Experimental investigation of Dry Electrical Discharge Machining on SS 316L

Similar documents
DRY WIRE ELECTRICAL DISCHARGE MACHINING OF THIN WORKPIECE

Influence of Energy Distribution and Process Parameters on Tool Wear in Electrical Discharge Machining

Parametric Analysis of CNC EDM on OHNS Tool Steel

PARAMETER OPTIMIZATION ON EDM

Parametric Optimization of Electric Discharge Drilling Machine Using Al-SiC Metal Matrix Composite

Optimization of MRR and TWR on EDM by using Taguchi s Method and ANOVA Die Steel H13

Available online at ScienceDirect. Procedia CIRP 42 (2016 )

Performance measurement of EDM parameters on high carbonchromium

INVESTIGATION OF EDM HOLE DRILLING

Analysis of EDM Parameters Influencing on Material Removal Rate and Surface Roughness of High Speed Steel

ExperimentalInvestigationOfMagneticFieldAssistedOnEdmProcessByUsingTaguchiMethodOnEn-19ToolSteel

Investigations on Material Removal Rate of AISI D2 Die Steel in EDM using Taguchi Methods

Optimization of WEDM Process Parameters on Titanium Alloy Using Taguchi Method

THE EXPERIMENTAL RESEARCH OF ELECTRODISCHARGE DRILLING OF X5CrNi18 10 STAINLESS STEEL

EFFECT OF TOOL POLARITY ON THE MACHINING CHARACTERISTICS IN ELECTRIC DISCHARGE MACHINING OF SILVER STEEL AND STATISTICAL MODELLING OF THE PROCESS

APPLICATION OF NANO ALUMINUM IN MODIFIED EDM: PMEDM

Optimising Process Conditions in MIG Welding of Aluminum Alloys Through Factorial Design Experiments

Mathew et al., International Journal of Advanced Engineering Technology E-ISSN

ExperimentalStudyofMRRTWRSRonAISID2SteelusingAluminiumElectrodeonEDM

Electric Discharge Machining (EDM)

Experimental Study with Rotating Tool Electrode of EDM for Ni- Alloy

An intelligent and automated system for EDM hole drilling of super alloys

UNCONVENTIONAL MACHINING PROCESS UNIT 1 INTRODUCTION. Prepared by S. SENTHIL KUMAR AP / MECH SVCET

Optimization of MRR and Overcut in Die Sinking Electro- Discharge Machining of EN45 Material Using Grey-Taguchi Technique

Available online at ScienceDirect. Procedia CIRP 42 (2016 )

Experimental investigation and thermal modeling on electro discharge drilling of PCD

Performance of Copper, Copper Tungsten, Graphite and Brass Electrode on MRR, EWR and SR of Aluminium LM6 in EDM Die Sinking

Available online at ScienceDirect. Procedia CIRP 42 (2016 )

Unconventional. Machining Processes. M. Adithan ATLANTIC PUBLISHERS & DISTRIBUTORS (P) LTD

Investigation of MRR and TWR on High Speed Steel Using Copper and Brass Electrode for EDM

Nontraditional Machining Processes

Electrochemical Die-Sinking (ECM) in Practice

Available online at ScienceDirect. Procedia Technology 25 (2016 )

ELECTRO DISCHARGE MACHINING OF AISI 304 USING SOLID AND BUNDLED ELECTRODES

E-Journal Mathematical Modeling and Computer Simulation

Electrical Discharge Machining A State of Art Trinkle Yuvaraj Saindane 1, H. G. Patil 2

Processing Characteristics Exploration of Metal Based Diamond Wheel of WEDM Dressing and Truing

Electro Discharge Machining Characteristics of Mg/SiC P Metal matrix composites by Powder Metallurgy (P/M) Techniques

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

Available online at ScienceDirect. Procedia Manufacturing 2 (2015 )

Optimization of Cylindrical Grinding Process Parameters on C40E Steel Using Taguchi Technique

CHAPTER 2 LITERATURE SURVEY

Sustainable Micro-Manufacturing of Micro-Components via Micro Electrical Discharge Machining

Production & Process Optimization of Micro Alloyed Steel Roller Shaft of an Under Carriage

MATHEMATICAL MODELLING OF SURFACE ROUGHNESS ON MACHINING OF AA6061-BORONCARBIDE COMPOSITE IN EDM THROUGH RSM. K.R. Thangadurai 1 * and A.

EFFECT OF WELDING PARAMETERS IN FRICTION WELDING OF HOLLOW ENGINE VALVES

A STUDY ON CAPABILITIES OF DIFFERENT ELECTRODE MATERIALS DURING ELECTRICAL DISCHARGE MACHINING (EDM)

Effects of Wire Electrical Discharge Machining on Fracture Toughness of Grade 5 Titanium Alloy

Non Traditional Machining INTRODUCTION TO NTM

REGRESSION MODELING AND PROCESS ANALYSIS OF RESISTANCE SPOT WELDED JOINTS

MULTI-RESPONSE OPTIMIZATIONS FOR HIGH SPEED DUCTILE MODE MACHINING OF SODA LIME GLASS

Module 3 Machinability. Version 2 ME IIT, Kharagpur

SURFACE MODIFICATION OF TITANIUM ALLOY THROUGH ELECTRICAL DISCHARGE MACHINING (EDM)

IJITKMSpecial Issue (ICFTEM-2014) May 2014 pp (ISSN )

EASY BREATHE PORCERAX II INTRODUCING WITH PORCERAX II PLASTIC INJECTION MOLDING OTHERS... Pre-Hardened (35/38 HRC) Sintered, Porous Metal.

GMAW (MIG) / FCAW / MCAW

ELECTROMACHINING OF TUNGSTEN CARBIDE

Drilling Speeds and Feeds

Engineering Science and Technology, an International Journal

Effect of electrical pulse parameters on the machining performance in EDM

MODELLING AND PREDICTION OF MATERIAL REMOVAL RATE IN ELECTRICAL DISCHARGE DIAMOND SURFACE GRINDING PROCESS OF INCONEL-718

AUTOMATIC WELDING SPEED CONTROL BY MONITORING IMAGE OF WELD POOL USING VISION SENSOR

Contents. EDM of Tool Steel

Parametric Optimization of Lathe Turning for Al-7075 Alloy Using Taguchi: An Experimental Study

TAGUCHI BASED OPTIMIZATION OF CUTTING PARAMETERS ALUMINIUM ALLOY 6351 USING CNC

Research Collection. Die-sink EDM in meso-micro machining. Conference Paper. ETH Library

CHAPTER 1 INTRODUCTION

Optimization of Process Parameters in Micro Electrical Discharge Machining (EDM) of TI-6AL-4V Alloy

SOME EXPERIMENTAL INVESTIGATION ON ALUMINUM POWDER MIXED EDM ON MACHINING PERFORMANCE OF HASTELLOY STEEL

research work. In Secondly, the result, the effects

Optimization of Material Removal Rate in Electrical Discharge Machining Using Fuzzy Logic

Applications 4. Highlights 6. Machining envelope 8. The basic machine 12. Hightech-Spindle 13

NPTEL

Parametric Study For Overcut Using EDM With Tool of Graphite, Copper & Silver

Optimization of Titanium Welding used in Aircrafts

Multi-Objective Optimization in CNC Turning of S45C Carbon Steel using Taguchi and Grey Relational Analysis Method

Modelling And Study Of Chip Tool Interactions With High Velocity Air Jet As Cooling Media

RESPONSE SURFACE METHODOLOGY IN FINISH TURNING INCONEL 718

Development of High-Performance Vitrified Grinding Wheels using Ultrafine-Crystalline cbn Abrasive Grains

GAS METAL ARC WELDING (GMAW)

Authors Pappu Kumar 1, Prof. Prakash Kumar 2 1 Post Graduate Scholar, Deptt. of Production Engg., B.I.T, Sindri, Dhanbad, Jharkhand , India.

Research of Electrical Discharge Machining Process of Wear Resistance Coatings Obtained By Beam Deposit Process

Optimization of the Process Parameters in Micro- Electric Discharge Machining Using Response Surface Methodology and Genetic Algorithm

Available online at ScienceDirect. Procedia Engineering 97 (2014 )

Titanium Welding Technology

OPTIMIZATION OF TIG WELDING PROCESS PARAMETERS USING TAGUCHI S ANALYSIS AND RESPONSE SURFACE METHODOLOGY

MODELING OF LASER BASED DIRECT METAL DEPOSITION PROCESS

Parametric Optimization for Friction Stir Welding of Al6061 Alloy using Taguchi Technique

Green Cutting using Supersonic Air Jets as Coolant and Lubricant during Turning

EFFICIENT PROCESSING OF HARD, BRITTLE MATERIALS

Influence of Shielding Gas on Aluminum Alloy 5083 in Gas Tungsten Arc Welding

MACHINING CHARACTERISTICS OF LASER ASSISTED MICRO MILLING (LAµM) ON Ti6Al4V USING MICRO BALL MILLING TOOL

REVIEW OF WIRE ELECTRIC DISCHARGE MACHINING (WEDM) OF NIMONIC ALLOYS OF DIFFERENT GRADES

talk to experts Industrial-grade Magnetic Pulse (MP) and Electro-hydraulic (EH) systems for FORMING, WELDING, CRIMPING and EXPANSION

Chapter 12. Flux Cored Arc Welding Equipment, Setup, and Operation Delmar, Cengage Learning

EXPERIMENTAL INVESTIGATION ON COOLING RATE FOR CENTRIFUGAL CASTING Kirti Kanaujiya, Yugesh Mani Tiwari Department of Mechanical Engineering

PELLET MILL. N-MIDI pellet mill has the following general specifications, valid for each model: PELLET MILL Unit of measurement N-MIDI

GAS METAL ARC WELDING OF ADVANCED HIGH STRENGTH STEEL DEVELOPMENTS FOR OPTIMIZED WELD CONTROL AND IMPROVED WELD QUALITY

Influence of TiC on the Viscosity of CaO MgO Al 2 O 3 SiO 2 TiC Suspension System

SINTERED ALLOY POWDER CARBIDE AND TUNGSTEN CARBIDE MATERIALS FOR SHREDDER HAMMER TIPS

Transcription:

Experimental investigation of Dry Electrical Discharge Machining on SS 316L Rony Thomas Murickan School of Mechanical and Building Sciences VIT University, Vellore, Tamilnadu, India Lakshmi Pathi Jakkamputi School of Mechanical and Building Sciences VIT University, Vellore, Tamilnadu, India P. Kuppan School of Mechanical and Building Sciences VIT University, Vellore, Tamilnadu, India Abstract-Dry EDM is an environmental friendly machining process were liquid dielectric is replaced by gaseous dielectrics. This paper deals with the experimental investigation on stainless steel 316L grade by Dry EDM process using compressed air as the dielectric and a special copper electrode as the tool for blind hole EDM drilling process. The influence of discharge current, pulse-on time, duty factor and spindle speed on material removal rate (MRR) and tool wear rate (TWR) has been studied. Empirical models for MRR and TWR, has been developed using Response surface methodology (RSM) conducting designed experiment based on the Central Composite Design (CCD). From the results it is observed that a maximum MRR of 9.94 mm 3 /min is obtained and MRR is influenced by discharge current followed by Ton and duty factor. A minimum tool wear of 0.048 mm 3 /min is obtained and tool wear is influenced by discharge current and duty factor. Keywords: Dry EDM, CCD, RSM, SS 316L I. INTRODUCTION Electrical discharge machining is an advanced machining process under the category of nontraditional machining process. Main area of application is tool and die making industry because of its ability to machine the difficult to cut materials and also due to its high precision. Mineral oil based liquid dielectrics in conventional EDM is replaced by gaseous fluids at high pressure due to the generation of toxic smoke and fumes due to the thermal decomposition of the dielectrics[1]. This method of EDM was proposed by researchers of NASA in 1985. They used Argon and He gases and they observed that compared to liquid EDM, MRR is less [12]. Thus researchers proposed this new method of Dry EDM as a new alternative to the onventional liquid EDM process. Lower tool wear, lower residual thermal stresses, no toxic fume, less white layer and higher precision are the main advantage of this process [5-8]. Improved EDM efficiency was observed when kunieda supplied oxygen gas into the discharge gap and he also found that MRR is high compared to conventional EDM [6]. Dry EDM with slotted electrodes was done by Govindan and Joshi and they found that slots in the periphery of electrode helps in effective debris removal and the flow of dielectric is more due to more space and hence improves the MRR [13]. It was observed from literatures of govindhan and joshi that dry EDMed surface also has surface drawbacks such as micro cracks due to thermal stress, the deposition of spherical particles and marks due to the gas entrapment in the machined surface [14]. Better process capabilities at special machining conditions has been observed by gaseous dielectrics further researches has to be carried out in this area. Experimental works in dry EDM is not so available and publications are very little available in this area. This paper focuses mainly on Dry Electrical discharge machining of SS 316 L material using compressed air as the dielectric. Machining is done with a special three hole tubular copper electrode.. Design of experiments is done using central composite design (CCD) along with Response surface methodology (RSM) to develop the empirical models for MRR and TWR. II. EXPERIMENTAL DETAILS Vol. 2 Issue 3 May 2013 100 ISSN: 2278-621X

A. EXPERIMENTAL SETUP Experiments were performed on a PSR 35 model ram EDM machine manufactured by Electronica Industries, India. A servo controller controls the Z- axis and electrode is fed down towards the workpiece and the X and the Y-axis are controlled manually. A special machining unit known as dry EDM attachment is designed and developed for conducting the dry EDM process. The unit is attached to the existing oil EDM machine and the unit consists of a spindle, speed control unit and a timer belt drive mechanism. Basic purpose of the unit is to rotate the tubular electrode and to allow the high pressure gas dielectric to flow through the tubular electrode. Compressed air from an external air compressor is supplied to the dry EDM attachment. The tubular electrode mounted in the dry EDM attachment spindle receives the compressed air. A drying unit attached to the compressor line removes the moisture content in the compressed air. A pressure gauge and pressure valve are also fitted in the dielectric line to know the pressure and to control the pressure. The schematic diagram of experimental set-up is shown in the fig. 1. Figure 1. Schematic diagram of Dry EDM setup B. WORKPIECE, TOOL AND DIELECTRIC Drilling of blind holes were conducted on SS 316L material with a density of 8000kg/m 3. Table 1 shows the chemical composition of SS 316L. Three non central holes of 2mm diameter uniformly distributed are drilled into a solid copper electrode of 10 mm from one end. These holes open into a large central hole of 7mm diameter, which is drilled into the electrode from other end. The electrode tool is 99.9% pure electrolytic copper. Compressed air is used as the dielectric medium. Tool is shown in the figure 2. C. EXPERIMENTAL PROCEDURE Electrical discharge drilling operation are performed on SS 316L workpiece using air as the dielectric. Blind holes were drilled with special copper electrode of 10 mm diameter for 10 minutes. Before every experiment the tool electrode bottom is polished using fine emery sheet. One milligram accuracy digital weighing machine was used to measure the initial and final weight of the workpiece and tool for calculating material removal rate and tool wear rate respectively for each experiment. Vol. 2 Issue 3 May 2013 101 ISSN: 2278-621X

Figure 2. Design of special Copper tool electrode Calculation of material removal rate and tool wear rate was done by measuring the weight loss of the workpiece. Volumetric values of workpiece and tool are converted by dividing with the density of work piece and tool. The tool and workpiece are connected to positive and negative terminals of power supply respectively. Impulse flushing of dielectric gas at a pressure of 1.5 kgf/cm 2 is done through the electrode and air side flushing is also provided to remove debris and for better flushing. Each drilling operation was conducted for 10 minutes. After each experiment workpiece was removed and cleaned with acetone and weighed. D. PLAN OF EXPERIMENTS Experiments were designed by central composite design (CCD). Process parameters like discharge current (I), pulse-on time (T on ), duty factor (η) and spindle speed (N) were chosen as controllable parameters for experimentation. Dielectric pressure was kept constant (1.5 kgf/cm2), Anti- arc sensitivity and ram sensitivity were kept constant during machining. The values of various parameters on various levels are shown in the Table 2. This design consists of 31 experiments with 16 factorial points, 8 axial points with α=, 7 center points for replication. The experimental data obtained in the range of parameters from the CCD runs are shown in table 2. Table 2:Range of parameter values in CCD Level I(A) Ton (µs) η (%) N (rpm) -2 4 50 60 300-1 8 150 65 400 0 12 250 70 500 +1 16 350 75 600 +2 20 450 80 700 Vol. 2 Issue 3 May 2013 102 ISSN: 2278-621X

Table 2. Experimental parameters and results I η Ton N MRR(mm3/min) TWR (mm3/min 8 65 350 600 3.5275 0.1808 20 70 250 500 7.0613 0.8203 16 75 150 600 5.665 0.7712 4 70 250 500 0.43 0.0479 16 65 350 400 5.8763 0.4709 12 70 50 500 1.84 0.3225 8 75 350 400 3.7891 0.1004 12 60 250 500 4.6938 0.3973 12 70 250 300 3.4663 0.2823 12 80 250 500 4.3225 0.2979 12 70 250 500 4.9525 0.3649 16 75 150 400 6.9 0.8861 8 65 150 400 1.2963 0.077 12 70 250 500 3.895 0.3191 12 70 250 500 4.1738 0.3236 12 70 250 500 3.4163 0.2455 16 75 350 600 9.9425 1.25 12 70 250 700 4.855 0.414 16 65 350 600 4.0288 0.3069 12 70 250 500 3.5575 0.3258 12 70 450 500 6.7688 0.5647 16 65 150 400 5.5188 0.7165 16 75 350 400 9.12 1.1607 8 75 150 400 1.1238 0.0892 16 65 150 600 4.0725 0.4062 8 65 150 600 1.2825 0.0636 8 75 150 600 2.3775 0.4631 12 70 250 500 5.3863 0.539 8 75 350 600 2.1313 0.1328 12 70 250 500 4.3838 0.2979 8 65 350 400 2.9063 0.116 Vol. 2 Issue 3 May 2013 103 ISSN: 2278-621X

A. REGRESSION ANALYSIS: III. MATHEMATICAL MODELING: MINITAB computer software is used for developing mathematical models based on response surface methodology utilizing the responses obtained from the experimentation designed using central composite design. Fitted models obtained for MRR and TWR. Regression statistics values are compared and suitable model is selected. All terms in the fitted model might not have significant effects. Insignificant terms can be removed to get more fitting. B. REGRESSION ANALYSIS FOR MRR: I, η and interaction terms such as I η have significant effects in the MRR model since the P-values are less than 0.05. The regression equation for calculating MRR is The values of R 2 and R 2 (adj) for MRR model is 87.25% and 76.09% respectively. The F- value for the MRR model is 7.82. The lack of fit P-value calculated for MRR is 0.096, and thus lack of fit is insignificant as desired. Table 2: ANOVA table for MRR Source DF Seq SS Adj SS Adj MS F P Regression 14 127.583 127.583 9.113 7.82 0.000 Linear 4 115.737 115.737 28.9343 24.83 0.000 I 1 87.984 87.984 87.9835 75.51 0.00* η 1 5.799 5.799 5.7993 4.98 0.04* Ton 1 21.933 21.933 21.9326 18.82 0.00* N 1 0.022 0.022 0.0219 0.02 0.893 Square 4 0.633 0.633 0.1582 0.14 0.967 I I 1 0.361 0.278 0.2785 0.24 0.632 η η 1 0.224 0.242 0.2417 0.21 0.655 Ton Ton 1 0.047 0.048 0.0481 0.04 0.842 N N 1 0.001 0.001 0.0007 0.00 0.980 Interaction 6 11.213 11.213 1.8688 1.60 0.210 I η 1 8.588 8.588 8.5878 7.37 0.015* I Ton 1 0.018 0.018 0.0180 0.02 0.903 I N 1 0.955 0.955 0.9553 0.82 0.379 η Ton 1 1.409 1.409 1.4089 1.21 0.288 η N 1 0.219 0.219 0.2185 0.19 0.671 Ton N 1 0.024 0.024 0.0240 0.02 0.888 Residual Error 16 18.644 18.644 1.1653 Lack-of-Fit 10 15.535 15.535 1.5535 3 0.096 Pure Error 6 3.109 3.109 0.5182 Total 30 146.227 Vol. 2 Issue 3 May 2013 104 ISSN: 2278-621X

C. REGRESSION ANALYSIS FOR TWR: I, V, T on, η and higher order effects of I and interaction terms such as I V, I T on have significant effects in the TWR model since the P-values are less than 0.05. The regression equation for calculating TWR is The values of R 2 and R 2 (adj) for TWR models is 81.54% and 65.39% respectively. The F- value for the TWR model is 5.05. The lack of fit P-value calculated for TWR is 0.025 and thus lack of fit is significant thus some parameters which are relevant is not selected.. Table 2: Anova table for TWR Source DF Seq SS Adj SS Adj MS F P Regression 14 2.3027 2.3027 0.16448 5.05 0.001 Linear 4 1.89661 1.89661 0.47415 14.55 0.000 I 1 1.64871 1.64871 1.64871 50.6 0.000* η 1 0.22365 0.22365 0.22365 6.86 0.019* Ton 1 0.0222 0.0222 0.0222 0.68 0.421 N 1 0.00204 0.00204 0.00204 0.06 0.806 Square 4 0.0564 0.0564 0.0141 0.43 0.783 I I 1 0.02122 0.02855 0.02855 0.88 0.363 η η 1 0.00096 0.00284 0.00284 0.09 0.771 Ton Ton 1 0.0313 0.033 0.033 1.01 0.329 N N 1 0.00292 0.00292 0.00292 0.09 0.768 Interaction 6 0.3497 0.3497 0.05828 1.79 0.165 I η 1 0.20689 0.20689 0.20689 6.35 0.023* I Ton 1 0.02041 0.02041 0.02041 0.63 0.44 I N 1 0.05731 0.05731 0.05731 1.76 0.203 η Ton 1 0.02426 0.02426 0.02426 0.74 0.401 η N 1 0.04036 0.04036 0.04036 1.24 0.282 Ton N 1 0.00048 0.00048 0.00048 0.01 0.905 Residual Error 16 0.52131 0.52131 0.03258 Lack-of-Fit 10 0.46966 0.46966 0.04697 5.46 0.025 Pure Error 6 0.05165 0.05165 0.00861 Total 30 2.82402 Vol. 2 Issue 3 May 2013 105 ISSN: 2278-621X

IV. RESPONSE SURFACE ANALYSIS A. MRR response surface The response surface of MRR versus peak current and duty factor is shown in figure 4. From figure it is observed that current has significant effect on MRR when duty factor increases. At high currents MRR increase when duty factor increases. Possible reason for this is at high duty factor Ton increases which leads to more sparking and at high currents depth of crater formation is more and this leads to high MRR. At low duty factor and low currents MRR is less, do to less number of frequency of sparks. At low duty factor when current increases there is a slight increase in the MRR but at high duty factor MRR increases steeply this is due to the more frequency of sparks and less arcing due to more flushing at high duty factor. Surface Plot of MRR(mm3/min) vs η, I Hold Values Ton 250 N 500 12 9 MRR(mm3/min) 6 3 0 80 75 70 η 4 65 8 12 60 16 I 20 Figure 4. Response surface of MRR versus peak current and duty factor B. TWR response surface From figure 5 it is observed that at high current and high duty factor tool wear rate is very high, this is due to more number of sparking cycles at high duty factor and tool erosion takes place at high currents. At low current when duty factor increases TWR decreases slightly because of more non machining time due to increase in Toff time at high duty factor. At low duty factor when discharge current increases tool wear rate decreases, proof of this is less sparking cycle. Vol. 2 Issue 3 May 2013 106 ISSN: 2278-621X

Surface Plot of TWR (mm3/min) vs η, I Hold Values Ton 250 N 500 1.5 1.0 TWR (mm3/min) 0.5 0.0-0.5 4 8 I 12 60 16 20 65 70 75 80 η Figure 5. Response surface of TWR versus peak current and duty factor V. CONCLUSION: In this work experiments designed on central composite design (CCD) were conducted to develop empirical models for MRR and TWR using Response surface methodology. Following conclusions are derived based on results. A maximum MRR of 9.94 mm 3 /min is obtained and MRR is influenced by discharge current followed by Ton and duty factor. The interaction effect of duty factor and discharge current is also significant and a minimum tool wear of 0.048 mm 3 /min is obtained and tool wear is influenced by discharge current and duty factor. The interaction effect of duty factor and discharge current is also significant. REFERENCES [1] Leao FN, Pashby IR A review on the use of environmentally friendly dielectric fluids in electrical discharge machining. Journal of Material Processing Technology;149(1-3):341 6. 2004 [2] S. Evertz, A. Eisentraeger, W. Dotti, F. Klocke, A. Karden, G. Antonoglou, Environmental and industrial hygiene in connection with electrical discharge machining at high discharge energies, in Proceedings of the 13th International Symposium on Electromachining (ISEM XIII), vol. I, pp. 193 210, 2001. [3] B. Bommeli, Study of the harmful emanations resulting from the machining by electro-erosion, in: Proceedings of the Seventh International Symposium on Electromachining (ISEM VII), pp. 469 478, 1983 [4] Grzegorz Skrabalak, Jerzy Kozak, Proceedings of the World Congress on Engineering 2010 Vol III WCE 2010, June 30 - July 2, London, U.K. (2010). [5] Kunieda, M., Yoshida, M., Taniguchi, N, Electrical discharge machining in gas, CIRP Annals-Manufacturing Technology 46, 143-146. (1997) [6] Kunieda M, Furuoya S, Taniguchi N. Improvement of EDM Efficiency by Supplying Oxygen Gas into Gap. CIRP Annals Manufacturing Technology 40(1):215 218. (1991). [7] Kunieda, M., Furudate, C., High precision finish cutting by dry WEDM, CIRP Annals - Manufacturing Technology 50 (1),121-124. (2001) [8] Kunieda, M., Miyoshi, Y., Takaya, T., Nakajima, N., Bo, Y.Z., Yoshida, M., High speed 3D milling by dry EDM, CIRP Annals- Manufacturing Technology 52 (2003), 147-150. [9] De Bruyn HN Slope Control: a great improvement in spark erosion. Annals of the CIRP 16:183 191, (1968) [10] Rieder WF Low current arc modes of short length and time:a review. IEEE Trans Compon Packag Tech 23:286 292, (2000). [11] 11.Frohn-Villeneuve L, Curodeau A, Gagnon P, Laterreur V, Billette G, Coté J-F, Beaudoin L-P, Gagné D, Brault L Investigation of dry electric discharge polishing. In: Proceedings of ISEM XV, Pittsburgh, USA, pp. 269 274. (2007) [12] Ramani, V., Cassidenti, M. L., Inert-Gas Electrical Discharge Machining NASA, National Technology Transfer Center (NTTC), Wheeling, WV. (1985). [13] Govindan, Puthumana and Suhas S. Joshi, Investigations into Performance of Dry EDM Using Slotted Electrodes. International journal of precision engineering and manufacturing vol. 12, no. 6, pp. 957-963 (2011) [14] Govindan Puthumana and Suhas S. Joshi, Experimental characterization of material removal in dry electrical discharge drilling, International Journal of Machine Tools & Manufacture 50 431 443, (2010). [15] Montgomery DC (1997) Design and analysis of experiments. Wiley, ISBN 0 471 15746 5, New York Vol. 2 Issue 3 May 2013 107 ISSN: 2278-621X