Handling the cryo factor

Similar documents
Gas Access To Europe

STANDARD FOR THE STORAGE AND HANDLING OF LIQUEFIED NATURAL GAS (LNG) OISD STD 194

Liquefied natural gas

Transportation and Transfer of Ethanol-Blended Fuels

Fire Risk Assessment for Ammonia Onshore Export Terminal

Natural Gas. and the Liquefaction Process

Creating Optimal LNG Storage Solutions. 40 in detail

THREATS AND RISKS DURING TRANSPORTATION OF LNG ON EUROPEAN INLAND WATERWAYS

Fire Precautions and Fire Fighting

IIJTRODUCTION FOAM LIQUIDS AVAILABLE. There are five groups of foam liquids now available in the United Kingdom:

With the recent proliferation of its use in

LNG Plant Overview. Seminar with Supplier Association Murmanshelf Murmansk, 15 May 2012 Jostein Pettersen

Improving Natural Gas Liquefaction Plant Performance with Process Analyzers

Evolution of an LNG Terminal: Senboku Terminal of Osaka Gas

COMPLETING THE LNG VALUE CHAIN

Objectives. Emerging Risks Response Awareness Training. Liquefied Natural Gas

Preliminary Lessons Learned from the Fukushima Daiichi Accident for Advanced Nuclear Power Plant Technology Development

Processing LNG Offshore: Maximizing Reliability, Performance & Safety. By Inga Bettina Waldmann at KANFA Aragon FLNG World Congress 28 th June 2016

DRI Procedure for Moving/Transporting Chemicals 1

Contents. Innovation and tradition Page 3. Dr. Sthamer timeline Page 4. Foam is our job Page 5. How foam works Page 6. How foam is generated Page 8

Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant

ABS TECHNICAL PAPERS 2007

49 CFR Part Liquefied Natural Gas Facilities: Federal Safety Standards

Purpose: To demonstrate the ability to create a single line foam stream using an in-line eductor and foam nozzle (or attachment).

LNG amendments to UN Regulation No. 110: Some background on specific issues

Design Concept and Features of the Mitsubishi LNG-FPSO (Floating Production, Storage and Offloading Unit)

Environmental, Health, and Safety Guidelines for Liquefied Natural Gas (LNG) Facilities

Formal Safety Assessment - LNG -IMO/MSC86 Review

Source Characterization of Ammonia Accidental Releases for Various Storage and Process Conditions

DET NORSKE VERITAS TM

Woodfibre LNG Limited Response to SIGTTO LNG Ports and Risk Reduction Options

LNG VACUUM INSULATED PIPE SOLUTIONS.

Braemar Technical Services

General Foam Information

More on Vapor Cloud Explosions and Fires

Quantitative Risk Assessment. Final Report

Pipeline Risk Management

MLNG DUA DEBOTTLENECKING PROJECT

BAYESIAN-LOPA METHODOLOGY FOR RISK ASSESSMENT OF AN LNG IMPORTATION TERMINAL

CO2 Transport via Pipeline and Ship

Stowage of Explosives on Vessels and issues noted with Small Ships

BEFORE THE PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION

Design study of ship LNG storage and engine feeding system. Gerasimos Theotokatos NAOME, University of Strathclyde

Study on Performance-based Safety Design of Chemical Facility Layout

LNG SAFETY AND SECURITY

Bakken Crude Oil and Similar Shale Oil Spills: Responder Guidance. Prepared By Jacqui Michel, RPI Frank Csulak, Scientific Support Coordinator, NOAA

B.C. TOWBOAT INDUSTRY CONFERENCE

FACTBOOK. Anhydrous Ammonia AWARENESS AND TRAINING FOR FIRST RESPONDERS

Marine Transportation of LNG. Intertanko Conference March 29, 2004 Bob Curt Ship Acquisition Manager, QatargasII Development

Brazed aluminium heat exchangers (BAHXs), also referred to

Floating LNG Business A breakthrough in offshore gas monetization

Introduction to the Safe Design of LNG, CNG and Hydrogen Refueling Stations

Teknologi Pemrosesan Gas (TKK 564) Instructor: Dr. Istadi ( )

To Hydrogen or not to Hydrogen. Potential as a Ship Fuel. Dr. John Emmanuel Kokarakis. Emmanuel John Kokarakis University of Crete

Ship to Ship Transfer (POAC/Superintendent) for Liquefied Natural Gas and Liquefied Petroleum Gas (LNG or LPG) (3 days) (OCIMF)

LNG Facilities Changing Regulations

Enabling safe and reliable offshore LNG transfer operations By Vincent Lagarrigue, Marketing & Project Manager within Trelleborg Industrial Solutions

USDOT/FMCSA HM UPDATE. David W. Ford USDOT/FMCSA

Fire Fighting Foam Principles and Ethanol-Blended Fuel

REGULATION OF THE MINISTER OF COMMUNITY, ABORIGINAL AND WOMEN S SERVICES. Safety Standards Act M 62

Transmitted by the NGV Global (the International Association for Natural Gas Vehicles)

<eps. Vapor Cloud Explosion, BLEVE, and Flash Fire Hazards. Guidelines for %WILEY. Pressure Vessel Burst, Second Edition

Chapter 12 Hazard Analysis and Risk Assessment (Unplanned Events)

Toxic Flammable Gas Release From Rail Car Results in 3 Fatalities

AWR 147: Rail Car Incident Response Course Overview

R442A (RS-50) Features and uses of the R442A (RS-50) Lubricants TECHNICAL DATA SHEET. Barcelona Girona Madrid Zaragoza

CHAPTER 1: GENERAL APPLICABILITY

COME FROME ITCO Safe Handling!

ezng Solutions LLC for Maritime Fuel and Transport Nested Liquefied Natural Gas Tank Concept

Fire Fighting Foam Principles and Ethanol-Blended Fuel

THE TRANSFER OF LNG IN OFFSHORE CONDITIONS. SAME SONG NEW SOUND

Magnetically Coupled Submerged Cryogenic Pumps and Expanders for Ammonia Applications

LNG bunkering Why, How and When. Nigel Draffin Technical Manager LQM Petroleum Services Inc.

Cryogenic Metal Seated Butterfly Valves

GTI Small-Scale Liquefier Technology. March 2013

Nuclear Power Plant Safety Basics. Construction Principles and Safety Features on the Nuclear Power Plant Level

COLD NEUTRON SOURCE AT CMRR

LNG SAFETY AND SECURITY

GLADE PLUGINS SCENTED OIL SWEET PEA & LILAC

LNG PROPERTIES AND OVERVIEW OF HAZARDS

K-Sim Engine Diesel Electric Dual Fuel Cruise Ferry. Evy Kristine Sæter Product Advisor Engine Room Simulator

Use of CFD in the Performance-Based Design for Fire Safety in the Oil and Gas Sector

Questions, do not hesitate to call my office at or

ELECTRONIC EARTHING EQUIPMENT SERIES GRD 4200

The DAΦNE Cryogenic System

and easy to do. Continue rinsing Call a doctor advice (show the label where possible).

Environmental Impact Statement Arrow LNG Plant

GLADE PLUGINS SCENTED OIL (CLEAN LINEN )

AUSTRALIA PACIFIC LNG FACILITY

Dangerous Goods (Storage and Handling) Regulations 2000 and Code of Practice

Yemen LNG Operational feedbacks

Contents. Our company Catalogue icons. Benarx Piping Products. Benarx Equipment protection. Benarx Accessories. References...

DECLARATION OF INSPECTION

Transcription:

Handling the cryo factor part two John frame has created and delivered LNG Fire Response training courses and also produced the original book LNG Fire Protection & Emergency Response, available from IChemE. In this article he focuses on rollover; international standards; and likely incident scenarios including refrigeration; jetties cargo operations; tankage and piping. Rollover Rollover describes the rapid release of LNG vapours caused by stratification and it occurs when two separate layers of different densities exist in a tank. In the top layer, liquid is warming up due to heat gradually seeping into the tank from air and ground and this liquid rises up to the surface, where it vapourises. The lighter gases in the composition evaporate and the liquid in the upper layer thereby becomes denser. In the bottom layer, the warmed liquid moves towards the layer interface by free convection but is prevented from evaporating due to the hydrostatic head exerted by the top layer and therefore the lower layer becomes warmer and less dense. As both densities approach each other, the layers mix rapidly and the lower layer which has been heated gives off large amounts of vapour as it rises to the surface of the tank. This LNG vaporisation rate increase can cause tank venting via the LNG storage tank relief valves. Rollovers can occur when a less dense LNG is added to existing LNG from the top or, if a denser LNG is added to the tank from the bottom. Rollover is now rare and is avoided by keeping tank contents well mixed using pumps to circulate the liquid from top to bottom. International standards Before moving on to the more probable incident scenarios, there are numerous national codes and standards available for LNG, most of which include fire safety and fire protection. Obviously, most countries will either have their own standards, or may utilise some of the following: European norms EN 1473 Installation and equipment for liquefied natural gas: design of onshore installations. EN 1160 Installation and equipment for liquefied natural gas; General characteristics of liquefied natural gas. EEMUA 14731 Recommendations for the design and construction of refrigerated liquefied gas storage tanks. EN 13565 EN 13565 Fixed firefighting systems foam systems. Part 1: Requirements and test methods for components Part 2: Design, construction and maintenance. The most notable incident involving rollover was a ship at anchor for about four weeks, during which time the LNG had become heavier due to lighter ends vapourising. When this cargo was introduced to the onshore tank, density difference occurred, leading to rollover. Resultant increase in the vapourisation pressure opened the tank relief valves and although no ignition took place, the valves released for approximately one hour and 15 minutes before closing. Although the probability of ignition is low at the valves, some companies install dry chemical systems for such an event. Top: North West Shelf LNG plant, Western Australia, BP plc. 22 FIRE & RESCUE SECOND QUARTER 2010 Sign up to our e-mag at www.hemmingfire.com

An example of burning LNG in a contained pit. Preferably, the location of spill pits should ensure low or no radiant heat on other facilities, but this can be difficult in practice for jetties and congested sites, which is where firefighting foam may be used to reduce radiant heat. USA codes and standards 49CFR Part 193, Liquefied natural gas facilities: siting requirements, design and construction, equipment operations, maintenance, personnel qualifications and training, fire protection and security 33CFR Part 127 Waterfront facilities handling liquefied natural gas and liquefied hazardous gas Import and export LNG facilities NFPA 59A Standard for production, storage & handling of liquefied natural gas. General plant considerations, process systems, LNG storage containers, vapourisation facilities, piping systems and components, instrumentation and electrical services, transfer of NG and refrigerants, fire Protection, safety and security NFPA 11 Standard for low, medium and high expansion foam NFPA 17 Standard for dry chemical extinguishing systems. Likely incident scenarios The diagram below highlights the LNG process and transport system. LNG import terminals legislation, codes and standards are strict in most countries and regulate the siting, initial and secondary containment, additional site containment, materials use and fire protection requirements. In most cases where LNG is used, either in liquefaction or import terminals, liquid spills may be caused by either human or mechanical error jetty loading/unloading etc. These are the foreseen scenarios and this leads to the provision of liquid diversion channels to containment pits. These may, or may not be, at safe (radiant heat) distances from other LNG facilities, although on jetties it is often very difficult or almost impossible to do this. The processing, transport, storage and distribution route of LNG is shown opposite. Storage and cargo operations and storage for distribution require containment pits for serious liquid release events. Liquefaction operations The processing of LNG is part of a relatively simple fractionation operation which will be familiar to most readers with refinery or gas plant fire and emergency response roles. Once the natural gas is produced, by separating water, natural gas liquids, CO 2 and other impurities from the original gas stream, the gas can be converted to liquid state. The liquefaction operation involves cooling the natural gas via a refrigeration system. This cooling is done in one or more heat exchangers. The natural gas is cooled to near the temperature of the lowest temperature refrigerant, which will be below the condensing temperature of high pressure natural gas. This liquid at high pressure is then dropped close to atmospheric pressure, which results in a temperature drop in the LNG to approximately -162 o C. The liquid is then sent to storage tanks for export. Liquefaction upstream scenarios The upstream liquefaction incident scenarios are similar to any gas processing or refinery processing operations and will involve pressurised gas releases or jet fire events. The unignited gas release may be mitigated by use of water sprays. The jet fire obviously requires cooling of heat affected exposures and plant involved, while reducing and then isolating the gas feed pressure. Dry chemical may be used for extinguishment, if safe to do so if the release is of a manageable size for responders but this needs to consider residual gas developing into a flammable gas cloud, thereby creating a larger and potentially more dangerous incident. For an unignited gas release, tactics should consider: Water curtains can dilute and divert gas but avoid water in the liquid pool; For jet fires, tactics should consider: Isolate pressure source (pumps/operations); Prioritise cooling; Cool any flame affected steelwork or plant; Cool radiant heat affected steelwork/plant; Foam cannot extinguish a pressure fire (if C5 or C6 liquids are involved); Dry chemical may extinguish jet fire but pressure gas cloud will remain. Refrigeration incident scenarios The refrigeration and LNG transfer to storage have the additional hazards of cryogenic liquid contact and liquid pool formations on release. LNG under pressure from transfer pumps has the potential to create large vapour clouds, two phase jet fires or limited size spill fires (due to high vapourisation rate preventing liquid build up on the ground). For the large vapour cloud scenario, the same gas release tactics listed for upstream (above) should be considered and for jet fires, the same tactics for upstream above should be considered. Most LNG liquefaction areas will have channels and containment pits for accidental releases from piping and tank fittings. Thus, for contained LNG fires, water spray may be used for heat affected exposures, or high expansion foam may be used to reduce radiant heat impact on exposures. For containment pit LNG fires, tactics should consider: Cool any heat or flame affected steelwork or plant; Avoid water in the burning pool; Use of high expansion foam to reduce fire size (radiant heat reduction); Dry chemical can be used but gas cloud will remain; A combination of fixed foaming to reduce for approach and dry chemical for extinguishment, or, dry chemical fire knock down and foaming thereafter to reduce vapourisation, once all resources are in place to do so. If ignition does not occur, control of LNG vapour clouds from containment pits is limited to either high expansion foam or water spray but great care is needed in using water spray for vapour cloud control see Water spray in the next issue of F&R. For unignited LNG spills into pits, tactics should consider: Water curtains can dilute and divert gas but avoid water in the liquid pool; 24 FIRE & RESCUE SECOND QUARTER 2010 Sign up to our e-mag at www.hemmingfire.com

The processing, transport, storage and distribution route of LNG. Portable detection for gas drift to semi or fully-confined areas where an explosion is possible; Use high expansion foam for vapour reduction; Jetties cargo operation incident scenarios The export and import of LNG is recognised as having more frequent and probable instances of releases of LNG. However, most of these will be minor leaks from valve stems and flanges, rather than serious spills given the cycling from ambient to cryogenic temperatures and ambient again, some very minor leaks are to be expected. Leaks are also possible from loading arms and valves. Leaks from ship manifold valves, flanges and gaskets could occur. Short duration, rapid LNG flow leaks from failures on or off loading arms (where rapid ESD and disconnect fails also), will normally be collected in channels and run to containment pits. These pits may be at the jetty ends or on a mooring dolphin, depending on layout. Responding to jetties needs to be a carefully pre-planned operation. There will usually be limited vehicle access and width for turning. It must always be remembered that any response is moving toward a potential flammable gas cloud or radiant heat area. For jetties, tactics should consider: Similar to the liquefaction LNG strategies, for contained LNG pit vapour clouds, water spray and or high expansion foam may be used with caution regarding water spray; For LNG fires, water spray may be used for heat affected exposures or high expansion foam may be used to reduce radiant heat impact on exposures, with the same caveat on water spray. Note that the ship s crew will be managing their own response. Sign up to our e-mag at www.hemmingfire.com SECOND QUARTER 2010 FIRE & RESCUE 25

Example of a full containment tank, where only spills from pipe attachments are likely. No tank bund/dyke is required. Example of LNG containment pit with channel run from potential spill areas. High expansion foam system supplies two pourers. Pourers must be capable of withstanding the very high burn temperatures that will result from an LNG fire. Use of light alloy for such pourers is not recommended. Tankage incident scenarios Most tanks will have two means of containment with a primary inner tank and either an outer tank or outer berm, which would contain LNG if the primary tank failed, something that has not occurred since 1944. Should the primary tank fail, the secondary containment would contain the liquid although there may be then a rise in vapourisation, at least initially. Obviously, much depends on the type of tank in use at facilities. Where an increase in vapourisation occurs and tank safety relief valves open, the site vent or flare, if there is one, may also have to operate for some time until vapour pressure reduces. The above might mean standing off at a safe distance, but it s recommended that this particular scenario for the tank types in use is discussed in detail as part of the pre-planning at sites. Some sites have high-expansion foam systems fitted to LNG storage tank bund/dyke walls, where such bunds/dykes are provided, to reduce vapour travel or radiant heat impact on adjacent tanks or plant. This envisages older tank types. For modern tankage where full containment tanks are provided, there is no need for such bund/dyke arrangements. For most tanks, radiant heat from an external fire will not immediately impact on LNG within a primary tank and if the outer wall is concrete, there will be little heat transfer inward. It is for this reason that double walled storage tanks are less likely to BLEVE as there is no direct heat on the liquid to cause boiling and weakening of the steel shell. An assessment of cooling requirements should always follow the practical example of playing a water stream over the face of the exposed plant, equipment or tank area and if the water steams, the surface needs cooling. If not, leave it alone and check it later. LNG tanks are highly unlikely to fail under normal circumstances and normal operations. The more probable scenario for tanks will be an increase in vapourisation within and opening of the relief valves with subsequent ignition (rollover). A release from pipe fittings is also possible but the LNG should then be run to a catchment pit if this occurred. Dry chemical may be used if it proves necessary to extinguish the valve vent fires meaning if the vent fires are likely to affect other steelwork on the tank. Risk assessment must determine if responders should access the tank top and it is safe to do so, but this assessment should be part of the pre-planning. For tank related unignited LNG releases, tactics should consider: If no tank relief valve dry chemical system and no ignition occurs, heavy cold vapours might drift or cascade down tank side; Water curtains can dilute and divert gas; For tank related LNG fires, tactics should consider: Cool any heat or flame affected tank face, piping or valves etc; Avoid water in the burning pool causing any external fire affecting tanks; If relief valves involved, check fixed dry chemical system has actuated or if back-up discharge can be remotely actuated. Piping scenarios Minor leaks are possible from defective flanges, gaskets and valves but icing at these locations will indicate such small releases. On a larger scale, any short duration, rapid flow leaks from damaged LNG piping or valve failures etc should be collected in channels and run to containment pits on site. For containment pit LNG fires, tactics should consider: Cool any heat or flame affected steelwork or plant; Avoid water in the burning pool; Use of high expansion foam to reduce fire size (radiant heat reduction); Dry chemical can be used but gas cloud will remain; A combination of fixed foaming to reduce for approach and dry chemical for extinguishment, or, dry chemical fire knock down and foaming thereafter to reduce vapourisation, once all resources are in place to do so. For unignited LNG spills into pits, tactics should consider: Water curtains can dilute and divert gas but avoid water in the liquid pool; Use high expansion foam for vapour reduction; LNG road tankers Until 2002, there were no catastrophic incidents involving LNG road tankers. Databases in Europe and the USA indicated that although there were a number of road accidents and subsequent leaks from road tankers, there were no consequential fires involving LNG. Road transport up to this time had therefore been considered relatively safe. Although further such incidents may have occurred recently and are therefore not mentioned here, responders need to be aware that since 2002, there have been two incidents involving tankers where fire occurred. One occurred in September 2005, in Lyon County, Nevada, USA when a rear valve leaked and the vapour ignited. This was handled safely by local evacuation, cooling the tanker and allowing it to burn out. The other involved a road tanker in June 2002, in the foothills of Catalonia, Spain which resulted in a BLEVE (boiling liquid expanding vapour explosion). Hitherto, there were no recorded instances of BLEVE involving any LNG road tanker and it was widely thought that such an event was extremely unlikely, if not impossible (something as 26 FIRE & RESCUE SECOND QUARTER 2010 Sign up to our e-mag at www.hemmingfire.com

LNG carrier British Innovator, BP. responders we always avoid saying!) and was limited to LPG road and rail tankers. Briefly, this incident occurred due to brake failure on a bend and the tanker overturned causing an LNG spill which ignited quickly. The driver died in the vehicle overturn. After some 15-20 minutes, the tank exploded in a classic BLEVE event with blast wave, fireball and missile debris. Other cars (unoccupied) were destroyed and a nearby house was badly damaged. The fact it was a rural area assisted in the lack of fatalities. According to the official report, the BLEVE occurred because of the heating of the LNG tank by the fire, which originated because of the vehicle overturn. It s not clear whether the flames were due to the truck diesel fuel burning, or to LNG burning. More probably, the report believes both fuels were involved. The remains of the tank indicated that there was flame impingement on the right side of the tank, which was not in contact with the cryogenic LNG. What is clear is that after about 20 minutes of burning, the tank exploded. The explosion seems to have followed a two-step mode with the formation of an initiating crack in the tank, followed by a two-phase (vapour and cryo liquid) discharge and then the restart of the crack, resulting in catastrophic failure of the tank. The radius of damage appears to have been in the order of 300m, with the fireball in the order of 150m diameter. Two persons received burns at a distance of 200m from the fire area. Approximate calculations show that they may have received in the order of 16 kw/m2 for a brief spell. Given this information, it is obvious to responders that where such incidents occur, a life safety distance minimum of 1,000m radius may be advisable. It may be argued that countries use different types of road tank construction and insulation from each other, that one country s road tanker construction standards may not be as stringent as another s and so on, but, this does not Dr Sthamer - Hamburg Fire Fighting Foams Proven Reliability FOAM FIGHTS FIRE Visit us in Hall 5 Stand G74 We offer a comprehensive range of high performance and environmentally friendly foams. Head Office and Factory Hamburg Liebigstrasse 5 D-22113 Hamburg Phone +49 40 736168-0 Telefax +49 40 736168-60 E-Mail: info@sthamer.com www.sthamer.com International Sales Contact Mr. Jan Knappert Phone +44 (0) 7795 101770 E-mail: jknappert@sthamer.com Synthetic Foams Moussol APS Moussol FF Sthamex AFFF Sthamex Sthamex class A Protein Foams Fluor-Foamousse Foamousse FFFP Foamousse OMEGA Foamousse Ready To Use Foams Fettex Mousseal-C Mousseal-CF Mousseal-ATC Training Foams NEW! 24/7 EMERGENCY SUPPLIES +49 40 73616 80 Sign up to our e-mag at www.hemmingfire.com SECOND QUARTER 2010 FIRE & RESCUE 27

The LNG tanker on fire minutes before the BLEVE. The BLEVE aftermath. The road tanker was located in the lower left of the photograph. Part of the tank smashed into the house in the background. eliminate the BLEVE incident potential. The obvious lesson should be that regardless of vehicle, road tank construction or country, the possibility of BLEVE should always be a high priority for emergency responders. For any road tanker unignited spill or vapour release, the tactics should be same as for an LPG road tanker: Precautionary non-essential personnel evacuation to minimum distance of 1,000 metres; For vapour cloud, water curtains to dilute/contain/divert; Avoid water on any LNG liquid this will increase cloud; Evacuation of all responders once water curtains in place. For any road tanker LNG spill fire, the tactics should be same as for an LPG road tanker Precautionary non-essential personnel evacuation to minimum distance of 1,000 metres; Cool tanker if on fire but expect greater fire intensity if liquid LNG involved in fire; Cool any nearby tanker loading/unloading plant, equipment or other heat affected exposures; Evacuation of all responders once cooling in place. Part 1 of LNG can be found on www.hemmingfire.com, in F&R Back Issues, Q1. In part three, John Frame will look at use of water spray, use of foaming for LNG vapour and fire control, extinguishment with dry chemical, and ship cargo response. 28 FIRE & RESCUE SECOND QUARTER 2010 Sign up to our e-mag at www.hemmingfire.com