Understanding the effect of harvester speed on subsequent ratoon performance in the Burdekin

Similar documents
ISSUE 26 JULY Welcome to the July issue of our BPS newsletter. We hope you find the articles contained in this issue informative.

Burdekin Productivity Services 2017 AGM 22/8/2017

Nutgrass management in sugarcane

Grower Update BPS ACTIVITIES PACHYMETRA. Welcome to the Christmas issue of our BPS newsletter.

OUR CUSTOMER TERMS CLOUD SERVICES TELSTRA APPS MARKETPLACE

HARVEST HAUL MODEL THE COST OF HARVESTING PADDOCKS OF SUGARCANE ACROSS A SUGAR MILLING REGION By G.R. SANDELL 1 and D.B.

INCREASED FURROW IRRIGATION EFFICIENCY THROUGH BETTER DESIGN AND MANAGEMENT OF CANE FIELDS

PERFORMANCE OF CHOPPER HARVESTERS AND THEIR EFFECTS ON SOIL AND CROP AT BEAU CHAMP SUGAR ESTATE. V Rivière, C Marot, R Ng Cheong and E Jacquin

Queensland s plantation forestry estate update

TAEASS403 Participate in assessment validation. TAE Training and Education Training Package. Trainer and Assessor Guide

On-Farm Evaluation of Twin-Row Corn in Southern Minnesota (2010 to 2012) Stahl, Lizabeth A.B. and Jeffrey A. Coulter

MY ACCOUNT. Terms of use. New South Wales South Australia Queensland Victoria

Heavy Vehicle Transport Off-Farm Grain Carriers Code of Practice. Mass, Dimension, Load Restraint and Fatigue

By Richard Marks & Matthew Fotheringham 11/1/2007 TURN THE NEXT LEAF 1

Shoper 9 POS Single Store Implementation

Bourgault Agronomy Trials March 13, 2017 Bourgault Industries Ltd Curtis de Gooijer PAg, CCA

Psychology Assignment General assessment information

Klok, J.A., Charlesworth, P.B., Ham, G.J. and Bristow, K.L. Proc. Aust. Soc. Sugar Cane Technol., Vol. 25, 2003

Policy and Procedure Practice Manual for General Practices

Guidance on Independent Assessment. Rail Industry Guidance Note. Published by: RSSB Block 2 Angel Square 1 Torrens Street London EC1V 1NY

Security Operations. BS EN ISO 9001: 2008 Issue 1.2: 21/10/2016. Quality Manual. Managing Director. Controlled / Uncontrolled when printed

HEALTHY CROP AND HEALTHY GROUNDWATER SUGARCANE IN THE BURDEKIN DELTA.

Sconi and Flemington: Two near-production cobalt-nickel-scandium deposits. ASX: AUZ October 2017

Gas Market Analysis Tool January 2017

KEYWORD Stubble retention, canola, hypocotyl, direct drilling, seedling

ENVIRONMENTAL AUDITING GUIDE TD 16/16/E

Reporting High Risk Defects

Thames Water AMP6 Outcomes Reporting Policy Annex 3 Thames Tideway Tunnel. Performance Commitments March 2015

working with partnerships

DATA SHARING AGREEMENT

ESTIMATED COSTS OF SOLDIER AND COMBINE SUGARCANE HARVESTING SYSTEMS IN LOUISIANA

Supporting Guidance (WAT-SG-57)

On-Farm Evaluation of Twin-Row Corn in Southern Minnesota in 2010 and 2011 Stahl, Lizabeth A.B. and Jeffrey A. Coulter

FACT SHEET COMMISSION-ONLY CONDITIONS THAT MUST BE MET

Media Assignment General assessment information

Important Notices. BASIS CPD Points PN/47342/1516/g

Changes to the Red Tractor Farm Assurance schemes- FAQs

IBM TRIRIGA Version 10 Release 5.2. Inventory Management User Guide IBM

Shoper 9 Chain Store Implementation

Bp Premier Billing Software Conversion Guide

The efficient use of materials in regeneration projects

BS2482 TIMBER BOARDS ASSESSMENT REPORT. Assessment Summary

Further clarification on the use of red diesel for forest machine vehicles

Tender #: SAP Business Objects Licenses and Support Release Date: February 26, 2018 Closing Deadline: March 9, :00pm Newfoundland Time

Ethics Decision Tree. For CPAs in Government

Save water and money irrigate efficiently

Infor LN Warehousing User Guide for Cross-Docking

EFFECTS OF VARIETY, ENVIRONMENT AND MANAGEMENT ON SUGARCANE RATOON YIELD DECLINE

Oracle. SCM Cloud Administering Pricing. Release 13 (update 17D)

PepsiCo s Sustainable Farming Initiative Scheme Rules

Better canola - industry support for the canola industry

IF YOU DO NOT AGREE TO THESE TERMS, DO NOT DOWNLOAD, INSTALL OR USE BSS.

CICM Professional Qualifications. Money & Debt Advice Syllabus

Rural Wage Guide 2015/2016

FUNGICIDE SPRAYS TO CONTROL BROWN RUST (PUCCINIA MELANOCEPHALA) GAVE VARIABLE CANE AND SUGAR YIELD RESPONSES IN THE SOUTH-EAST LOWVELD OF ZIMBABWE

Oracle. SCM Cloud Using Supply Chain Collaboration. Release 13 (update 17D)

Safety and Environment Advisor Gordonvale QLD 4865

DECKING INSTALLATION GUIDE

Regulatory Audit Of Compliance Reporting For The Ord Hydro Transmission Network

Modern Languages Portfolio Analysis of literature, media or language in work General assessment information

WELD SEQUENCER PROCESS CONTROL SOLUTIONS

LATEST POSITION ACROSS NORTH-WESTERN EUROPE

Oracle Fusion Applications Project Management, Project Costs Guide. 11g Release 1 (11.1.4) Part Number E

Data Quality and Integrity: From Clinical Monitoring to Marketing Approval

Key Knowledge Generation Publication details, including instructions for author and Subscription information:

Compressed Work Week Arrangements and Common Questions

SUGARCANE IRRIGATION SCHEDULING IN PONGOLA USING PRE-DETERMINED CYCLES

1. PROJECT TITLE: Seeding Rate and Seeding Date Effects on Flax Establishment and Yield

Number 42 of 2001 YOUTH WORK ACT 2001 REVISED. Updated to 4 June 2014

MOST PROFITABLE USE OF IRRIGATION SUPPLIES: A CASE STUDY OF A BUNDABERG CANE FARM

AFTERSALES STANDARDS

Copyright ownership: United Business Services (Aust) Pty Ltd.

SOA Implementation Strategy

Facilities Manager 1 Role Profile

This fact sheet covers:

Legal and organisational conditions of applying Good Experimental Practice in the area of efficacy evaluation of plant protection products in Poland

Linda Carrington, Wessex Commercial Solutions

End of Project Report : Newtown Secondary School

Australian vegetable-growing farms An economic survey, and

Making an unlawful termination claim: for state system employees. Information Kit. Advice Line or

EN39 TUBE ASSESSMENT REPORT. Assessment Summary

SQAS/ESAD. Guidelines

Before You Start Modelling

BEGINNERS GUIDE TO ISO 9001 : 2000

SOYBEANS IN THE SUGARCANE CROPPING SYSTEM

Lead Tutor Industrial Rope Access

SEMOpx Day-ahead Market Products Stage 2 Progress Report. March 2017

NZ Health & Safety at Work

The Dynamics of Traded Industries In Between

Frequently Asked Questions and Examples. Neighbourhood Houses and Adult Community Education Centres Collective Agreement 2010.

UTILITY COORDINATION FOR CAPITAL IMPROVEMENTS PROJECTS

TAEASS403 Participate in assessment validation. Learning Guide

Australian Dollar Outlook

Job Description. Senior Management Accountant. Financial Controller. Management Accountants

Tutor Culinary Arts (part-time)

Microsoft Dynamics AX 2012 R3 CU8. Total Compensation Statement

Building Information Modelling draft policy and principles for Queensland

The Impact of Agile. Quantified.

A Guide to Clinical Coding Audit Best Practice Version 8.0

BIG UNLIMITED FY18 Q1 4C UPDATE OCT 2017

Transcription:

Sugar Research Australia Ltd. elibrary Completed projects final reports http://elibrary.sugarresearch.com.au/ Farming Systems and Production Management 2017 Understanding the effect of harvester speed on subsequent ratoon performance in the Burdekin Milla, R Sugar Research Australia http://hdl.handle.net/11079/16984 Downloaded from Sugar Research Australia Ltd elibrary

SRA Grower Group Innovation Project Understanding the effect of harvester speed on subsequent ratoon performance in the Burdekin: final report 2014/092 SRA Project Code 2014/092 Project Title Group name Chief Investigator(s) Understanding the effect of harvester speed on subsequent ratoon performance in the Burdekin Burdekin Productivity Services Ltd Rob Milla Project Objectives Quantify the effect of various harvester speeds on ratoonability and subsequent yield through shoot and stool counts and crop yield Provide growers and industry with information on the cost benefit or penalty of a range of harvester speeds between 6 and 12 km/hr Engage with grower groups and harvesting contractors to discuss the implications of a change in speed of harvesters ensure that growers are present during project activities such as harvesting, shoot and stool counts. Explore how harvester speed affects the subsequent crop performance on different soil types and varieties Milestone Number 8 Milestone Due Date 30 May 2017 Date submitted 30/5/2017 Reason for delay (if relevant) Milestone Title Success in achieving the milestone Will the project be completed on the current milestone timetable? Third year data analysis and final report Completely Achieved Partially Achieved Not Achieved YES NO (If NO, provide an explanation on how the project will be delivered within Section 6)

Sugar Research Australia Limited 2017 Copyright in this document is owned by Sugar Research Australia Limited (SRA) or by one or more other parties which have provided it to SRA, as indicated in the document. With the exception of any material protected by a trade mark, this document is licensed under a Creative Commons Attribution-NonCommercial 4.0 International licence (as described through this link). Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nc/4.0/legalcode - This link takes you to the relevant licence conditions, including the full legal code. In referencing this document, please use the citation identified in the document. Disclaimer: In this disclaimer a reference to SRA means Sugar Research Australia Ltd and its directors, officers, employees, contractors and agents. This document has been prepared in good faith by the organisation or individual named in the document on the basis of information available to them at the date of publication without any independent verification. Although SRA does its best to present information that is correct and accurate, to the full extent permitted by law SRA makes no warranties, guarantees or representations about the suitability, reliability, currency or accuracy of the information in this document, for any purposes. The information contained in this document (including tests, inspections and recommendations) is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any information contained in this document without first conducting independent inquiries and obtaining specific and independent professional advice as appropriate. To the full extent permitted by law, SRA expressly disclaims all and any liability to any persons in respect of anything done by any such person in reliance (whether in whole or in part) on any information contained in this document, including any loss, damage, cost or expense incurred by any such persons as a result of the use of, or reliance on, any information in this document. The views expressed in this publication are not necessarily those of SRA. Any copies made of this document or any part of it must incorporate this disclaimer. Please cite as: Milla R. 2017. Understanding the effect of harvester speed on subsequent ratoon performance in the Burdekin: final report project 2014/092. Sugar Research Australia Limited, Brisbane.

PART A Section 1: Abstract In 2014 six harvester speed trials were established in the Burdekin to investigate the effect of harvester speed on crop yields and subsequent ratooning, and the economics associated with harvesting at different speeds. These trials came about after discussions with growers identified harvester damage as a major cause of yield loss in ratoons. The trials compared the recommended best practice harvesting speed of 7-8 km/h to lower speeds (5-6 km/h) and higher speeds (9 km/h or higher). The trials commenced in plant cane blocks, and concluded with the second ratoon harvest in 2016. Statistical analysis of the crop yields and changes in yield generally found no correlation between harvester speed and yield or the changes in yield from one year to the next. The only significant effects were noted in the change in yield in between the first and second ratoon crops, at sites 1 and 5. However, at both of these sites there were issues with the irrigation management which have affected the overall yield and potentially compromised the results. The economic analysis showed that harvesting costs initially decrease as speed increases from a very low speed (5-6 km/h) up to around 9 km/h. Above 9 km/h the costs increased in some cases and decreased in others. At the conclusion of the project there has been no obvious effect of harvester speed on crop yield or ratooning. There are some trends in the economic analyses, but these are not consistent when the harvesting speed is greater than 9 km/h. This suggests that while growers perceive harvesting speed to be the major factor affecting yields and ratooning, other components of the farming system can have as great an, or greater, effect than harvesting. It also demonstrates the difficulty of isolating and testing the influence of one part of the farming system on yield. Section 2: Milestone Achievement Collation of data and statistical analyses The infield data collection has been completed for the five sites that were harvested in 2016. This included harvest data yield and ccs economic data, and post-harvest shoot, stool and gap counts at four weeks after harvest. In the second ratoon harvest the treatment speeds were the same as the first ratoon harvest which will allow direct comparisons to be made, unlike between plant and first ratoon where some treatment changes were made. To account for changes in the treatment speeds between the plant and first ratoon crops the treatments have been grouped as Low (5-6 km/h), BMP (7-8 km/h), Moderate (9-10 km/h) and High (11 km/h). At sites 4 and 5, the lowest speed in the plant crop became the highest speed in the next crop. Harvester speed had no effect on the crop yield in either the plant or first ratoon crops. In the second ratoon the different harvester speeds again had no obvious impact on crop yield with minimal variation in yields between treatments (Table 1). Where variation is obvious, it is mostly related to infield variability and has been noticed in the previous two harvests. Figure 1 shows the yield for each plot at site 2 over the three years

of the project and clearly demonstrates that yields at this site are more related to block variability (in this case changes in soil type) than to the treatment. This trend is repeated at the other sites (Appendix 1). In the 2016 harvest some yield variability, that is not related to underlying block variability can be seen at sites 1 and 5. Further investigation shows that this variability can probably be attributed to irrigation management. At site 1, plot 9 had one less irrigation, while at site 5 there were problems with water reaching the end of the field in plots 1, 5, 8 and 9. 150 140 130 120 110 Cane Yield (t/ha) 100 M B L M L B L B M 2014 2015 2016 Figure 1. Cane yield per plot at site 2 over the three years of the project The statistical analyses confirms the initial impression from the raw data (Table 2). That is, that harvester speed has had significant effect on cane yield or CCS. The only significant effects were seen in the change of yield between 2015 and 2016 at sites 1 and 5. At these sites the statistical analyses would suggest that faster harvesting speeds result in higher yields. However it is highly likely that the irrigation issues at these sites have confounded the results. This is especially true at site 5 where all the 7 km/h plots were affected by poor irrigation. At site 1 the analysis of cane yield disregarded the yield from the final plot (where one watering was missed), but this value was included in the analysis of sugar yield and probably explains why there has been a treatment effect for tonnes of sugar at that site but no treatment effect on cane yield or CCS. This series of trials has found no strong link between harvesting speed and yield in the following crop, but the maximum harvester speeds in the trials could be considered to be reasonably conservative. Anecdotal reports suggest that some machines are regularly operated at much higher speeds, but this is difficult to confirm. Discussions with the drivers who assisted with the trial ascertained that for most of them, an operating speed of around 9-10 km/h, depending on crop size, was the most comfortable. At this speed the machine was relatively stable and there were minimal delays waiting for haulouts. In larger crops and the dual row blocks (sites 1 and 2) speeds would generally be lower because of the volume of material going through the machine. While there could be value in trialling the effect of higher speeds e.g. 15 km/h it is unlikely that suitable cooperators would be found.

Table 1. 2016 Harvest results Site 1 Plot Treatment Tonnes Cane/Ha Tonnes Sugar/Ha 1 7 108 17.5 2 5 106 17.3 3 7 105 17.3 Kovacich 4 5 107 17.3 BRIA 5 7 110 17.6 Q208 6 7 113 17.9 7 7 112 17.8 8 7 112 18.2 9 5 104 17.1 Site 2 Plot Treatment Tonnes Cane/Ha Tonnes Sugar/Ha 1 10 128 21.2 2 8 131 21.6 3 6 137 22.7 Dal Santo 4 10 134 22.2 BRIA 5 6 136 22.1 Q183 6 8 139 23.3 7 6 135 22.3 8 8 133 21.5 9 10 131 22.2 Site 4 Plot Treatment Tonnes Cane/Ha Tonnes Sugar/Ha Curro BRIA Q183 1 11 106 13.9 2 9 108 14.8 3 7 105 14.0 4 11 105 14.5 5 9 106 14.5 6 7 104 14.3 7 11 107 14.5 8 9 107 14.7 9 7 107 14.8 Site 5 Plot Treatment Tonnes Cane/Ha Tonnes Sugar/Ha 1 7 106 15.6 2 11 117 17.4 3 9 117 18.5 Farr Delta Q208 4 5 6 9 7 11 101 99 101 15.7 14.6 14.7 7 11 108 16.0 8 9 91 14.0 9 7 89 13.9 Site 6 Plot Treatment Tonnes Cane/Ha Tonnes Sugar/Ha Galea BRIA Q208 1 11 124 19.5 2 7 123 19.1 3 9 127 19.8 4 9 121 18.8 5 11 125 19.3 6 7 119 18.4 7 11 123 19.0 8 9 124 19.2 9 7 123 19.0 Values in red are plots where irrigation problems have affected yield.

Table 2. Summary of the statistical analyses from the 2016 harvest Site Tonnes Cane/Ha CCS Change in Yield Tonnes Sugar/Ha 1 Kovacich Not significant Not significant Significant 7 (a), 5 (b) Significant 7 (a), 5 (b) 2 Dal Santo Not significant Not significant Not significant Not significant 4 Curro Not significant Not significant Not significant Not significant 5 Farr Not significant Not significant Significant Not significant 11 (a), 9 (ab), 7 (b) 6 - Galea Not significant Not significant Not significant Not significant Shoot, stool and gap counts All of the shoot and gap counts have now been completed (Table 3). These counts were on 10 m plots that had been marked out immediately before the first (2014) harvest. In each replicate there were four count plots, two at the top end of the block and the others at the bottom. At all but site 3, these plots were in rows 2 and 3 of the replicate. At site 3 the replicates were six rows wide and the counts were done in rows 3 and 4. For the final harvest there was only one count, at one month after harvest; compared to the plant and first ratoon crops where counts were conducted at 1, 3 and 6 months post-harvest. At site 1, most of the trial, except for the last 3 plots, was ploughed out immediately after harvest. At this site the post-harvest counts are an average of 2 plots for the 7 km/h treatment, and the actual count for the 5 km/h treatment. At all the other sites the average is of the 3 replicates in each treatment. While there has been no statistical analysis conducted there does not appear to be any correlation between the number of shoots or gaps and either harvester speed or crop yield. The most obvious factors affecting the counts are the time of harvest and row configuration. Site 4 was harvested in early August, compared to the others which were harvested in November and December, and the influence of cooler weather on emergence is obvious. The shoot counts for sites 1 and 2 also look low, but these are dual row blocks and the counts were only done on a single row. Table 3. 2016 Post-harvest shoot, stool and gap counts Site Harvester Speed Average Shoots Average Stools Average Gaps 1 Kovacich Q208 2 Dal Santo Q183 4 Curro Q183 5 Farr Q208 6 Galea Q208 5 171 14 4.5 7 174 12 5.6 6 157 13 4.3 8 131 12 5.0 10 161 13 4.8 7 70 14 5.8 9 79 13 4.6 11 81 14 5.7 7 251 14 2.8 9 259 15 2.3 11 264 15 3.1 7 243 14 2.0 9 244 13 3.4 11 269 15 1.2

Over the term of the project the stool counts have been considered to be the least accurate because they relied the most on the assessor s interpretation of where one stool ended and the next started. The shoot and gap counts were more quantitative and should be more accurate. The shoot counts are not considered to be particularly useful measure of harvester damage as they appear to be more influenced by variety and time of year than by treatment. The gap counts were expected to increase with increasing harvester speed because the feedback from growers is that as the machine speed increases it pulls out more cane, thus increasing the number of gaps and decreasing the yield. The results from the trials showed no strong correlation between harvesting speed and gaps (Table 4). In fact, despite the fact they were considered to be the easiest to accurately measure, the gap counts were highly inconsistent over time. The differences between the one and three month counts are probably because cane will have continued to emerge, possibly reducing the number of gaps. The variations between three and six months could be caused by some stools dying out, the Q183 in particular had a lot of shoot death in that time frame at all sites, or could be count error due to trying to count in large crops that were beginning to lodge. Table 4. Average number of gaps per treatment over the whole project Site Kovacic h Dal Santo Bugeja Curro Farr Galea Speed 2014 Harvest 2015 Harvest 2016 Pre 1 mth 3 mth 6 mth 1 mth 3 mth 6 mth 1 mth Low 4.8 4.7 3.8 3.8 4.0 3.7 3.8 4.5 BMP 4.5 4.8 3.6 3.6 3.9 3.6 4.6 5.6 Low 1.7 2.5 1.8 2.8 6.4 2.5 2.9 4.3 BMP 1.8 3.1 2.3 2.7 7.0 3.0 3.0 5.0 Moderat e 2.3 3.3 2.8 2.9 6.6 3.4 3.2 4.8 Low 0.6 0.4 0.0 0.2 0.3 0.2 0.7 BMP 0.3 0.4 0.1 0.3 0.8 0.3 1.2 Moderat e 1.0 0.6 0.5 0.4 0.6 0.3 0.9 BMP 2.2 3.4 2.1 1.9 4.4 2.5 2.5 5.8 Moderat e 0.8 2.5 1.0 1.6 2.8 1.5 1.8 4.6 Low- High 2.5 3.8 2.3 2.3 3.9 2.5 2.8 5.7 BMP 0.9 1.6 1.0 1.7 2.2 1.7 2.9 2.8 Moderat e 1.0 1.7 1.0 1.5 1.8 1.5 2.3 2.3 Low- High 1.4 2.6 1.3 1.7 2.5 2.1 2.4 3.1 BMP 1.6 2.8 2.5 2.6 3.4 2.0 2.2 Moderat e 1.8 3.0 2.3 2.7 2.9 2.5 2.4 High 0.8 1.5 1.3 1.3 1.8 1.3 2.1 Economic analysis

As in the previous two seasons a range of numbers were collected and provided to DAF economists for economic modelling and analysis. Not all the required information could be collected and some assumptions have been made regarding fuel use and the cost of fuel. Wages costs have also been assumed to be the same for all groups (Table 5). Engine and elevator hours, the time taken to harvest each plot and to fill and empty haulouts were all recorded at harvest Table 5. Economic model assumptions Fuel use in motion (L/h) 5 km/h 6 km/h 7 km/h 8 km/h 9 km/h 10 km/h 11 km/h Fuel use idle (L/h) Wages ($/t) Harvester 58.59 59.85 61.77 64.35 67.59 71.50 76.06 40 0.70 Haulout 30 10 0.50 The economic analysis of harvesting costs for the 2016 season followed a similar trend to the previous two crops. At each site the costs initially decreased with increasing speed. Above 9 km/h there was no consistency in the results. At some sites the costs continued to decrease while at others they increased (Table 6). The average harvesting costs over the life of the project show a decrease in costs when moving from a low speed of 5-6 km/h to the BMP speed of 7-8 km/h. Beyond this the costs increased at some sites, while decreasing at others (Figure 2). Table 6. Harvesting costs ($/Ha) 2016 Harvester Speed 1 Kovacich 2 Dal Santo 4 Curro 5 Farr 6 - Galea 5 $482.72 6 $429.37 7 $479.25 $371.81 $344.25 $402.41 8 $427.23 9 $367.08 $331.44 $384.82 10 $428.03 11 $379.74 $325.44 $375.76

Figure 2. Average harvesting costs 2014-2016 ($/Ha) Section 3: Intellectual Property (IP) and Confidentiality Not applicable. Section 4: Communication and Adoption of Outputs The second year results and analyses were included in the June 2016 edition of the BPS newsletter which is distributed to all growers and a number of industry personnel (Attachment 1). A summary of the final year s results and the overall project outcomes will be included in the June 2017 newsletter. The project results were due to be discussed at the shed meetings held in February and March 2017, however other topics were prioritised. BPS is currently collating the results of all trials into a trial booklet that will be distributed as a hard copy to growers (Attachment 2). It is planned that this will be delivered to growers before the BPS AGM in August. The trial results have not confirmed the original hypothesis, i.e. that harvester damage is the main cause of yield decline. This makes it difficult to make recommendations on what is the appropriate harvester speed. It is recognised that harvester speed is only one component of the puzzle. Other factors that are known to affect harvesting performance are: operator experience, sharpness of basecutter blades, crop presentation, and basecutter depth. Section 5: Environmental Impact Not applicable.

Section 6: Project Variations Personnel Changes Not applicable Proposed variations Not applicable Other Matters Not applicable

Appendix 1 Cane yield per plot at each site for each year of the project Yield variations follow the same trends over time, suggesting that block variability is the main cause of yield variation, not the treatment 200 180 160 140 120 100 80 Cane Yield (t/ha) - Site 1 B L B L B B B B L 2014 2015 2016 Cane Yield (t/ha) - Site 2 150 140 130 120 110 100 M B L M L B L B M 2014 2015 2016 Cane Yield (t/ha) - Site 3 170 160 150 140 130 120 M L B B M L B M L 2014 2015

Cane Yield (t/ha) - Site 4 110 100 90 80 L-H M B L-H M B L-H M B 2014 2015 2016 Cane Yield (t/ha) - Site 5 160 140 120 100 80 B L-H M M B L-H L-H M B 2014 2015 2016 Cane Yield (t/ha) - Site 6 140 130 120 110 100 90 80 H B M M H L H M L 2014 2015 2016