Table: A Mix of Art & Science

South Platte River Importance of Return Flows and Replacing Depletions to Down-Stream Water Users

Geoenvironmental impact assessment of a landfill for solid chemical wastes

Irrigation Scheduling: Checkbook Method

Part 624 Drainage National Engineering Handbook

Determination of Design Infiltration Rates for the Sizing of Infiltration based Green Infrastructure Facilities

EVALUATION OF HYDROLOGIC AND WATER RESOURCES RESPONSE TO METEOROLOGICAL DROUGHT IN THESSALY, GREECE

BROWARD GROUNDWATER ELEVATION MAPS - PREDICTED CHANGES AND PLANNED UPDATES

DES MOINES RIVER RESERVOIRS WATER CONTROL PLAN UPDATES IOWA ASCE WATER RESOURCES DESIGN CONFERENCE

Stream Reaches and Hydrologic Units

Rock Creek Floodplain Analysis

Stanley J. Woodcock, Michael Thiemann, and Larry E. Brazil Riverside Technology, inc., Fort Collins, Colorado

Infiltration Stormwater Control Measures. Andrew R. Anderson, M.S., E.I.T. Extension Associate Engineer

Transcription:

Hydrologic Analysis Techniques ( 87 Manual Hydrology Tools )

Objectives Know which wetland applies to which technique Define the Wetland Water Budget Locate data Understand the time step Understand Limitations

Objective Criteria Farmed Wetland (FW) Inundated for 15 Continuous Days In most years (50% chance or more) During Growing Season USACE Groundwater Monitoring for Wetland (W) Saturated Within 12 of surface 50% Annual Probability During Growing Season 15 Continuous Days Slide 3

Probabilities (What does in a normal year mean?) 50% chance can be: Median Middle number in a population 2-yr Log-Pearson Commonly used for return period of annual peak discharges 50 th Percentile Calculated from a Weibull Plot Slide 4

Probability/Duration Analysis Analysis can be performed on: Stream gage records Groundwater levels Lake Stages Ponded Storage Example Results: 50% Chance annual probability of 7 days of continuous inundation 80% Chance annual probability of 20 days of saturation within 6 of the surface 80% Chance probability of inundation to depth of 3 Slide 5

Simplified Water Budgeting I O = ΔS (Inflow Outflow = Change in Storage) Inflows and Outflows: P = Precipitation R i = Surface Runoff in R o = Surface Runoff out G i = Groundwater discharge in G o = Groundwater recharge out ET = Evapotranspiration

The Time Step Monthly Simplified Water Budgeting Daily Most hydrology modeling techniques, including SPAW Model Sub-Hourly DRAINMOD Converts Daily Precipitation to sub-hourly distribution

Wetland Storage Surface Storage Topographic Storage using Stage-Storage Curve Depth of Storage if topography is relatively flat and area of inundation changes little with increasing depth in the Surface Roughness Storage Soil Storage Use Available Water Capacity in Simplified Method

Applicable Wetland Type Simplified Limited to Recharge DEPRESSION HGM Class Monthly Time Step Soil Storage Loss stops when moisture is at Permanent Wilting Point Soil is full at saturation (higher than field capacity) R o occurs when topographic storage depth is exceeded Depression area varies little with depth, volume is expressed as depth All other water budget parameters expressed as depth G i neglected, G o stops when profile is saturated

Monthly Precipitation, P WETS Table Tables

Soil Storage 0 to 5 inches 0.23 in/in 5 to 32 inches 0.16 in/in Assume root depth (24?) (5 x 0.23) + (19 x 0.16) = 4.19

Monthly Evapotranspiration NOAA Atlas 34 Data for Scottsbluff, NE January 1.51 February 1.89 March 3.14 April 5.10 May 6.95 June 8.46 July 9.77 August 8.60 September 6.04 October 4.32 November 2.38 December 1.59 Animal Waste Management (AWM) Software has monthly evaporation files

Surface Runoff Runoff Curve Number Method Curve Numbers Meant for use with daily rainfall Must convert RCN to CN 30 for use with monthly rainfall This method used by the AWM program for feedlot runoff The CN 30 is the 30 day Curve Number CN 30 = CN 1 (CN 1 ((CN1^2.365)/631.79) - 15) log 30 CN of 85 = CN 30 of 67

Example: Use: WETS Monthly Rainfall Monthly Evaporation Data Given Soil Storage of 4.19 Assume: Overflow Depth of 1 feet Watershed to Depression Ration of 20:1 CN 30 = 67

Solution:

SPAW -- A DAILY HYDROLOGIC MODEL FOR FIELDS AND PONDS A Numerical Model for Recharge Depressions K. E. Saxton USDA/ARS Pullman, WA Patrick Willey USDA/NRCS Portland, OR

SPAW MODEL Applications Daily hydrologic budgets of agricultural fields, ponds, and wetlands. Realistic and accurate water budgets with general site descriptions, data and parameters. Long-term simulations and analyses with reasonable computer time.

MODEL CONFIGURATION SPAW: Soil-Plant-Air-Water model providing daily vertical water budget of agricultural fields. POND: Model providing daily inundated pond water budget. FIELD: Model providing daily soil moisture balance, runoff and recharge Pond budget linked to field(s) hydrology -- precipitation, runoff, interflow, evaporation

File Edit Options Data Projects Field/Pond View Window Help/Tutorial MAIN SCREEN

Agricultural Field Hydrology

SPAW FIELD ANALYSES Daily water budgets of dryland and irrigated fields. Crop water stress, irrigation water requirements and schedules. Runoff, percolation, soil water profiles Nitrogen budgets

FIELD Data Inputs Climate: Precip., evap., temp. Crop: Canopy, greeness, roots Soil: depths, textures Management: crop rotations, irrigation

Graphical Output Select Variable: Daily Precip. Accum. Precip. Daily runoff Accum. runoff

Wetland / Pond / Reservoir

SPAW-POND Analyses Daily ponded water budgets inflows, storage, evaporation, seepage, outflows. Wetland frequency and duration of inundation. Lagoon design and operations. Water supply design for livestock or irrigation.

POND Description Field(s) hydrology Depth-Area relationship Infiltration, seepage Depths: outlets, spillways, pumps inlets Watertable depths Pumping rates & times

POND Graphical Output Select Variable: Daily Precip. Pond Depth Accum. Evap. Accum. seepage

Wetland Statistical Analyses PERCENTAGE OF YEARS POND DEPTH GREATER THAN GIVEN DEPTHS(10% INTERVALS)FOR 14 CONSECUTIVE DAYS DURING THE WETLAND GROWING SEASON: Apr 1 TO Sep 30 DEPTH (FT): DRY 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 AREA (AC): 1.00 1.25 1.50 1.75 2.00 2.63 3.25 3.88 4.50 5.25 6.00 YEARS (%) : 84% 84% 74% 61% 52% 52% 45% 29% 19% 6% 0%

Stream Gage Data Analysis Long Term Ponding Riverine HGM Class Wetland Sites Temporary Flooding Slide 31

Training Session Objective To demonstrate how gage data can be used in the wetland determination process To show how gage data information can be useful in hydrology restoration planning To Show how other data can be statistically analyzed To Introduce the HEC-EFM Software

Will flood inundation analysis work in your Area? Daily Mean Flow Data is the Default Daily Peak and Minimum Data Sometimes Available Daily Stage Sometimes Available Slide 33

Will it work in your Area? Typical Peak Duration? Slide 34

Will it work in your Area? Web Soil Survey Flooding Duration Brief 2 to < 7 days Frequency Frequent - >50 times in 100 years Slide 35

Western Snowmelt Hydrographs Long Durations But low peaks Slide 36

Other Parameters - Peak Discharges Instantaneous Peak Discharges (50% Chance Annual Probability) Fill Floodplain Depressions (Duration from Water Budgeting) Slide 37

Data Requirements for Floodplain Inundation Analysis Continuous Flow Values for 10 years (minimum) up to 30 years Topographic Information for potential wetland site Cross Section of Stream Channel or Channel Rating Information Water Surface Profile Information if Site is not adjacent to gage

Sources of Data USGS-NWIS COE, TVA, BOR, NOAA State Water Resource Agencies Data usually includes Daily Mean Flow May Include Stage, Peak Flows, Minimum Flows, Flow Statistics

USGS Qualitative Adjectives Assigned to Mean Daily Discharges Excellent - 95% of Daily Discharge Within 5% of Rating Curve Good Fair Poor - 95% of Daily Discharge Within 10% of Rating Curve - 95% of Daily Discharge Within 15% of Rating Curve - Daily Discharges Have Less than Fair Accuracy

Data Requirements Flow Data Mean Daily Flow File Gage Datum Slide 41

Data Requirements Flow Data Order: Text File, Tab-delimited Can open in Spreadsheet Flow Date Slide 42

Data Requirements Channel Rating Gage Height Flow Slide 43

NRCS Guidance on Rating Curves Slide 44

Site Topography USGS Quad Maps James River @ Huron, South Dakota 15-day, 50% chance Flow obviously Exceeds 10 ft. floodplain contour Site Gage Station Slide 45

Water Surface Profiles HEC-GeoRAS Product Slide 46

Determine Lowest Flow/Stage for Each Duration Procedures: Determine the Growing Season Determine the Appropriate Duration of Inundation Locate the Closest Stream or Lake Gage Obtain Mean Daily Flow Values for Growing Season

Procedures Continued: Determine the Highest of the Annual Low Duration Flows for Each Year Tabulate Flow/Stage in Descending Order Determine the Median Value of Flow/Stage Associate Median Value With Elevation

Procedures Continued If 50% Chance is Discharge, Relate it to Elevation If Available, Use Computerized Stream Flow Data Determine Area Inundated Critical Duration

Day Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 87 427 459 797 1380 674 1210 12100 303 483 297 258 2 94 367 506 819 1200 723 1050 10200 304 365 275 467 3 99 267 508 772 1120 1060 874 4120 365 281 213 550 4 93 299 508 657 1050 1460 810 1590 421 257 365 481 5 93 359 495 556 978 1640 729 2020 377 241 490 337 6 64 1610 526 622 936 1680 710 2890 326 144 543 243 7 50 5360 564 868 898 1390 670 3830 307 210 807 204 8 85 7490 881 921 860 1200 588 4400 394 165 1190 171 9 103 6970 687 1190 802 1190 588 3770 791 131 780 126 10 71 5490 508 1660 815 2920 539 2950 941 179 754 141 11 80 2260 448 2670 802 4850 550 3430 826 208 738 160 12 108 977 412 3520 749 6120 561 3620 624 223 547 187 13 121 706 366 3020 727 6400 533 2180 426 380 451 219 14 153 572 413 2810 764 6330 555 1500 317 370 598 190 15 141 494 754 3760 786 5630 544 1900 306 275 892 193 16 87 452 1090 4400 783 2200 513 2450 259 1170 1320 151 17 117 426 1610 4490 819 1550 470 1830 195 2230 709 128 18 125 396 1220 3230 833 1330 553 1340 246 3400 404 157 19 94 404 1230 3040 870 1150 1030 1040 264 3340 222 131 20 106 331 1410 6040 839 1020 1630 863 153 1130 207 56 21 104 330 1460 7260 773 1000 1370 723 263 604 195 126 22 158 320 1670 7300 756 940 1080 624 125 441 204 83 24 391 333 2130 5870 721 820 646 541 394 281 165 143 25 886 349 1270 3180 739 760 515 440 341 790 162 519 26 666 409 1030 2620 711 1100 2210 455 307 1250 160 457 27 177 409 1010 3510 675 2200 6170 432 510 1750 138 207 28 943 411 897 4420 622 3120 8650 416 1360 1270 222 216 29 2400 407 739 5110 3550 9440 417 1630 650 171 201 30 1150 349 660 5560 2450 11100 249 937 445 133 106 31 623 744 2980 1520 308 382 157 674

Day Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 87 427 459 797 1380 674 1210 12100 303 483 297 258 2 94 367 506 819 1200 723 1050 10200 304 365 275 467 3 99 267 508 772 1120 1060 874 4120 365 281 213 550 4 93 299 508 657 1050 1460 810 1590 421 257 365 481 5 93 359 495 556 978 1640 729 2020 377 241 490 337 6 64 1610 526 622 936 1680 710 2890 326 144 543 243 7 50 5360 564 868 898 1390 670 3830 307 210 807 204 8 85 7490 881 921 860 1200 588 4400 394 165 1190 171 9 103 6970 687 1190 802 1190 588 3770 791 131 780 126 10 71 5490 508 1660 815 2920 539 2950 941 179 754 141 11 80 2260 448 2670 802 4850 550 3430 826 208 738 160 12 108 977 412 3520 749 6120 561 3620 624 223 547 187 13 121 706 366 3020 727 6400 533 2180 426 380 451 219 14 153 572 413 2810 764 6330 555 1500 317 370 598 190 15 141 494 754 3760 786 5630 544 1900 306 275 892 193 16 87 452 1090 4400 783 2200 513 2450 259 1170 1320 151 17 117 426 1610 4490 819 1550 470 1830 195 2230 709 128 18 125 396 1220 3230 833 1330 553 1340 246 3400 404 157 19 94 404 1230 3040 870 1150 1030 1040 264 3340 222 131 20 106 331 1410 6040 839 1020 1630 863 153 1130 207 56 21 104 330 1460 7260 773 1000 1370 723 263 604 195 126 22 158 320 1670 7300 756 940 1080 624 125 441 204 83 24 391 333 2130 5870 721 820 646 541 394 281 165 143 25 886 349 1270 3180 739 760 515 440 341 790 162 519 26 666 409 1030 2620 711 1100 2210 455 307 1250 160 457 27 177 409 1010 3510 675 2200 6170 432 510 1750 138 207 28 943 411 897 4420 622 3120 8650 416 1360 1270 222 216 29 2400 407 739 5110 3550 9440 417 1630 650 171 201 30 1150 349 660 5560 2450 11100 249 937 445 133 106 31 623 744 2980 1520 308 382 157 674 723

Day Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 87 427 459 797 1380 674 1210 12100 303 483 297 258 2 94 367 506 819 1200 723 1050 10200 304 365 275 467 3 99 267 508 772 1120 1060 874 4120 365 281 213 550 4 93 299 508 657 1050 1460 810 1590 421 257 365 481 5 93 359 495 556 978 1640 729 2020 377 241 490 337 6 64 1610 526 622 936 1680 710 2890 326 144 543 243 7 50 5360 564 868 898 1390 670 3830 307 210 807 204 8 85 7490 881 921 860 1200 588 4400 394 165 1190 171 9 103 6970 687 1190 802 1190 588 3770 791 131 780 126 10 71 5490 508 1660 815 2920 539 2950 941 179 754 141 11 80 2260 448 2670 802 4850 550 3430 826 208 738 160 12 108 977 412 3520 749 6120 561 3620 624 223 547 187 13 121 706 366 3020 727 6400 533 2180 426 380 451 219 14 153 572 413 2810 764 6330 555 1500 317 370 598 190 15 141 494 754 3760 786 5630 544 1900 306 275 892 193 16 87 452 1090 4400 783 2200 513 2450 259 1170 1320 151 17 117 426 1610 4490 819 1550 470 1830 195 2230 709 128 18 125 396 1220 3230 833 1330 553 1340 246 3400 404 157 19 94 404 1230 3040 870 1150 1030 1040 264 3340 222 131 20 106 331 1410 6040 839 1020 1630 863 153 1130 207 56 21 104 330 1460 7260 773 1000 1370 723 263 604 195 126 22 158 320 1670 7300 756 940 1080 624 125 441 204 83 24 391 333 2130 5870 721 820 646 541 394 281 165 143 25 886 349 1270 3180 739 760 515 440 341 790 162 519 26 666 409 1030 2620 711 1100 2210 455 307 1250 160 457 27 177 409 1010 3510 675 2200 6170 432 510 1750 138 207 28 943 411 897 4420 622 3120 8650 416 1360 1270 222 216 29 2400 407 739 5110 3550 9440 417 1630 650 171 201 30 1150 349 660 5560 2450 11100 249 937 445 133 106 31 623 744 2980 1520 308 382 157 674 723 1060

Day Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 87 427 459 797 1380 674 1210 12100 303 483 297 258 2 94 367 506 819 1200 723 1050 10200 304 365 275 467 3 99 267 508 772 1120 1060 874 4120 365 281 213 550 4 93 299 508 657 1050 1460 810 1590 421 257 365 481 5 93 359 495 556 978 1640 729 2020 377 241 490 337 6 64 1610 526 622 936 1680 710 2890 326 144 543 243 7 50 5360 564 868 898 1390 670 3830 307 210 807 204 8 85 7490 881 921 860 1200 588 4400 394 165 1190 171 9 103 6970 687 1190 802 1190 588 3770 791 131 780 126 10 71 5490 508 1660 815 2920 539 2950 941 179 754 141 11 80 2260 448 2670 802 4850 550 3430 826 208 738 160 12 108 977 412 3520 749 6120 561 3620 624 223 547 187 13 121 706 366 3020 727 6400 533 2180 426 380 451 219 14 153 572 413 2810 764 6330 555 1500 317 370 598 190 15 141 494 754 3760 786 5630 544 1900 306 275 892 193 16 87 452 1090 4400 783 2200 513 2450 259 1170 1320 151 17 117 426 1610 4490 819 1550 470 1830 195 2230 709 128 18 125 396 1220 3230 833 1330 553 1340 246 3400 404 157 19 94 404 1230 3040 870 1150 1030 1040 264 3340 222 131 20 106 331 1410 6040 839 1020 1630 863 153 1130 207 56 21 104 330 1460 7260 773 1000 1370 723 263 604 195 126 22 158 320 1670 7300 756 940 1080 624 125 441 204 83 24 391 333 2130 5870 721 820 646 541 394 281 165 143 25 886 349 1270 3180 739 760 515 440 341 790 162 519 26 666 409 1030 2620 711 1100 2210 455 307 1250 160 457 27 177 409 1010 3510 675 2200 6170 432 510 1750 138 207 28 943 411 897 4420 622 3120 8650 416 1360 1270 222 216 29 2400 407 739 5110 3550 9440 417 1630 650 171 201 30 1150 349 660 5560 2450 11100 249 937 445 133 106 31 623 744 2980 1520 308 382 157 674 723 1060 1190

Day Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 87 427 459 797 1380 674 1210 12100 303 483 297 258 2 94 367 506 819 1200 723 1050 10200 304 365 275 467 3 99 267 508 772 1120 1060 874 4120 365 281 213 550 4 93 299 508 657 1050 1460 810 1590 421 257 365 481 5 93 359 495 556 978 1640 729 2020 377 241 490 337 6 64 1610 526 622 936 1680 710 2890 326 144 543 243 7 50 5360 564 868 898 1390 670 3830 307 210 807 204 8 85 7490 881 921 860 1200 588 4400 394 165 1190 171 9 103 6970 687 1190 802 1190 588 3770 791 131 780 126 10 71 5490 508 1660 815 2920 539 2950 941 179 754 141 11 80 2260 448 2670 802 4850 550 3430 826 208 738 160 12 108 977 412 3520 749 6120 561 3620 624 223 547 187 13 121 706 366 3020 727 6400 533 2180 426 380 451 219 14 153 572 413 2810 764 6330 555 1500 317 370 598 190 15 141 494 754 3760 786 5630 544 1900 306 275 892 193 16 87 452 1090 4400 783 2200 513 2450 259 1170 1320 151 17 117 426 1610 4490 819 1550 470 1830 195 2230 709 128 18 125 396 1220 3230 833 1330 553 1340 246 3400 404 157 19 94 404 1230 3040 870 1150 1030 1040 264 3340 222 131 20 106 331 1410 6040 839 1020 1630 863 153 1130 207 56 21 104 330 1460 7260 773 1000 1370 723 263 604 195 126 22 158 320 1670 7300 756 940 1080 624 125 441 204 83 24 391 333 2130 5870 721 820 646 541 394 281 165 143 25 886 349 1270 3180 739 760 515 440 341 790 162 519 26 666 409 1030 2620 711 1100 2210 455 307 1250 160 457 27 177 409 1010 3510 675 2200 6170 432 510 1750 138 207 28 943 411 897 4420 622 3120 8650 416 1360 1270 222 216 29 2400 407 739 5110 3550 9440 417 1630 650 171 201 30 1150 349 660 5560 2450 11100 249 937 445 133 106 31 623 744 2980 1520 308 382 157 674 723 1060 1190

Day Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 87 427 459 797 1380 674 1210 12100 303 483 297 258 2 94 367 506 819 1200 723 1050 10200 304 365 275 467 3 99 267 508 772 1120 1060 874 4120 365 281 213 550 4 93 299 508 657 1050 1460 810 1590 421 257 365 481 5 93 359 495 556 978 1640 729 2020 377 241 490 337 6 64 1610 526 622 936 1680 710 2890 326 144 543 243 7 50 5360 564 868 898 1390 670 3830 307 210 807 204 8 85 7490 881 921 860 1200 588 4400 394 165 1190 171 9 103 6970 687 1190 802 1190 588 3770 791 131 780 126 10 71 5490 508 1660 815 2920 539 2950 941 179 754 141 11 80 2260 448 2670 802 4850 550 3430 826 208 738 160 12 108 977 412 3520 749 6120 561 3620 624 223 547 187 13 121 706 366 3020 727 6400 533 2180 426 380 451 219 14 153 572 413 2810 764 6330 555 1500 317 370 598 190 15 141 494 754 3760 786 5630 544 1900 306 275 892 193 16 87 452 1090 4400 783 2200 513 2450 259 1170 1320 151 17 117 426 1610 4490 819 1550 470 1830 195 2230 709 128 18 125 396 1220 3230 833 1330 553 1340 246 3400 404 157 19 94 404 1230 3040 870 1150 1030 1040 264 3340 222 131 20 106 331 1410 6040 839 1020 1630 863 153 1130 207 56 21 104 330 1460 7260 773 1000 1370 723 263 604 195 126 22 158 320 1670 7300 756 940 1080 624 125 441 204 83 24 391 333 2130 5870 721 820 646 541 394 281 165 143 25 886 349 1270 3180 739 760 515 440 341 790 162 519 26 666 409 1030 2620 711 1100 2210 455 307 1250 160 457 27 177 409 1010 3510 675 2200 6170 432 510 1750 138 207 28 943 411 897 4420 622 3120 8650 416 1360 1270 222 216 29 2400 407 739 5110 3550 9440 417 1630 650 171 201 30 1150 349 660 5560 2450 11100 249 937 445 133 106 31 623 744 2980 1520 308 382 157 674 723 1060 1190 1590

Year Discharge 1981 0 1982 973 1983 545 1984 1360 1985 137 1986 3750 1987 1280 1988 33 1989 1100 1990 79

Rank Discharges

Year Discharge Ranked 1981 0 3750 1982 973 1360 1983 545 1280 1984 1360 1100 1985 137 973 1986 3750 545 1987 1280 137 1988 33 79 1989 1100 33 1990 79 0

Year Discharge Ranked 1981 0 3750 1982 973 1360 1983 545 1280 1984 1360 1100 1985 137 973 1986 3750 545 1987 1280 137 1988 33 79 1989 1100 33 1990 79 0

Year Discharge Ranked 1981 0 3750 1982 973 1360 1983 545 1280 1984 1360 1100 1985 137 973 1986 3750 545 1987 1280 137 1988 33 79 1989 1100 33 1990 79 0 Median Value = (973+545)/2 = 759 cfs

Exercise 1. Determine elevation from rating curve 2. Draw Contour on Map 3. What is your answer?

HEC Ecosystem Functions Model (EFM) Slide 62

Slide 63

Slide 64

Slide 65

Observation Wells

Objectives Upon completion of the training you will be able to: - Describe the parts of an observation well and the materials used to install them - Install observation wells to document duration and frequency of saturation - List and explain uses of observation wells and piezometers - Gather and interpret monitoring well data needed to obtain statistically significant results - List general guidelines for reviewing well selection, installation and data collection procedures, and data analysis

Observation Wells Monitoring a Shallow Water Table Correct instrumentation (observation well or piezometer) Correct installation Correct data collection, daily readings during growing season critical time Correct interpretation of data

Site Evaluation Start with a good soil profile description Respect all impermeable layers Plug any holes into or through with impermeable material

Water Table The upper surface of the zone of saturation is called the water table. The hydraulic pressure at any level within a water-table aquifer is equal to the depth from the water table to the point in question and may be expressed as hydraulic head in feet of water.

ENDOSATURATION >=200 cm Typical application of observation wells, Scope and Effect equations, DRAINMOD Endosaturation: The soil is saturated with water in all layers from the upper boundary of saturation to a depth of 200 cm or more from the mineral soil surface.

<200cm EPISATURATION <200cm Top of unsaturated zone - Episaturation: The soil is saturated with water in one or more layers within 200 cm of the mineral soil surface and also has one or more unsaturated layers, with an upper boundary above a depth of 200 cm, below the saturated layer. - The zone of saturation, i.e., the water table, is perched on top of a relatively impermeable layer.

Care must be taken in applying Scope and Effect equations, DRAINMOD to this situation. Which water table is being analyzed? How do you install observation wells and interpret data?

Well Points no longer recommended, leave bottom open. 15 max. length now recommended for wells in wetlands.

Impermeable layer Piezometers typically installed in confined aquifers for g.w. flow.

Monitoring wells do not penetrate a confining layer. Piezometers by definition have perforated interval installed below a confining layer. No confining layer, no piezometer. Always need a good soil profile description.

Monitoring well penetrates a confining layer. Erroneous readings will result. Piezometer s perforated interval installed below a confining layer. Correct reading on piezometric head in lower layer. Artesian condition in piezometer. Does not read perched water table.

Perched Artesian, confined aquifer Ground water flow Monitoring wells used in water table aquifers. Open to atmosphere. Piezometers are installed in confined aquifers. Artesian if water level rises above confining layer, flowing artesian if water comes to soil surface. Water flows from higher to lower piezometric head.

Identifying a Perched WT Using Piezometers (after Sprecher, 1993) Correct Incorrect

Problems Often Encountered with Observation Wells: 1. Cap too tight (use 3 on 2 pipe) 2. Displacement of water in well by measuring device misrepresents true water level (2 dowel rod in 3 pipe) 3. Infrequent readings (readings on day 1 and 14 doesn t describe what happens in between, continuous duration) 4. 1 year of data (cannot establish frequency, 50% of years) 5. No soil profile description (what the heck is being monitored)

Problems Often Encountered with Observation Wells (cont.) 6. No replication (one well only, can t detect problems) 7. Well screen plugged (no water movement) 8. Frost heaving (re-install well) 9. Cracking soil (macropore flow) 10. No on-site raingage (well/rainfall interaction, moving infiltration)

Figure 4.14 Hypothetical example in which soil is continuously saturated in the root zone during A. Normal and B. Above normal precipitation conditions. In the case of A., the area may qualify as a jurisdictional wetland. In the case of B., more conclusive evidence would be needed to determine that the area is a jurisdictional wetland.

Observation Well Data Minimum 10 years required if used alone Minimum of 5 years if used with WETS table normalization procedure Less than 5 years can be used with extreme caution, using normalization procedure if precipitation is below normal and water table exists to meet criteria One year of data should be compared to DRAINMOD analysis of site using Reference Wetland Simulation procedure

Observation Wells Must have soil profile description of each well site Install wells in pairs to confirm readings are correct Local rainfall gage needed - on-site if possible - recording tipping bucket rain gage ideal Note date of leaf out in spring if wooded site, senescence in fall (ET can drop water table significantly)

Drainage Equations

Chapter Objectives Introduce the 4 Drainage Equations Explain the conditions for use of each List and describe the inputs for each Prepare for an Ellipse Equation Exercise

Drainage Equations Apply Directly to MINERAL FLAT Wetlands All water budget vectors are vertical before drainage Drainage introduces horizontal flow

Effects of Drainage Systems Estimate the lateral effect of a ditch or subsurface drain on the water table

Typical application of observation wells, drainage equations, DRAINMOD ENDOSATURATION

Drainage Equations Ellipse Hooghoudt (used in DRAINMOD) van Schilfgaarde Kirkham - removal of surface water (used in DRAINMOD)

Figure 1: Example Using The Ellipse Equation m=d-c S = [(4K) (m 2 + 2am) / q] 1/2

Ellipse Equation S = [(4K) (m 2 + 2am) / q] 1/2 K and q must be in same units, e.g. in/hr, ft/day S will be in units of a and m

How do we get Lateral Effect out of this? m=d-c Le = S / 2

Hydraulic Conductivity Where K and T Are the Saturated Hydraulic Conductivity and Thickness of Each Layer (flow being evaluated is horizontal flow only, so flow is by layers) Turns isotropic layers to anisotrophic profile

K1 T1 K2 T2 Drainage K3 T3 Feature Soil A K1 K2 T1 T2 K1 K2 Soil B T1 T2 Choose more restrictive: Soil A or B Drainage K3 T3 K3 T3 Feature

Example Problem K = 1.3 in/hr K = 0.9 in/hr 12 in 48 in What hydraulic conductivity do we use? K = 0.15 in/hr 52 in

Answer K = 1.3 in/hr * 12 in + 0.9 in/hr * 48 in 60 in K = 0.98 in/hr

Ellipse Equation S = [(4K) (m 2 + 2am) / q] 1/2

q = q is the drainage rate How much water needs to be removed by when?

For wetland hydrology determination, q is evaluated as water that must be removed by drainage in lowering water table (drained volume) divided by the time to remove. Example: lower water table from surface to 12 in 14 days. Drained volume is 0.01 (WT 0 to -12 ) q = 0.01 in/14 days =.00071 in/day

Table 1. Drainable Porosity for Commerce Soil Water Table Depth of water Drainable Depth Drained Porosity 0 - Depth (cm) (cm) (cm/cm).0000.0000 N/A 10.0000.0582 0.00582 20.0000.1819 0.00910 30.0000.4054 0.01351 40.0000.7358 0.01840 50.0000 1.1632 0.02326 60.0000 1.6767 0.02795 Values shown for Water Table Depth and Depth of Water drained have already integrated data for multiple soil layers into one soil Drainable Porosity is a function of drawdown, NOT a soil property

Calculation of Drainable Porosity The drainable porosity if the water table is lowered from Depth 1 to Depth 2 is: (Drained Volume Depth 1 Drained Volume Depth 2 ) Drainable Porosity Depth 1 - Depth 2 = ------------------------------------------------------------------ (Depth 1 Depth 2)

Example: Calculate Drainable porosity to 30 cm Water Table Depth of water Drainable Depth Drained Porosity 0 - Depth (cm) (cm) (cm/cm).0000.0000 N/A 10.0000.0582 0.00582 20.0000.1819 0.00910 30.0000.4054 0.01351 40.0000.7358 0.01840 50.0000 1.1632 0.02326 60.0000 1.6767 0.02795

Example 1. The drainable porosity if the water table is lowered from 0 cm to 30 cm is Drainable Porosity 0-30 f = (0.0 cm -.4054 cm)/(0 cm-30 cm) = (-0.4054 cm)/(-30 cm) = 0.0135 cm/cm

Example 2. The drainable porosity if the water table is lowered from 10 cm to 30 cm is: Drainable Porosity 10-30 = (0.0582 cm -.4054 cm)/(10 cm-30 cm) = (-0.3472 cm) / (-20 cm) = 0.01736 cm / cm

Drainable Porosity Use in Scope and Effect Equations Drainable porosity (f) is used directly in the van Schilfgaarde equation. In the Ellipse and Hooghoudt equations it is used as follows to calculate a drainage rate q. q = (f *depth water table lowered) + rainfall -evapotranspiration t t = time to lower water table for most critical period during the growing season

Where do you get the Soil data?

1.Field Data - Collect soil samples and perform laboratory analysis. Or, 2. NRCS National Soil Information System (NASIS database) % Sand, Silt, and Clay Water capacity @ 33 kpa and 1500 kpa Moist Bulk density Depth to top and bottom of each layer

Rosetta Model (ARS, Riverside, CA) Rosetta uses Pedotransfer functions and the information from the NASIS database to predict: water retention Hydraulic conductivity

Values from ROSETTA Class Averages Texture Drained f Ksat Class Vol@30 cm 0-30 cm (cm) (cm/cm) (cm/hr) Clay 0.317 0.0106 0.615 C Loam 0.413 0.0138 0.341 Loam 0.248 0.0083 0.502 L Sand 1.231 0.0410 4.383 Sand 1.318 0.0439 26.779 S Clay 0.470 0.0157 0.473 S C L 0.470 0.0157 0.549 S Loam 0.761 0.0254 1.595 Silt 0.131 0.0044 1.823 Si Clay 0.397 0.0132 0.401 Si C L 0.192 0.0064 0.463 Si Loam 0.074 0.0025 0.760

Hooghoudt Equation S ' = (8K am + 2 4K m 1 2 / q K 1 = weighted hydraulic conductivity above the drainage feature, in/hr K 2 = weighted hydraulic conductivity below the drainage feature, in/hr Note: K 1 and K 2 do not have to be different (also uses an equivalent depth that will be discussed later)

NRCS Modified van Schilfgaarde Equation NRCS uses a modified version of the van Schilfgaarde equation in which the drainable porosity is replaced with an adjusted drainable porosity, which accounts for the water storage (s) by surface roughness. If surface roughness is ignored (s=0), the equation is identical to the original van Schilfgaarde equation.

van Schilfgaarde Equation S = drain spacing m = height of water table above the center of the drain at midplane after time t, ft m 0 = initial height of water table above the center of the drain at t = 0, ft t = time for water table to drop from m 0 to m, days a = depth from free water surface in drainage feature to impermeable layer, ft f = modified drainable porosity d e = equivalent depth

f modified drainable porosity f = f + (s/(m o m) s = water trapped on the surface by soil roughness, ft s = 0.0083 ft (0.1 in) would be typical Note: set s = 0 if unsure of appropriate value

Surface Ponding (Microtopography) Average depth of storage that occurs before runoff begins. Distributed across the field - average

Surface Storage is often the most critical factor will make or break a determination

Surface Storage Depths Well graded cropland Fair cropland Pasture Improved Forest Native Forest Surface Storage Description 0.1 to 0.5 cm Surface relatively smooth and on grade so that water does not remain ponded in field after heavy rainfall. No potholes and adequate outlets. 1.0 to 1.5 cm Some shallow depressions, water remains in a few shallow pools after heavy rainfall. Microstorage caused by disking or cultivation may cause surface drainage to be only fair even when field surface is on grade. 1.5 to 2.5 cm Many depressions or potholes of varying depth. Widespread ponding of water after heavy rainfall. Or inadequate surface outlets such as berms around field ditches. 1.5 to 3.0 cm Depressions of varying depth. 2.5 to 5.0 cm Many depressions of varying depth. Widespread ponding that can last for days.

Ponding Natural Microtopography

Kirkham s Equation Kirkham s Equation for Parallel Drains For removal of ponding only

Figure 2: Pothole With Tile Drainage System

Kirkham s Equation

Organic Soils Difficult to determine Ksat and f Most organic soils are on discharge wetlands Lateral groundwater flow in Does not match vertical hydrodynamics of Mineral Flats

Drainmod Explain major DRAINMOD features List major DRAINMOD inputs List major DRAINMOD outputs Interpret basic wetland hydrology output Select the HGM class applicable to DRAINMOD

DRAINMOD Program Features DRAINMOD was developed by Dr. R. Wayne Skaggs at North Carolina State University (1980) DRAINMOD is a computer model (program) that is used to simulate the hydrology of high water table soils on an hourly basis for long periods of record (typically > 20 years)

Graphical Output Mineral Flat Willamette Valley, OR Wet Prairie

HGM Class Applicable to DRAINMOD The DRAINMOD model is applicable to wetlands in the MINERAL FLATS wetland class. DRAINMOD accurately models removal of water from shallow depressions within MINERAL FLAT wetlands DRAINMOD is not appropriate for modeling deep depressions within the DEPRESSION HGM class

Questions?