Experimental study of ablative materials by oxyacetylene flame flow system

Similar documents
ASIAN JOURNAL OF CHEMISTRY

Practical APCP motor design for Amateur & High Power rocketry

Precision Polymer Engineering Ltd. High Performance Elastomer Seals

Parker Engineered Materials Group Elastomers 101

CHAPTER 8 RELIABILITY BASED DESIGN OF A TYPICAL ROCKET MOTOR CASE CONTAINING SUFACE CRACK

12.0 Materials for Missile, Space, and Launch Systems

Combustion Characteristics and Mechanism of Boron-based, Fuel-rich Propellants with Agglomerated Boron Powder

SEPT High Performance Propellant Fragment Impact Testing: Small-scale and Full-scale

INDUSTRIAL ATTACK 800

WEKO-SEAL Internal Joint Sealing. internal pipe-joint sealing

Rubber 101: How to Choose Elastomers

Research on the Abrasion Erosion and Impact Resistance of Fiber Concrete

ME 239: Rocket Propulsion. Real Nozzles. J. M. Meyers, PhD

Effects of the Diffusion Processes in the Modelling of Composite Propellant Ageing

Studies on Aramid Short Fibers Reinforced Acrylonitrile Butadiene Rubber Composites

Study on the thermal protection performance of superalloy honeycomb panels in high-speed thermal shock environments

TECHNICAL BULLETIN. EPDM Engine Mounts

Common Causes Of Failure In Elastomers..

ASME B31.3 Process Piping

MREs Development and Its Application on Miniature Gripper

Heat-Treat Rack Material Selection Based on Thermal Performance

Heat Protection Materials Slide-Bearing Materials Ablation Materials

Report on heat release rate of building materials

MANUFACTURING PROCESSES PREPREGS

Standard Specification for Fibrous Glass Thermal Insulation and Sound Absorbing Blanket and Board for Military Applications 1

TotTurf EPDM Product Specification

Hybrid rocket engines: The benefits and prospects

WELDING Topic and Contents Hours Marks

Babalola et al: Proc. ICCEM (2012) Design and construction of tilting furnace for producing aluminium matrix composites

Fire Test on a Non-heat-resistant Fireproof Glass with Down-flowing Water Film

WM2008 Conference, February 24-28, 2008, Phoenix, AZ Abstract #8216. Thermal Pretreatment For TRU Waste Sorting

APCO CDD-9000T DOUBLE DOOR CHECK VALVE TECHNICAL SPECIFICATIONS

MP-300. The most thermally efficient, robust and reliable medical incinerators on the market. Simply Built Better!

Solving Corrosion Under Insulation Utilizing FOAMGLAS Cellular Glass Insulation Systems

SPECIFICATION RW-2514 Document Number NBC MARKER SYSTEM (Ladder Form) NBC-SCE

SPECIFICATION for ISCO HDPE DUAL CONTAINMENT PIPE

3M Thermal Bonding Film 588

Smoke and Fiberglass Reinforced Plastic Components

Hamm MW Pyrolysis Plant. Integrated Pyrolysis into Power Plant Plant capacity 100,000 t/a Pre-processed Waste Materials

Experiment Study on the Ignition Point of XPS Foam Plastics

Session 4B Synthetic Surfaces 101 December 9, 2013

DANGEROUS GOODS CLASSIFICATIONS

COMPOSITE LANDING GEAR COMPONENTS FOR AEROSPACE APPLICATIONS

THE EFFECT OF PHTHALOCYANINE PIGMENT ON THE MICROSTRUCTURAL AND MECHANICAL PERFORMANCE OF PROPYLENE- ETHYLENE BLOCK COPOLYMER

Steel Panel Frame. Exterior Steel Sheeting. Optional Rigid Insulation. Optional Steel Insulation Liner

Comparison between Polyimide and Bismaleimide Effect on Mechanical Properties and Ageing Resistance of Nitrile Rubber

TESTS FOR ASPHALT AND CONCRETE JOINT SEALERS PART I FLOW TEST FOR CLASS 4 JOINT SEALANT. Test Procedure for. TxDOT Designation: Tex-525-C 1.

COMPOSITES MATERIALS FOR AVIATION INDUSTRY

BEHAVIOUR OF EXPANDABLE GRAPHITE AS A FLAME RETARDANT IN FLEXIBLE POLYURETHANE FOAM

Silicone Dielectric Fluids Fredi Jakob, Karl Jakob, Nicholas Perjanik Analytical ChemTech International, Inc.

Rubber-to-Substrate Adhesives for the Industry

INFLUENCE OF HEAT TREATMENT PARAMETERS, TEMPERATURE AND TIME, ON WEAR AND MICROHARDNESS OF NICRBSI FLAME SPRAYED COATINGS APPLIED ON CK45 SUBSTRATES

EMKA (UK) Ltd Patricia House Bodmin Road Coventry CV2 5DG West Midlands, England

Design under high windload

MP-400. The most thermally efficient, robust and reliable medical incinerators on the market. Simply Built Better!

RTV133. Technical Data Sheet

The Effects of Superheating Treatment on Distribution of Eutectic Silicon Particles in A357-Continuous Stainless Steel Composite.

Microstructural Evolution of Ti-Mo-Ni-C Powder by Mechanical Alloying

5.1 Introduction. Contents

Injection Molding LSR Parts with Micro and Nanostructured Surfaces. SmartManufacturingSeries.com

in agent shall be agreed between the purchaser and manufacturer of the coating and shall meet the following requirements The bonding ag

An Introduction to Sourcing the Optimal Elastomer

Preserving Profitability, Quality & the Environment: How Plunger Lubricants can help

Advanced Synthetic Grass Geomembrane Liner For Long-Term Environmental Closure

Flamarest TM 1600 BTX

CERTIFIED PRODUCT PERFORMANCE STANDARDS FOR CULTURED MARBLE LAVATORIES

System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas

Guide to Selecting UCON Fluids and Lubricants Including Properties, Applications & Features. Fluids and Lubricants

The Use of ETHANOX and ETHAPHOS Antioxidants in FDA Regulated Applications

Influence of Technological Parameters on the Combustion Velocity of Pyrotechnic Compositions for Gas Generator of Base Bleed Projectiles

Thickness Mesh Size Panel Size Color Resin Type

Spark and spatter. Sparks and spatter cause risk of fire and damage. Cepro welding blankets and grinding curtains offer secure separation.

ON MINIMISING THE OBTRUSIVITY OF AN OPTICAL FIBRE SENSOR WITH RESPECT TO MATRIX CRACKING

Rubber Curing Systems

Relationship between Microstructure and Vacuum Leak Characteristics of SiC Coating Layer

Oven Post-Curing of Parts. Technical Information. Fluoroelastomers

THEORY AND ANALYSIS OF LAMINATED COMPOSITE AND FUNCTINALLY GRADED BEAMS, PLATES, AND SHELLS

Styrene Block Copolymers

Phase Transformation of an Austempered Ductile Iron during an Erosion Process

Microwave dielectric properties and microstructures of MgTa 2 O 6 ceramics with CuO addition

Heat Release Rate of Wood-Plastic Composites

Solid Rocket Motor Insulation Testing

RUBBER PRODUCTS APPLICATIONS

Carbon-fiber Reinforced Concrete with Short Aramid-fiber Interfacial Toughening

Demonstrating Steel Fibres from Waste. Material Characterisation

MuShield s High Permeability Magnetic Shielding per ASTM A753 Alloy Type 4

Solid Propellants Families

COMPUTATIONAL MODELING OF BLAST FURNACE COOLING STAVE BASED ON HEAT TRANSFER ANALYSIS

CATALOGUE OF OUR PRODUCTS CONTENT... 1 REFRACTORY CASTABLES... 2 RAMMING MIXES AND MOULDABLES INSULATING REFRACTORY CASTABLES...

Standard Test Method for Adhesion Between Steel Tire Cords and Rubber 1

Study on blending modification of waste flame-retardant HIPS plastic

SURFACE TECHNOLOGIES AND ADVANCED MANUFACTURING

Flammability and Moisture absorption test of rigid polyurethane foam

MultiZon incinerator for batch operation

THERMOFIT RNF-100 TUBING Polyolefin, Flexible, Heat-Shrinkable

Influence of TiC on the Viscosity of CaO MgO Al 2 O 3 SiO 2 TiC Suspension System

INTRODUCTION AND OVERVIEW OF MANUFACTURING. Manufacturing is Important. Manufacturing - Technologically Important

Special Electrically Resistant Heated Furnaces

Transcription:

212 International Conference on Industrial and Intelligent Information (ICIII 212) IPCSIT vol.31 (212) (212) IACSIT Press, Singapore Experimental study of ablative materials by oxyacetylene flame flow system Hung-Ta Chu 1,2, +, and Jung-Hua Chou 1 1 Department of Engineering Science, National Cheng Kung University, Taiwan, 771 2 Chung Shan Institute of Science and Technology, P.O.Box 98-21-4,Manzhou,Pingtung,947,Taiwan Abstract. A missile motor has precision design and complicated components, responsible to propel the missile forward to reach an expected range. The motor must be protected by the inhibitor, which limits the high temperature from the burning of propellant to the generator to ensure safety of shell. The solid rocket propellant grain burns in the parallel layer according to a certain rule. Recently, NBR (Nitrile Butadiene Rubber) EPDM(Ethylene-Propylene-Diene Monomer), Silicon Rubber and Polyisoprene are usually applied to the inhibitor matrix in solid propellant. The inhibitor can protect the external steel shell, and remains at a temperature of 3-4K under severe conditions of high temperatures of 23-37 K inside, free from any damage arising from internal high temperature. The oxyacetylene ablation performance test system is simple, economic and useful to estimate the thermal process of ablative materials. Based on this method, the relative thermal insulation effectiveness during the early stage of material research is determined. Keywords: oxyacetylene, NBR, EPDM. 1. Introduction Inhibitors, that is to say thermal insulation materials, situated between the solid propellant and the motor case, are significant components of high performance solid propellant rocket motors in much aerospace and military utilization [1,2]. Aerojet Company has manufactured the inhibitor material by mixing asbestos fiber, silicon dioxide, and NBR in 196s, and was applied in Pulse-motor [3] and solid propellant such as Titan Rocket and Minuteman Missiles. EPDM (Ethylene-Propylene-Diene Monomer) has been widely used in rubber industry for a long time, and the modification of EPDM with silicon dioxide and Kevlar Fiber paved a way for the development of insulator materials [4], moreover, EPDM is applied in Trident-1, Small ICBM, and Pershing II Missile, because of the advantages of good bonding with HTPB (hydroxyl terminated polybutadiene binder) composite propellant. One of the important factors that Dow Corning Company used Silicon Rubber as matrix, and filled with silicon dioxide, carbon silicon and carbon fiber to manufacture the inhibitor materials for Ram Burner [5,6] is the thermal and ablative properties of Silicon Rubber. But for the reason Silicon Rubber will expand the volume under high temperature, and extra procedures are required in case bonding [7,8], it is just applied in the solid propellant motor of diameter under 1 inches. An ethanol/oxygen combustion gas generator has been used to investigate the ablation behaviors of Carbon/Silicon composite nozzle [9]. In order to compare the rate of reaction of Carbon-Carbon materials at high temperature, a H 2 -O 2 combustion chamber is used to generate the high-energy active gases [1]. This paper presented the ablation results of three different ablative materials under the finite element method and the oxyacetylene flame test procedure, discussed the changes of thermal characteristics under different temperature, and screened the ablative composites to determine the relative thermal insulation effectiveness during the early stage of material research. + Corresponding author. Tel.: Tel.: +886-6-2757575-63324; fax: +886-6-2766549. E-mail address: n9892115@mail.ncku.edu.tw. 1

2. Experimental Process 2.1. Materials and Specimens Fabrication There are three ablative materials in the present study, V44, EPDM/Kevlar and I-58 synthesized by Propellant Laboratries. The ablation performance test shall be carried out in light of different manufacturing conditions and EPDM/I-58 test pieces of different thickness, and V44 is used as a control group. The specimens under different manufacturing conditions were shown in Table 1 as well as the expression. Table 1 The specimens under different manufacturing conditions Specimen Number Curing temperature ( ) Curing time (Hr) Thickness (mm) EPDM/Kevlar 15.16 6.15 V44 15 6 6. I-58 15 72 6.7 2.2. Oxyacetylene flame flow system The oxyacetylene flame flow system means that, according to the ASTM-E285-8 Test Standard, fix the material test piece to a jig, adjust the pressure of oxygen and acetylene, flow and mixing ratio, ignite to make the flame touch the test piece at a set position, provide a stable heat source, record the change in temperature when the test piece is ablated, and calculate relevant ablation performance parameters. This system combination includes the air fuel system, temperature recording system and nozzle mechanism as shown in Fig.1. 3. Results and Discussion Fig. 1 ASTM-E285 testing system 3.1. The measurement of ablation rate The oxyacetylene flame flow test system applies the heat flux to the surface of the materials, and provides vigorous convection effect, with the result that it causes mechanical destruction on the surface of the materials. In the present study, the thermal couple was used to measure the condition of the materials under ablation, and the reciprocal of ablation rate named as erosion resistance rate was adopted to compare with the results. The erosion resistance rate is higher; the ablation rate is lower, and the erosion resistance is better. When the heat flux is under 25W/cm 2,the erosion resistance rate of V-44 is distinctly larger than EDPM/Kevlar and I-58 in Fig.2. After heat flux is raising, the erosion resistance rate of three materials are getting smaller. It is because that as heat flux is raising, the thickness of char layer is insufficient for preserving the substratum material, as a result, the mechanical strength is destroyed. 3.2. The measurement of insulation index 2

The ablation behaviors of three specimens are shown in Table 2. As shown in this table, the EPDM composites have the best ablation behavior among the others. The results of ablation test of EPDM/Kevlar ranged between other researches for different formulations. Insulation Index is a method data of ablation t experiment of ASTM, and the index is presented as follows: IT =, where I T denotes the insulation index at T,t is the time reaching to back temperature of the specimen at T, and d is the thickness of the specimen. Table 2 The results of ablation experiment (specimen dimension:1 1 cm ) Specimen number Thickness (mm) Ablation time (sec) AR (mm/sec) V44 6. 39.94.15 EPDM/Kevlar 6.15 4.96.15 I-58 6.5 24.8.244 For the same specimen, the insulation index of three temperature- 8 18 38. The value of I T is bigger, the time is longer to reach the temperature of T under the same thickness. In general, the organic compound-based material under high temperature, all the organic compound will decompose between 4 to 5,so the I T of 38 has adequate representation to show the insulation characteristic of the material. As ARC Company made a research of non-asbestos insulation for the tomahawk booster motor, also measured the time of back temperature to calculate the value of I T [12].The I T of V-44 under the ablation experiment is shown in Fig.3, the insulation index of 38 is about 65sec/m; the I T of EPDM/Kevlar under the ablation experiment is shown in Fig.4, the insulation index of 38 is about 118sec/m; I T of I- 58 under the ablation experiment is shown in Fig.5, the insulation index of 38 is about 9sec/m. It is shown in Table 3 that I T of I-58 is smaller than V-44 and EPDM. Insulation Index(sec/m) 7 6 5 4 3 2 d Insulation Index / V-44 3 1 Insulation Index(sec/m) 12 8 6 4 5 1 15 2 25 3 35 4 45 5 55 6 Fig.3 The insulation index of V-44 Insulation Index / EPDM 3 1 2 5 1 15 2 25 3 35 4 45 5 55 6 Fig.4 The insulation index of EPDM/Kevlar 3

Insulation Index(sec/m) 9 8 7 6 5 4 3 2 1 Insulation Index / I-58 3 1 4. Conclusions 5 1 15 2 25 3 35 4 45 5 55 6 Fig.5 The insulation index of I-58 Table 3 The time of arrival back temperature Materials The time of arrival V-44 EPDM/Kevlar I-58 back temperature 8 13.65 8.75 9.64 18 2.42 14.85 14.46 38 43.61 31.6 23.42 *Heat flux=55w/cm 2 By oxyacetylene flame flow system, it was found that white powder layer appeared gradually on the heated surface layer of V-44 in the ablation experiments, and more to the inside, dark and hard carbon layer was found. After cooling, there was deformation phenomena in the middle of the specimen. In this study, the ablation experiment was found that when the heat flux was under 28W/cm2,the erosion rate of V-44 was better than EPDM/Kevlar and I-58, however, the erosion rates of three materials were less obvious when the heat flux was over 35W/cm2. This was because that V-44 is composed of butadiene-acrylonitrile rubber, silicon dioxide and asbestos fibers, V-44 would not only result in pyrolysis, but also created molecular structures as ladder with butadiene-acrylonitrile and acrylonitrile molecular under high temperature, because of this, the final formed char layer including the structure of high temperature resistance has strong mechanical strength. Asbestos fibers are originally ablative materials, they are able to make char layer attached to the fiber surface, and catch hold of unheated parts like an anchor by reinforcement effect. The combined char layers of asbestos and silicon dioxide were difficult to remove so that heat transfer effects were blocked, according the above reasons, V-44 was made anti-ablation material; however, asbestos has been discarded for its environment pollution and potential cancer threat to human health [2], as a result, V-44 was rejected from the application of thermal insulation. 5.Acknowledgements The author would like to thank for Mr.Liu Yo Kung in Lab.524 for experimental help. References [1] Harvey, A.R., Ellertson, J.W., Fiber-reinforced rocket motor insulation, U.S. Patent 7,7,75, 26. [2] Pennington, W.L., Skolnik, E.G., Davidson, T.F., Non-asbestos insulation for rocket motor casing, U.S. Patent 6,265,33, 21. [3] Bradley, W., Deacetic, J., and Stenersen, A., Investigation and Evaluation of Motor Insulation for Multiple Restart Application, AFRPL-TR-67-287, 1967. [4] Jia, X.L., Li, G., Sui, G., Li, P., Yu, Y.H., Liu, H.Y., and Yang, X.P., Effect of pretreated polysulfonamide pulp on the ablation behaviour of EPDM composites, Mater Chem. Phys, 112, 28, pp.823 83. [5] Cohen, L.S., Couch, H.T., and Murrin, T.A., Performance of Ablator Materials in Ramjet Environments, AIAA 4

Paper 74-697. [6] Roberts, W.E., and Chambers, J.W., Investigation of Silicon Elastomers as Ramburner Insulators, A77-1949. [7] Owen, R., Development of Improved Thermal Protection Systems and Nozzles for Ramjet Combustors Using Ablative and Carbon/Carbon Composite Materials, 1976, P.345. [8] Webster, F.F., Liquid Fueled Integral Rocket Ramjet Technology Review, AIAA Paper, 78-118. [9] Chen, B., Zhang, L., Cheng, L., and Luan, X., Ablation Behavior of a Three-Dimensional Carbon/Silicon Carbide Composite Nozzle in an Ethanol/Oxygen Combustion Gas Generator, Int. J. Applied Ceramic Technology, 6 [2], 29, pp.182-189. [1] Maisonneuve, Y., Ablation of Solid-Fuel Booster Nozzle Materials, Aerospace Science and Technology, no 4,1997, pp.277-289. [11] ASTM-E-285-8. Annu Book ASTM Stand. 198, Oxyacetylene Ablation Testing of Thermal Insulation Material, 198, pp.212-216. [12] Skolnik, E.G, Moore, B.B, Davidson, T.F., Spear, G.B., The development of non-asbestos insulation for the tomahawk booster motor, JANNAF Propulsion Meeting, California, 1987, pp.99 18. 5