The Effect of Photo irradiation by Low Energy Laser on the Optical Properties of Amorphous GaAs Films

Similar documents
Structural and Optical Properties of SnS Thin Films

Applications of Successive Ionic Layer Adsorption and Reaction (SILAR) Technique for CZTS Thin Film Solar Cells

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties

Structural and optical characterization of reactive evaporated tin diselenide thin films

EFFECT OF DEPOSITION TIME ON CHEMICAL BATH DEPOSITION PROCESS AND THICKNESS OF BaSe THIN FILMS.

Effect of Annealing by CO2 Laser on Structural and Optical Properties of CuO Thin Films Prepared by Sol Gel Method

Mn DOPED SnO2 Semiconducting Magnetic Thin Films Prepared by Spray Pyrolysis Method

Transmission Mode Photocathodes Covering the Spectral Range

Band-gap Engineering in Sputter Deposited Amorphous/Microcrystalline Sc x Ga 1-x N

In-Situ Characterization During MOVPE Growth of III-Nitrides using Reflectrometry

Structural and Optical Properties of Aluminium Antimonide Thin Films Deposited By Thermal Evaporation Method

OPTICAL PROPERTIES OF CdS/CuS & CuS/CdS HETEROJUNCTION THIN FILMS DEPOSITED BY CHEMICAL BATH DEPOSITION TECHNIQUE

Visual and Surface Properties of CdTe Thin Films on CdS/FTO Glass Substrates

Structural and optical properties of electron beam evaporated CdSe thin films

Optical and Electrical Characterization of CuO Thin Films as Absorber Material for Solar Cell Applications

Structure and optical properties of M/ZnO (M=Au, Cu, Pt) nanocomposites

The Effect of Thickness Nanoparticle ZnS Films on Optical Properties

A Survey of Laser Types. Gas Lasers

Annealing effects on the Interband Transition and Optical constants of cobalt doped Cadmium oxide Thin Films

3.46 OPTICAL AND OPTOELECTRONIC MATERIALS

SULPHUR INDUCED CHANGES IN THE BAND GAP ENERGY AND THE TRANSPARENCY WINDOW OF CHEMICAL BATH DEPOSITED ZnO:S THIN FILMS

RightCopyright 2006 American Vacuum Soci

Solar Cells and Photosensors.

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film

Research in physical properties of Al x Ga 1-x As III-V Arsenide ternary semiconductor alloys

Study on Infrared Absorption Characteristics of Ti and TiN x Nanofilms. Mingquan Yuan, Xiaoxiong Zhou, Xiaomei Yu

Cu(In,Ga)Se 2 FILM FORMATION FROM SELENIZATION OF MIXED METAL/METAL-SELENIDE PRECURSORS

Electronic structure and x-ray-absorption near-edge structure of amorphous Zr-oxide and Hf-oxide thin films: A first-principles study

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments

X-ray Photoelectron Spectroscopy

Growth and Characterization of NLO Single Crystal: BIS L- Alanine Potassium Chloride (BIS-LAKCL)

Cadmium Oxide Nano Particles by Sol-Gel and Vapour- Liquid-Solid Methods

EPITAXY extended single-crystal film formation on top of a crystalline substrate. Homoepitaxy (Si on Si) Heteroepitaxy (AlAs on GaAs)

Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells

The growth of patterned ceramic thin films from polymer precursor solutions Göbel, Ole

Structural and optical properties of ZnS, PbS, Zn 1 x Pb x S, Zn x Pb 1 x S and PbZn x S 1 x thin films

International Journal of Innovative Research and Knowledge. INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH AND KNOWLEDGE ISSN

Performance and Radiation Resistance of Quantum Dot Multi-Junction Solar Cells

Study of a-sige:h Films and n-i-p Devices used in High Efficiency Triple Junction Solar Cells.

Amorphous Silicon Solar Cells

VACUUM VIEWPORTS. Introduction... I 03 KF Viewports... I 09 I 01. VACUUM / Components & Consumables

Optical Properties of Vacuum Evaporated WO 3 Thin Films

Understanding Optical Coatings For Military Applications

Structural and optical properties of CuO thin films prepared via R.F.magnetron sputtering

Glass Processing Course

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator

Deposition and Characterization of p-cu 2 O Thin Films

Optical Coatings. Photonics 4 Luxury Coatings , Genève. Dr. Andreas Bächli Head of Optical Coatings at RhySearch, Buchs (SG)

MICROFABRICATION OF OPTICALLY ACTIVE InO X MICROSTRUCTURES BY ULTRASHORT LASER PULSES

Thin Film Characterizations Using XRD The Cases of VO2 and NbTiN

STRUCTURE AND MORPHOLOGY OF INDIUM NITRIDE THIN FILMS GROWN BY PLASMA ASSISTED PLD: THE IMPACT OF NITROGEN FLOW AND SUBSTRATE TEMPERATURE

The Effect of Deposition Rate on Electrical, Optical and Structural Properties of ITO Thin Films

Available online at ScienceDirect. Materials Today: Proceedings 2 (2015 )

Advances in Intense Pulsed Light Solutions For Display Manufacturing. XENON Corporation Dr. Saad Ahmed Japan IDW 2016

Coatings. Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition. Coatings on Optical Fibers

X-RAY EMISSION IN THE HIGH-CURRENT GLOW DISCHARGE EXPERIMENTS

Confocal Microscopy of Electronic Devices. James Saczuk. Consumer Optical Electronics EE594 02/22/2000

Journal of Crystal Growth

The effect of radio-frequency sputtering power on the structural properties of Chromium thin films

Fabrication of the Crystalline ITO Pattern by Picosecond Laser with a Diffractive Optical Element

GROWTH, OPTICAL AND STRUCTURAL CHARACTERIZATION OF SEMI ORGANIC NON LINEAR OPTICAL THIOSEMICARBAZIDE BORATE (TSCB) SINGLE CRYSTALS

Formation of and Light Emission from Si nanocrystals Embedded in Amorphous Silicon Oxides

LOT. Contents. Introduction to Thin Film Technology. Chair of Surface and Materials Technology

Effects of Annealing Treatment on Optical Properties of Anatase TiO 2 Thin Films

Point defects in Sc 2 O 3 thin films by ion beam sputtering

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015

Impurity free vacancy disordering of InGaAs quantum dots

1. Introduction. 2. COMD Mechanisms. COMD Behavior of Semiconductor Laser Diodes. Ulrich Martin

Study of structural property of n-type indium antimonide thin films

Fabrication Technology

Molecular Beam Epitaxy Growth of GaAs 1-x Bi x

Ajay Kumar Gautam [VLSI TECHNOLOGY] VLSI Technology for 3RD Year ECE/EEE Uttarakhand Technical University

16.2 Scanning Infrared Spectrometers

Single Crystal Growth of Aluminum Nitride

Optical properties of zinc vanadium glasses doped with samarium trioxide

Light Trapping Enhancement in Thin Film Silicon Solar Cell with Different Back Reflector

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process

Development of High-concentration Photovoltaics at Fraunhofer ISE: Cells and Systems

Photonic Drying Pulsed Light as a low Temperature Sintering Process

Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers

Photonic Sintering of Silver for Roll-to-Roll Printed Electronics. Saad Ahmed, PhD Manager-Engineering

Solar cells conversion efficiency enhancement techniques

Plasma Activated EB-PVD of Titanium and its Compounds by Means of Large Area SAD

SUPPLEMENTARY INFORMATION

Citation JOURNAL OF APPLIED PHYSICS (1995),

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Doris Ehrt and Doris Möncke. Friedrich Schiller University of Jena, Otto-Schott-Institut, Fraunhoferstr. 6, D Jena, Germany,

Development of Dye-Sensitized Solar Cell (DSSC) Using Patterned Indium Tin Oxide (ITO) Glass

AC Reactive Sputtering with Inverted Cylindrical Magnetrons

Topics Relevant to CdTe Thin Film Solar Cells

VLSI Technology. By: Ajay Kumar Gautam

Effectof annealing temperature on opticaland electrical propertiesof SnS thin films

Cathodoluminescence measurements of suboxide band-tail and Si dangling bond states at ultrathin Si SiO 2 interfaces

Experimental study on laser marking of alumina

Supporting Information for Manuscript B516757D

Electrical and Optical Properties of TiN Thin Films

Thermal Diffusivity Measurement of SnO 2. -CuO Ceramic at Room Temperature

R&D ACTIVITIES AT ASSCP-BHEL,GURGAON IN SOLAR PV. DST-EPSRC Workshop on Solar Energy Research

Preparation of Bi-Based Ternary Oxide Photoanodes, BiVO 4,

Transcription:

Int. J. Thin Film Sci. Tec. 2 No. 1, 9-13 (2013) 9 International Journal of Thin Films Science and Technology @ 2013 NSP Natural Sciences Publishing Cor. The Effect of Photo irradiation by Low Energy Laser on the Optical Properties of Amorphous GaAs Films Rasha A. Abdullah, Faleh L. Matar, Mohammed A. Razooqi and Awatif S. Jassim Department of Phys, college of science, university of Tikreet, Salaheddin, Iraq Received: 26 Oct. 2012, Revised: 7 Nov 2012; Accepted: 17 Dec. 2012 Abstract: Amorphous thin gallium arsenide films have been evaporated by flash evaporation technique with thickness of about 3500 Å, under vacuum of about 10-6 mbar, on ultrasonically cleaning corning glass substrate, at substrate temperature 423 K. GaAs films have been irradiated by continuous Ar + ion laser with power nearly 120 mw for different duration times. X-ray diffraction of the as prepared and irradiated GaAs films is amorphous structure. The optical properties of GaAs films were investigated by studying the infrared and ultraviolet spectra and some optical constants were founded and compared before and after irradiation, the absorption edge shift toward the longer wavelengths (red shift) after irradiation process with respect to the as deposited film, the value of the absorption coefficient for GaAs films at the absorption edge has decreased slightly after irradiation process by factor of about 4. The direct optical energy gaps of GaAs films were estimated to be 1.78 ev for the as prepared decrease to 1.52 ev after irradiation process. Keywords: Ar+ ion irradiation; Amorphous GaAs film, UV-Visible Spectrum. I. Introduction The study of the interaction of laser radiation (LR) with semiconductors is a very important task in physics and semiconductor technology. Due to the great scientific developments in semiconductor physics during the last two decades, new applications to opto-electronic devices are quite frequent and successful. It is well known that optical and transport properties in semiconductor systems have a strong relation with the degree of localization of electronic states in the material. Nevertheless, a much simpler situation occurs when the laser is tuned far from any resonances, since the main physics of the laser±semiconductor interaction may be theoretically described by using a non-perturbative one-body approximation. From the experimental point of view, the shifts on impurity levels induced by laser light may be used as a possible application to ultrafast opto-electronic devices where no photon absorption occurs in the device. A detector capable to respond to virtual transitions where the number of photons is preserved may be very useful because it is suitable to non-destructive measurements [1]. III V semiconductors have demonstrated highperformance detection in a wide spectrum range with cutoff wavelengths ranging from UV to far-ir [2]. GaAs and other III-VI compounds semiconductors have been identified as "materials of the future", in view of some of their unique and interesting properties, such as its direct band gap energy (Eg) of 1.42 ev, Relative high dielectric constant (εr) of about 7 [1, 3], Refractive index near (n) 3.4, Absorption coefficient near (α) 104cm 1. Gallium arsenide is a compound semiconductor with a combination of physical properties that has made it an attractive candidate for many electronic optoelectronics devices [1, 4] applications. III/V semiconductor, and is used in the manufacture of devices such as microwave frequency integrated circuits, monolithic microwave integrated circuits and millimeter wave integrated circuits, infrared light-emitting diodes, laser diodes, solar cells and optical windows, in mobile phones, satellite communications, microwave point-to-point links and higher frequency radar system, used in the manufacture of Gunn diodes. Complex layered structures of gallium arsenide in combination with aluminum arsenide (AlAs) or the alloy AlxGa1-xAs can be grown using molecular beam epitaxy (MBE), metal organic vapor phase epitaxy (MOVPE) and pulsed-laser deposition (PLD) [1, 5]. In this search, flash @ 2013 NSP Natural Sciences Publishing Cor.

10 Awatif S. Jassim, et al: The Effect of Photo irradiation evaporation technique was used to solve the problem of Ga and As separation. Then we study the effect of ion laser irradiation on the prepared films. Argon ion laser was used, which is one of class of noble-gas ion lasers that operate in the visible and ultraviolet spectral region operating in ionized species of the noble gas of argon. The argon ion lasers are primary continues laser, although a few of these lasers are also commercially available as pulsed lasers [1]. Ar- and Kr-ion lasers are the most powerful continuous gas lasers in the visible and UV. Ar-ion lasers can emit tens of watts on their most powerful green lines. Especially in the context of strategic applications in the areas of advanced electronics and Laser-induced etching, an improved etching process, is very much needed in the fabrication of III-VI integrated optic and microelectronic devices. Several studies of laser induced etching have shown the importance of its higher processing rate than the conventional etching techniques. With this technique the etching is initiating nonthermally by light-generated electron-hole pairs, which diffuse to the surface and greatly enhances the oxidation-reduction reaction between the semiconductor and a dilute acid solution [6, 7]. II. Experimental Work GaAs films have been prepared by flash evaporation technique using Edward 306A vacuum coating system under a pressure of about 2 10-5mbar. This films deposited on 7059 corning glass slides cleaned ultrasonically with acetone, demonized water and finally air dried. The deposition process was done at substrate temperature about 473K achieved by resistive heater measured by thermometer with K-type thermocouple. The thicknesses (d) of the prepared films were measured using weighting method which is about 3500±50 Å. GaAs alloy and films have been done by Phillips PW3710 X-Ray diffractometer of 1.5405Å wavelength with CuKα source radiation, current 20 ma, Voltage 40 KV and scanning speed 2 cm/minute. GaAs films were irradiated by continuous Ar+ ion laser placed at a distance about three meters from the films which exposed to laser radiation and maintained for 30 and 60 minutes. The beam of laser was focused by a lens placed in the middle of laser radiation path. Figure 1 illustrates diagram of irradiation mechanism of GaAs films. The wavelength of the used laser was 514.5 nm and the power intensity was 150 mw. The optical properties have been investigated by UV/Visible Centra 5 Spectrometer to compute some optical parameters. 3 m Ar + Laser Focusing Lens The prepared Film Figure 1: Schematic diagram of irradiation mechanism of GaAs films. III. Result and Discussion. The structure of the GaAs alloy has been investigated as shown in figure 2. The XRD spectrum of the GaAs alloy indicates main planes of GaAs alloy at (111), (220) and (311) direction which reflected at similar results have been found by Razooqi [8]. The X-ray diffraction of all prepared GaAs films without and with irradiation process is amorphous structures similar structure has been found by [9].

Awatif S. Jassim, et al: The Effect of Photo irradiation 11 Figure 2: X-ray diffraction spectrum GaAs alloy. The absorbance spectra of GaAs thin films for as deposited and irradiated films are shown in figure 3. It can be observed that the absorption edge shift toward the longer wavelengths (red shift) after irradiation process with respect to the as deposited film. Figure 3: The absorbance spectra as a function to wavelength for as deposited thin GaAs films and irradiated films at different duration times The absorption coefficient (α) can calculated from the relation [11]: 1 t ln (1 T) (5) Where t is the sample thickness and T is the transmittance. One can observe from figure 4 that GaAs films exhibits a strong absorption of photons at the short wavelength region within the range 100-600 nm. In the strong absorption region, the absorption coefficient takes higher values up to cut off wavelength (λ cutoff ) at the absorption edge. The values of the absorption coefficient are tabulated in Table 1.Then after this region, the absorption coefficient is slightly decreased with increasing of the wavelength. On the other hand, the value of the absorption coefficient for GaAs films at the absorption edge has decreased slightly after irradiation process by factor of about 4 from 0.49 10 4 cm -1 to 0.12 10 4 cm -1, this slightly decreasing

12 Awatif S. Jassim, et al: The Effect of Photo irradiation may be due to structural improvement. The optical energy gap (E g ) has calculating using the following relation [12]: n A( h E ) h (6) g / Where A is constant, hν is the photon energy and n is constant equal to 1/2 for allowed direct transition. The values of energy gap estimated from the extrapolation to zero absorption in this equation. Figure 4 showed the variation of (αhν) 2 with photon energy for GaAs thin film. The variation of E g is tabulated in Table 1. The direct optical energy gaps of GaAs films were estimated to be 1.78 ev for the as prepared decrease to 1.52 ev after irradiation process. Our results are nearly in agreement with Razooqi [8], Baker et al [13]. The decreasing of E g after irradiation process is probably due to irradiating effect which may have lower density of crystalline defect [14]. The values of refractive Index (n), extinction coefficient (k) and dielectric constant (real (ε r ) and imaginary (ε i ) parts) can be calculated from the following equations [15]: 2 2 2 n [(4R ( R 1) ) k ] 1 [( R 1) ( R 1)] (8) n k 4 (9) k 2 2 (10) r 2 nk i (11) Where R is the reflectance and λ is the wavelength of the light. The values of refractive Index (n), extinction coefficient (k) and dielectric constant (ε) for GaAs films at cut off wavelength are tabulated in Table 1. Figure 4: The plot of (αhν) 2 versus photon energy for thin GaAs films and irradiated films at different duration times. It can see that they decrease after irradiation process, similar data has been observed by M. Razooqi [8]. The variation of real and imaginary part of dielectric constant respectively for GaAs films respectively.

Awatif S. Jassim, et al: The Effect of Photo irradiation 13 The behavior of εr is similar to refractive index because of the smaller value of k2 comparison to n2, while εi depends mainly on the k values, which is related to the variation of absorption coefficient. For GaAs films, it is found that both εr and εi decreased after irradiation process. Table 1: Cut off wavelength, Absorption coefficient, optical energy gap, refractive index, extinction coefficient and the dielectric constants of GaAs thin films. Treatment λ cutoff (nm) α 10 4 (cm -1 ) E g (ev) n K ε r ε i As deposited 534.145 0.489 1.78 2.434 0.021 5.926 0.101 30min. Irrad. 617.808 0.276 1.54 2.069 0.013 4.283 0.056 60min. Irrad. 673.293 0.121 1.52 1.659 0.006 2.754 0.021 IV. Conclusions The X-ray diffraction of the as prepared and irradiated GaAs films by continuous Ar+ ion laser with power nearly 120 mw for different duration times are amorphous structure. After irradiation for 60 minutes a peak of transmittance spectrum of FTIR spectrum appeared at 38 μm wavelength, also a slightly difference between the spectrum of as deposited and irradiation GaAs films for 30 minutes. The absorption edge shift toward the longer wavelengths (red shift) after irradiation process with respect to the as deposited film, the value of the absorption coefficient for GaAs films at the absorption edge has decreased slightly after irradiation process by factor of about 4. The direct optical energy gaps of GaAs films were estimated to be 1.78 ev for the as prepared decrease to 1.52 ev after irradiation process. References [1] W. T. Silfvast, Laser fundamentals, 2nd edition, Cambridge university press, USA, 2000. [2] N. Biyikli, I. Kimukin, B. Butun, O. Aytür and E. Ozbay, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 10, NO. 4, 2004, p759. [3] Jiro Yota, Hoa Ly, Dragana Barone, Mike Sun, and Ravi Ramanathan, Photodefinable Polybenzoxazole Interlevel Dielectric for GaAs HBT ApplicationsCS MANTECH Conference, April 14-17, 2008, Chicago, Illinois, USA. [4] I. Hamidah1, N. Yuningsih, P. Arifin, M. Budiman, and M. Barmawi, Indonesian Journal of Physics, Vol. 15 No.2, 2004, p35. [5] B Ullrich, A Erlacher and E O Danilov, Semicond. Sci. Technol. 19 (2004) L111 L114. [6] V. A. Gnatyuk, O.S. Gordonychenko, P. O. Mozol, O. I. Valsenko, Semiconductor physics, quantum electronic and optoelectronics, 2000, V 3, N 1, p 26-30 [7] S B OGALE Bull. Mater. Sci., Vol. 13, Nos 1 & 2, March 1990, pp. 51-56. [8] M. A. Razooqi, Schottky Diode of In/GaAs/Au-Ag Films Prepared by Flash Evaporation, M. Sc. Thesis, university of Baghdad, 2006. [9] R.R. Campomanes, J. Ugucione and J.H. Dias da Silva, Journal of Non-Crystalline Solids 304 (2002) 259 264. [10] M. Gajdardziska-Josifovsko, V. Lazarov and J. Reynolds, Applied Physics Letters, 78 2001, 3298-3300. [11] R. E. Hummel, Electronic properties of materials 4th edition (Springer, New Yourk, 2011), p. 215. [12] S. M. Zse, Physics of Semiconductor Devices 3rd eddetion (Johon Wiley and Sons, New Yourk, 2007), p. 72. [13] J.Bakar, J.Appl.Phys: Condense Matter, 4,1990, 2817-2829. [14] L. Gheorghies and C. Gheorghies, Journal of Optoelectronics and Advanced Materials 4, 4, (2002) 979 982. [15] S. O. Kasap, Principles of electronic material and Devices 3rd edition, McGraw Hill Company, New Yourk, 20.