Development of a Dual-Mode Laboratory-Sized Pelletizing Machine

Similar documents
Development of a Multi Feed Pelletizer for the Production of Organic Fertilizer

DESIGN OF LOW DENSITY PILOT POLYETHENE RECYCLING SYSTEM FOR WASTE MANAGEMENT AND POLLUTION CONTROL

Development of Pull Type Inclined Plate Planter

LOAD BEARING ROLLER ASSEMBLIES Engineering Data Installation Notes

CROP PROCESSING ENGINEERING Cleaning and Sorting

Design, Construction and Testing of a Poultry Feed Pellet Machine O.A. Olugboji 1, M.S. Abolarin 2, M.O. Owolewa 3, K.C. Ajani *4

MECHANICS OF MATERIALS

Development of a Mixer for Concrete Production

Development of a Household Poultry De-Feathering Machine with Better Efficiency

Vibration Control SCHWINGMETALL. The Original Rubber-To-Metal Bonding from ContiTech

Design, Fabrication and Performance Evaluation of a Refiner Mechanical Pulping Machine

Casting Process Part 2

ME-313 STRENGTH OF MATERIALS October 11, 2000 TEST I OPEN TEXT BOOK

EXPERIMENTAL INVESTIGATION ON COOLING RATE FOR CENTRIFUGAL CASTING Kirti Kanaujiya, Yugesh Mani Tiwari Department of Mechanical Engineering

Properties in Shear. Figure 7c. Figure 7b. Figure 7a

DESIGN AND DEVELOPMENT OF SEED SOWING MACHINE ALONG WITH FERTILIZER SPRAYER

FE Review Mechanics of Materials

5 PRODUCTION COST ESTIMATION. PRODUCTION COST ESTIMATION : Instructional Objectives

GRAIN STORAGE SYSTEMS

DEVELOPMENT OF A CASSAVA PELLETING MACHINE

DETERMINATION OF WORKABILITY OF FRESH CONCRETE BY SLUMP TEST

Mechanical behavior of crystalline materials- Comprehensive Behaviour

An Extrusion Die with Twin Cavities for Semi-hollow Al-Profiles

SUSTAINABLE FARMING THROUGH MECHANIZATION: DEVELOPMENT OF A BUND MAKING MACHINE

Casting. Forming. Sheet metal processing. Powder- and Ceramics Processing. Plastics processing. Cutting. Joining.

LCM CC & TCC. A member of the Possehl Group

Design and Fabrication of a Tricycle for Municipal Waste Collection

EXTRUSION APPLICATIONS Feed and Petfood. Keith C. Behnke Professor Emeritus Kansas State University

Lecture Retaining Wall Week 12

Hull and machinery steel forgings

Chapter TYPE OF EXTRUDERS AND EXTRUSION CONDITIONS

How to Select a Feeder

Extrusion. Key Issues to Address. Lecture 2. Process. Process Variants. Process Analysis. Problem Solving

Archimedean screw pumps. Reliable robust tried and tested

SCREW DESIGN BASICS The Processor Point Of View. Andrew W. Christie Optex Process Solutions, LLC

Code-1: Paddy Weeder

1. 3 Extrusion molding


SIZE REDUCTION TECHNOLOGY

FOR TRENCHLESS TECHNOLOGIES

IMPROVING AIR VELOCITY IN DRY KILNS

PTFE BELLOWS POLY FLUORO LTD. POLY FLUORO LTD.260A. Bommasandra Industrial Area, Hosur Road, Bangalore TECHNICAL SPECIFICATION

Masterflex Polishing Products

Modelling And Study Of Chip Tool Interactions With High Velocity Air Jet As Cooling Media

Report for Handbook on large plastic pipes, published 2015, ISBN

BakeMax Dough Mini Moulder BMMDM02

A. HIGH-STRENGTH CONCRETE (HSC)

MAE 322 Machine Design Shafts -1. Dr. Hodge Jenkins Mercer University

Design, Manufacture and Performance Evaluation of an Effective Dual Operated Groundnut Decorticator with Blower

EVALUATION REPORT. PFC-5551 Reissued April 1, Filing Category: DESIGN Steel (038)

DESIGN AND FABRICATION OF MULTIPURPOSE SOWING MACHINE

DIN EN : (E)

Module 9 : Sewage And Storm water Pumping Stations. Lecture 11 : Sewage And Storm water Pumping Stations

SECTION ALUMINUM GATES

Chapter 3: Torsion. Chapter 4: Shear and Moment Diagram. Chapter 5: Stresses In beams

Wear Property and Impact Test Rig Design for Comparing Wear Liners used in Transfer Chutes

Vibration Analysis of Propeller Shaft Using FEM.

J.I.C. HYDRAULIC TUBING Seamless & Welded Hydraulic Fluid Line 23 Seamless Burst Pressures & Working Pressures 24 Welded Burst Pressures 25

ES230 Strength of Materials Exam 6 - Compilation Prof. Kurtz, ES230 STRENGTH OF MATERIALS Exam 6 Wednesday, April 26, 2017, 7pm

Introduction. 1. Outline of fan case ring

Cross Roller Table General Catalog

E APPENDIX. The following problems are intended for solution using finite element. Problems for Computer Solution E.1 CHAPTER 3

A 30/36 V BF. coarse medium fi n e soft medium hard. A aluminium oxide M R U BA resin bond

Chapter 12. Flux Cored Arc Welding Equipment, Setup, and Operation Delmar, Cengage Learning

STRENGTH OF MATERIALS laboratory manual

STUDY ON DESIGN AND STATIC ANALYSIS OF PISTON HEAD

HIGH MAST CAMERA POLE ASSEMBLY GENERAL

Design, Analysis and Optimization of Overhead Crane Girder

REVIEW OF MICROSTRUCTURE AND PROPERTIES OF NON- FERROUS ALLOYS FOR WORM GEAR APPLICATION & ADVANTAGES OF CENTRIFUGALLY CAST GEARS

Joints / Fixed Joints

PELLET MILL. N-MIDI pellet mill has the following general specifications, valid for each model: PELLET MILL Unit of measurement N-MIDI

The Ultimate Pasta Press

Large plastic pipe technology. Large diameter pressure pipe. up to DN/ID 5000 mm

PUNCH FORCE BEHAVIOR DURING MICRO V-BENDING PROCESS OF THE COPPER FOIL

A wide range of cold-formable steel grades and aluminium alloys are used as wire materials within a diameter range from 5 mm to 34 mm.

Heat Transfer Analysis of Advanced ic Engine Cylinder

CONTINUOUS FLIGHT AUGER (CFA) PILES QC/QA PROCEDURES. Preferred QC/QA Procedures

Carbonitrided Rolling Bearings. Longer operating life under boundary lubrication and contamination

CONVEYOR PULLEY DESIGN Allan Lill

Design and Fabrication of Darrieus Wind Turbine with Static Stress Analysis of Rotor & its Structures

Options. The following is a list of our most popular options. If you don t find what you need, please call us. HARDWARE

FEED ENHANCEMENT TECHNOLOGY FOR LOW BULK DENSITY MATERIAL INTO CO-ROTATING TWIN-SCREW COMPOUNDING EXTRUDERS

Development of a 30Kg Aluminium Oil-Fired Crucible Furnace Using Locally Sourced Materials

12"-18" Capacity Drum-Style Chippers

MECHANICS OF PASTE FLOW IN RADIAL SCREEN EXTRUDERS

Design and Analysis of a Process Plant Piping System

SECTION MECHANICAL SPECIFICATION GRIT COLLECTION EQUIPMENT

Design of a Small Movable Lifting Machine Overall Structure. Yingchun Liu

[ECHTALLOY CORPORATION]

Metal Forming Process. Prof.A.Chandrashekhar

FINITE ELEMENT ANALYSIS OF A SHAFT SUBJECTED TO A LOAD

A REVIEW ON COST OPTIMIZATION OF POWER PRESS BY ANALYSIS OF C-FRAME USING SOLID WORKS

ABSTRACT. KEY WORDS: Tubular piles; composite behavior; offshore structures; push-out strength; bond strength; slip.

EXPERIMENTAL STUDY ON THE EFFECT OF TENSION FOR RUBBER BEARINGS

Increased resistance to buckling of piston rods through induction hardening

Research Paper PERFORMANCE OF STRIP FOOTING ON SANDY SOIL DUE TO TUNNELING S.Hariswaran 1, K.Premalatha 2, K.Raja 3

COMPOSITE MATERIALS HANDBOOK. Volume. Structural Sandwich. Composites

SITE INVESTIGATION. Foundation Engineering

INTRODUCTION AND OVERVIEW OF MANUFACTURING. Manufacturing is Important. Manufacturing - Technologically Important

Transcription:

Leonardo Journal of Sciences ISSN 1583-0233 Issue13, July-December 2008 p. 22-29 Development of a Dual-Mode Laboratory-Sized Pelletizing Machine Mechanical Engineering Department, Olabisi Onabanjo University, Ago-Iwoye, Nigeria E-mail(s): colneks2000@yahoo.com, sukiyomakie@yahoo.com Abstract For research and development work and for the production of small quantities of pellets for specific applications, it is important to have a low-cost apparatus or machine for making pellets. This project work discusses the local design and manufacture of a dual-mode pelleting machine. It can be powered either electrically or manually. It takes care of power failure problems, and can be used in rural settlements where electricity supply is not in existence. The laboratory-sized pelleting machine uses a worm screw for propelling the grains/mash/mineral ore through the die. The worm screw encased in the pelleting chamber is propelled by a dual mode mechanism i.e. motorized and manual. This worm screw is fed by a hopper, which is able to hold a large quantity of mash/mineral ore at a time. Many engineering machine are mostly sourced abroad, thereby reducing the development of technology in Nigeria. It is against this background that the present project is conceived making the project work significant. Keywords Hopper, Worm Screw, Pellets, Extrusion. Introduction In the recent past, fish and poultry and animals are always feed in a primitive way. This involves grinding of grains and cereals as meals on stones and mortar. However, the animals need nutrients and vitamins in addition to aid their growth and development in order to meet the market requirement. http://ljs.academicdirect.org 22

Development of a Dual Mode Laboratory-Sized Pelletizing Machine Due to technological advancement grinding machines were developed for grinding of cereals and grain with the mixture of other nutrients into powder form. With time, it was discovered that the animals preferred feeding on solid and soft nutritious meal. One of the devices that can produce this requirement is called a pelletizing machine. [1] Pelletizing machines are built to perform the following functions, viz - mould animal feed meals in form of soft capsules, which can easily be consumed by fish and poultry animals; to form saw dust and grass (fuel) pellet used in a pellet stove as fuel; production of iron ore pellets in varying diameters for blast furnace pig iron production; and also production of chemical pellet. [2,3] Pellets are produced through the process called extrusion. Pelletizing machine comprises of some basic component like the hopper through which the feed meal is feed into the machine, to the pelleting chamber which consists of the worm, auger or screw (shaft) which propel the feeds. The shaft is controlled manually by the handle which could also be motorized. The output pellet is formed by compacting and forcing through a die opening (with suitable diameter die hole) by a mechanical process. [1] Design Analysis and Calculations Design Considerations The general consideration in designing this dual operational pelletizing machine is to produce a machine that can be easily assembled or disassembled, a machine in which the hopper allows materials to pass through effectively with minimum wastage; the pelleting chamber is made of metal so as to increase its durability; the hopper is sloppy to allow pellets to slide downward and get discharge by gravity. Hopper Design A hopper in form of rectangular based pyramid frustum, which is made of mild steel, is considered. The selected dimensions are: Upper face of the hopper: 260mm x 250mm Lower face of the hopper: 70mm x 50mm Height: 160mm. 23

Leonardo Journal of Sciences ISSN 1583-0233 Issue13, July-December 2008 p. 22-29 The development of the hopper is such that the dimensions are marked out and cut out from a mildsteel sheet, then welded together. Figure 1: Development of the hopper. Pelleting Pressure Chamber The inner diameter d 1 = 16mm and the outer diameter d 2 = 20mm. The thickness t, to inner diameter ratio is t/d 1 = 0.125. A cylinder with t/d 1 < 0.05 is generally regarded as a thin walled cylinder. [4] Thus, this pelleting cylinder is a thick walled cylinder theory, the radial stress σ r, the hoop stress σ h and the axial stress σ z at a diameter d in the body of the cylinder are given as: 2 2 2 d2 d d1 σ r =. P 2 2 2 1 d2 d (1) 1 d 2 2 2 d2 + d d1 σ r =. P 2 2 2 1 d2 d (2) 1 d σ = 0 h (3) For open ends of cylinder when an internal pressure P 1 is applied only. The minimum stresses occur at the cylinder bore, that is, at d = d 1. The internal pressure which is equal to the extrusion pressure is: 16 P 1 = Design extrusion force/bore area= 2 10N]/ π = 0.5 N/mm 2 4 Thus, from equations 2, 3 and 3, the radial stress at the bore is σ r = P 1 = 0.5N/mm 2 and the hoop stress at the bore is σ h = 2.28N/mm 2. The maximum octahedral shearing stress criterion of failure is used for the design. [4] This criterion is given as: 2 2 {( σ σ ) + ( σ σ ) + ( σ σ ) } Y 1 2 2 σ oct = h r r z z h = (4) 3 3 24

Development of a Dual Mode Laboratory-Sized Pelletizing Machine where Y is the yield stress of the material. Thus, substituting σ r = 0.5N/mm 2, σ h = 2.28N/mm 2 and σ z = 0 into equation 5, we have Y = 1.47N/mm 2 which is less than the yield stress of mild steel (Y = 280N/mm 2 ). [5] Therefore chamber design is okay. Worm Screw The worm screw specified has a pitch diameter, Dp = 27mm, and thread pitch p t = 10mm. In designing for thread wear the following formula is used. [5] 2P Dp + (5) ποperm where P = force acting along the screw Perm. = permissible mean nut pressure. Ø=H/d p = 1.2 to 2.5 for unsplit nuts and H = nut thickness. We select Ø= 2 and Perm = 0.80KN/cm 2 (for steel screw, cast iron nut). For P = 10N, from equation 6, Dp = 19.9mm which is less than the specified pitch diameter of 27mm. Hence, worm screw design is okay. Motor (Power Requirement) Once the palletize size is determined, it is necessary to select the drive size. The drive is connected to a gear reduction system, which decreases the drive output and increases the torque to a satisfactory level. A simplified analysis illustrates the interaction of various parameters that determine the power requirements in a meter section containing the material. Material is considered sheared between a rotating screw and a stationary shaft. Applying laws of physics and rearranging elements of equations to establish necessary power and energy relationships. [6] Work = force x distance Power =work/time Power =Force distance/time Power = Force Velocity = Force Screw Circumference rpm = P πdn/60 25

Leonardo Journal of Sciences ISSN 1583-0233 Issue13, July-December 2008 p. 22-29 Substituting for P = 10N (design force), D = 16mm (0.016m) and N = 40rpm. The theoretical power requirement is given as: 3.14 0.016 40 P = 10 60 = 0.335 Watts This is less than the gear reducer size selected, which is 0.5horsepower (0.5HP).the excess capacity of the gear reducer over the maximum horsepower available is the service factor. This provide good service life. Construction & Performance Evaluation Main features The main features of the machine are: the hopper, pelleting chamber, worm screw, die, bearings, and the power transmission unit. The assembled machine is shown in Figure 2. Figure 2: A Dual-Mode Pelletizing Machine Operating Principle The material to be pelletized is poured into the funnel/hopper of the machine. Due to gravitational action the feed goes into the pelletizing chamber. The handle/motor is used to move or rotate the screw/auger in the cylinder, the feed experiences circular orbit in a horizontal plane about the axis. 26

Development of a Dual Mode Laboratory-Sized Pelletizing Machine With the help of the shaft and cylinder, the force on the cylinder impacts the feed into solid, which is pushed to the die. The movement of the feed with the force against the die causes pellets of uniform size, shape and density to come out through the holes on the die. Performance Test Two tests were conducted on the pelle ts produced by the pelletizing machine. Both tests were conducted with 1kg of livestock feedmeal. The tests are carried out for each of the manually operated and electrically powered operations- W A. Pelleting efficiency, η p = r 100 W T Where w r = Total weight recovered. w T = Total weight fed in. B. Pellet strength (green) vis-à-vis varying percentage moisture content. The test facility to determine the green strength of pellet produced was not in our disposal. But from the operation performed during the test on pelleting efficiency, it can deduced qualitatively that increase in moisture content reduces the strength of the pellet thus the pelleting process is slow. Discussion The fabricated pelletizing machine can be operated both manually as well as by electric power. It is therefore versatile and simple. The total cost of production of a unit is estimated to be about N= 22,000.00 including both manufacturing and overhead costs. This is affordable for an average entrepreneur. The performance tests conducted indicated that high values of pelleting efficiency are attainable when powered electrically and manually operated. Both tests were conducted with 1kg of livestock feedmeal. When manually operated, the pelleting efficiency was found to be 91.4%. That of electrically operated machine gave the 27

Leonardo Journal of Sciences ISSN 1583-0233 Issue13, July-December 2008 p. 22-29 efficiency of 92.6%. These levels of performances are satisfactory. For the green strength. a moisture content that supports good pellet formation must be used. Conclusions and Recommendation The constructed pelletizing machine has been found to be effective and efficient. It can be powered both electrically and manually. Therefore, it can be used by both rural as well as urban dwellers. It is also affordable since the cost of production is low. Efforts should be made to adopt and popularize this design, especially for the benefits of rural people who make up a greater percentage of the nation s population. It is also hoped that when mass-produced, the unit cost would even be lower than it is now. Acknowledgement The Authors expresses their gratitude to Mr. Moses for fabricating and assisting in testing the machine. References 1. Pellets. www.wikipedia.org. 2. Extrusion. www.wikipedia.org. 3. Iron pellets. www.wikipedia.com. 4. Ryder, G. A., (1977) Strength of Materials, The Macmillan Press Ltd., London. 5. Doboronolsky, V; Zablonsky, K; Mak, S; Raddik, A; and Etlikh, L; (1977), Machine Elements, MIR Publisher, Moscow. 6. Akinyemi, O. O; (2002), Production and Performance Evaluation of an Electrode Coating Machine. MSc thesis submitted to the Department of Industrial and Production Engineering, University of Ibadan, Ibadan. 28

Development of a Dual Mode Laboratory-Sized Pelletizing Machine B = Hopper s breath H = Hopper s height L = Hopper s length. A = Area of base P = Power Dp = Pitch diameter Y = Yield stress Nomenclatures and Symbols σ oct = Maximum Octahedral shearing stress t = Thickness d 1 = Inner diameter d 2 = Outer diameter σ r = radial stress σ h = hoop stress σ z = axial stress M = Mass of the hopper M b = Bending moment R = Radius of cylinder V = Volume of the hopper W T = Total weight fed in Wr = Total weight recovered η p = Pelleting efficiency 29