Non-Lattice Matched III-V Heterostructures for Ultrahigh Efficiency PV

Similar documents
Development of High-concentration Photovoltaics at Fraunhofer ISE: Cells and Systems

Transmission Mode Photocathodes Covering the Spectral Range

Mechanically Stacked Solar Cells for Concentrator Photovoltaics

3.46 OPTICAL AND OPTOELECTRONIC MATERIALS

Experimental Results from Performance Improvement and Radiation Hardening of Inverted Metamorphic Multi-Junction

Study of a-sige:h Films and n-i-p Devices used in High Efficiency Triple Junction Solar Cells.

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator

Photovoltaics under concentrated sunlight

The components of. Technology focus: III-Vs on silicon. Fiber-optic gallium antimonide

Ferroelectric Oxide Single-Crystalline Layers by Wafer Bonding and Hydrogen/Helium Implantation

Polycrystalline CdS/CdTe solar cells

Amorphous Silicon Solar Cells

Introduction to Solar Cell Materials-I

Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project

Performance and Radiation Resistance of Quantum Dot Multi-Junction Solar Cells

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process

InGaN quantum dot based LED for white light emitting

Structural and Optical Properties of Aluminium Antimonide Thin Films Deposited By Thermal Evaporation Method

Photon Enhanced Thermionic Emission for Solar Energy Harvesting. Final Report to the Global Climate and Energy Project

Topics Relevant to CdTe Thin Film Solar Cells

Formation of and Light Emission from Si nanocrystals Embedded in Amorphous Silicon Oxides

EPITAXY extended single-crystal film formation on top of a crystalline substrate. Homoepitaxy (Si on Si) Heteroepitaxy (AlAs on GaAs)

High-Resolution, Electrohydrodynamic Inkjet Printing of Stretchable, Metal Oxide Semiconductor Transistors with High Performances

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

STUDY OF THE TANDEM SOLAR CELL. Fong Chun Hui

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film

Molecular Beam Epitaxy Growth of GaAs 1-x Bi x

Laser Spike Annealing for sub-20nm Logic Devices

Nanostructured Engineered Materials With High Magneto-optic Performance For Integrated Photonics Applications

HIGH-EFFICIENCY DILUTE NITRIDE MULTIJUNCTION SOLAR CELLS: INFLUENCE OF POINT DEFECTS ON THE DEVICE PERFORMANCE

TRIPLEJUNCTION SOLAR CELL EFFICIENCIES ABOVE 32%: THE PROMISE AND CHALLENGES OF THEIR APPLICATION IN HIGH-CONCENTRATION-RATIO PV SYSTEMS

Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers

16.2 Scanning Infrared Spectrometers

Impurity Photovoltaic Effect in Multijunction Solar Cells

Grundlagen der LED Technik

ZnO-based Transparent Conductive Oxide Thin Films

Figure 16.31: Two-dimensional representations of (a) a quartz crystal and (b) a quartz glass.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells

Nanotechnology for Next Generation Photovoltaics

High Temperature Oxygen Out-Diffusion from the Interfacial SiOx Bond Layer in Direct Silicon Bonded (DSB) Substrates

Thin film photovoltaics: industrial strategies for increasing the efficiency and reducing costs

Implant Metrology for Bonded SOI Wafers Using a Surface Photo-Voltage Technique

High power mid-wave and long-wave infrared light emitting diodes: device growth and applications

Laser printing and curing/sintering of silver paste lines for solar cell metallization

1. Introduction. What is implantation? Advantages

3. DATES COVERED (From - To) 01/06/10-01/06/12 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

id : class06 passwd: class06

Light-Induced Degradation of Thin Film Silicon Solar Cells

Thin film CdS/CdTe solar cells: Research perspectives

A Comparison Between the Behavior of. Nanorod Array and Planar Cd(Se, Te)

EXCIMER LASER ANNEALING FOR LOW- TEMPERATURE POLYSILICON THIN FILM TRANSISTOR FABRICATION ON PLASTIC SUBSTRATES

Metamorphic InGaAs photo-converters on GaAs substrates

Recap of a-si and a-si cell technology Types of a-si manufacturing systems a-si cell and module manufacturing at Xunlight. Xunlight Corporation

Project III. 4: THIN FILM DEVICES FOR LARGE AREA ELECTRONICS

Solar and Wind Energy

MOVPE growth of GaN and LED on (1 1 1) MgAl

350 C for 8 hours in argon atmosphere. Supplementary Figures. Supplementary Figure 1 High-temperature annealing of BP flakes on SiO 2.

Wafer-to-Wafer Bonding and Packaging

X-ray Photoelectron Spectroscopy

Towards scalable fabrication of high efficiency polymer solar cells

ARTICLE IN PRESS. Solar Energy Materials & Solar Cells

Dye sensitized solar cells

Solar cells conversion efficiency enhancement techniques

Research Article Advances in High-Efficiency III-V Multijunction Solar Cells

Substrate surface effect on the structure of cubic BN thin films from synchrotron-based X-ray diffraction and reflection

Sputtered Zinc Oxide Films for Silicon Thin Film Solar Cells: Material Properties and Surface Texture

Efficiency improvement in solar cells. MSc_TI Winter Term 2015 Klaus Naumann

Thin Film Scattering: Epitaxial Layers

Production of PV cells

III-V heterostructure TFETs integrated on silicon for low-power electronics

Ivan Bazarov Physics Department, Cornell University. Fundamental processes in III-V photocathodes; application for high-brightness photoinjectors

R&D ACTIVITIES AT ASSCP-BHEL,GURGAON IN SOLAR PV. DST-EPSRC Workshop on Solar Energy Research

Basics of Plasmonics

LOT. Contents. Introduction to Thin Film Technology. Chair of Surface and Materials Technology

- DUV-LEDs - Development and Applications

Cathodoluminescence measurements of suboxide band-tail and Si dangling bond states at ultrathin Si SiO 2 interfaces

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation.

Recrystallization in CdTe/CdS

Impurity free vacancy disordering of InGaAs quantum dots

Monolithic Microphotonic Optical Isolator

What if your diffractometer aligned itself?

2Dlayer Product Catalog

Supplementary Figure 1 Scanning electron micrograph (SEM) of a groove-structured silicon substrate. The micropillars are ca. 10 μm wide, 20 μm high

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE Dr. Alan Doolittle

DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS

Solar Cells and Photosensors.

9:00 Intro to pyrite, collaboration Matt Law 9:20 Phase Field Crystal (PFC) modeling John Lowengrub 9:40 CVD thin film growth Nick Berry 9:55 XPS

Surface Preparation and Cleaning Conference April 19-20, 2016, Santa Clara, CA, USA. Nano-Bio Electronic Materials and Processing Lab.

Journal of Crystal Growth

EFFICIENCY IMPROVEMENTS IN GaAs-on-Si SOLAR CELLS

TPV History from 1990 to Present & Future Trends

TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE

Fs- Using Ultrafast Lasers to Add New Functionality to Glass

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 6, December 2013

GaAs nanowires with oxidation-proof arsenic capping for the growth of epitaxial shell

Thin Film Characterizations Using XRD The Cases of VO2 and NbTiN

LIGHTWEIGHT, LIGHT-TRAPPED, THIN GaAs SOLAR CELL FOR SPACECRAFT APPLICATIONS: PROGRESS AND RESULTS UPDATE' ABSTRACT INTRODUCTION

R Sensor resistance (Ω) ρ Specific resistivity of bulk Silicon (Ω cm) d Diameter of measuring point (cm)

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA

Transcription:

Non-Lattice Matched III-V Heterostructures for Ultrahigh Efficiency PV Harry Atwater 1, James Zahler 2, Melissa Griggs 1, Anna F. I. Morral 2, Sean Olson 2, Katsuaki Tanabe 1 1. California Institute of Technology, Pasadena, CA 91125 2. Aonex Corporation, Pasadena, CA 91106 A Path to Ultrahigh Efficiency PV Layer Splitting and Heterogeneous Integration Microconcentrator Arrays

300x 4J III-V Cell Gemstone Cell FP 3J III-V Cell Area Cost-Efficiency Phase Diagram for Photovoltaic Technology Gratzel In/Organic Films c-si Costs are modules per peak W; installed is $5-10/W; $0.35-$1.5/kW-hr

Limits to Efficiency: Spectral Absorption E c Energy Band-to-Band Absorption Hot Carrier Excitation E v Subgap Photon Energy S. M. Sze, Physics of Semiconductor Devices, (Wiley) 1981.

III-V Compound Solar Materials Palette A Four Junction Cell: Energy Gap (ev) 6 AlN 0.2 N 5 P As 4 0.3 GaN Sb 3 0.4 AlP AlAs InN 0.5 2 GaP GaAs AlSb Si 1 InP GaSb 1.0 Ge InSb 2.0 0 InAs 5.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 Lattice constant (A) Wavelength (µm) InP Si Substrate GaInP hν = 1.9eV GaAs hν = 1.42eV InGaAsP hν = 1.05eV InGaAs hν = 0.72eV W m -2 µm -1 1600 1400 1200 1000 800 600 400 200 0-200 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Wavelength (µm)

Detailed Balance Calculations: All photons of energy greater band gap are absorbed to form electron hole pairs. All recombination of carriers occurs radiatively (absorber is a perfect defect-free material). Radiation is non-thermal with a chemical potential equal to the separation of the electron and hole quasi-fermi levels, i.e. the cell operating potential V @. The number of photons absorbed by the cell equals: the number of photons reemitted via radiative recombination plus the number of electron-hole pairs extracted at the cell chemical potential by the contacts. In Layered Multijunction Cells, Solar Irradiance Photo-current: Each above-bandgap photon for subcell under consideration but below the band gap of the subcell above is absorbed to generate an electron-hole pair. Radiative Emission from the subcell above. Radiative recombination in subcell above the subcell under consideration consists entirely of photons in excess of band gap energy of the subcell under consideration. Thus energy that is reemitted into subcell under consideration is perfectly absorbed. @ This is a modification of the original Shockley and Quiesser formulation of the detailed-balance model which has been adopted by recent analyses of proposed photon-conversion next-generation solar cells by Green et al..the basis for using this radiation model is described by Würfel as an extension of Plank s law for non-thermal radiation from a two-level photon gas at a chemical potential,

Detailed Balance Calculations: Optimal Bandgap Sequence Two- and Three- junction multijunction cells in both parallel and series connected geometries at 300 K 100 sun AM1.5 spectrum Two-junction Tandem Parallel Series Maximum Maximum Ga 0.5 In 0.5 P / GaAs / Ge Bandgap (ev) Cell 1 1.60 1.625 --- Cell 2 0.95 0.975 --- Efficiency 0.479 0.476 --- Three-junction Tandem Bandgap (ev) Cell 1 1.82 1.78 1.90 Cell 2 1.14 1.20 1.42 Cell 3 (Ge) 0.67 0.67 0.67 Efficiency 0.540 0.536 0.463

2.5 Effect of Series vs. Parallel Subcell Connection 0.25 0.40 2.0 0.30 0.45 E1 (ev) 2J w/ parallelconnected subcells at 300 K,100 suns 0.20 0.35 0.47 0.46 1.5 0.40 0.48 1.0 (a) 0.30 0.25 0.5 0.20 0.25 0.35 0.30 2.0 0.45 E1 (ev) 2J w/ seriesconnected subcells at 300 K,100 suns 0.40 1.5 0.46 0.20 0.47 1.0 0.15 (Maximum efficiency for single junction cell on thick substrate is marked by the dashed line) 0.5 0.10 0.5 0.05 (b) 1.0 1.5 E2 (ev) 2.0 2.5

2.50 Optimal Bandgap Sequence in Triple Junction Cell 0.51 0.52 0.53 2.25 0.40 0.50 0.45 3J w/ parallelconnected subcells, Ge bottom cell, at 300 K,100 suns; E1 (ev) 2.00 0.54 0.51 1.75 1.50 1.25 (a) 1.00 0.25 0.25 0.35 2.25 0.40 2.00 0.45 0.50 E1 (ev) 3J w/ seriesconnected subcells, Ge bottom cell at 300 K,100 suns 0.30 0.53 1.75 1.50 0.20 1.25 (Maximum efficiency for single junction cell on thick substrate is marked by the 1.00 dashed line) 1.00 (b) 1.25 1.50 1.75 E2 (ev) 2.00 2.25 2.50

Efficiency vs. Bottom Subcell Bandgap Variation in 4 Junction Cell Ge or GaAs bonded to MOCVD InP 1.10 1.08 GaInP 2 hν = 1.9eV GaAs hν = 1.42eV InGaAsP E 3 InGaAs E 4 InP substrate E 3 (ev) 1.06 1.04 1.02 1.00 0.98 0.96 0.94 0.92 0.52 0.54 0.55 0.50 0.45 0.40 0.25 0.35 0.20 0.30 0.90 0.50 0.55 0.60 0.65 0.70 0.75 0.80 E 4 (ev) Iso-effiency plot for the variation of the bottom two subcell bandgaps E 3 and E 4 in a four-junction solar cell operated under 100 sun AM1.5 illumination at 300 K.

Efficiency vs. Bandgap Variation in 4 Junction Cell 0.7 n + GaAs Contact Cap 0.6 η = 0.579 (2.00 ev, 1.49 ev, 1.12 ev, 0.72 ev) n AlGaInP n AlGaInP p AlGaInP Window Emitter Base 0.5 n InGaAsP p InGaAsP p GaAs n Si Tunnel Junction Emitter Base Transferred Layer Bonded Interface Emitter Efficiency 0.4 0.3 E 1 p Si Base 0.2 E 2 p + Si n + Ge p Ge Backside Field Bonded Interface Emitter Base Contact 0.1 E 3 E 4 0.0-0.3-0.2-0.1 0.0 0.1 0.2 0.3 E (ev) Variation of efficiency of optimal 100 sun AM1.5 series-connected four-junction solar cell with changes of each subcell bandgap. Each subcell is varied independently maintaining the other subcells at their optimum bandgap of 2.00, 1.49, 1.12, and 0.72 ev respectively.

Four-junction 40% efficiency solar cell Proposed four-junction solar cell : 40% efficiency Lattice mismatched band gap selection avoids use of InGaAsN Bonding processes enable materials integration: InP to Si epitaxial template for InGaAs / InGaAsP structure Ge or GaAs to InP epitaxial template for GaAs / GaInP 2 potential for >4-junction band gap optimized solar cell Ge or GaAs bonded to MOCVD InP Si Substrate GaInP 2 hν = 1.9eV GaAs hν = 1.42eV InGaAsP hν = 1.05eV InGaAs hν = 0.72eV InP bonded to Si substrate *Sharps, P. et al. 26 th IEEE PVSC (1997).

Lattice-Mismatched Materials Integration via Hydrophobic Wafer Bonding/ Layer Transfer 1. H-implant of donor substrate to desired peak range 3. Room temperature bond initiation ~1MPa H + Donor Substrate Donor Substrate Handle Substrate Clean, hydrophobic surface 2. Hydrophobic surface passivation 4. Wafer bonding and layer splitting: Pressure to accommodate thermomechanical stress Temperature to blister and form covalent bonds O O 3 O 3 CO 2 O CO 2 Pressure, Temperature Micro-crack formation and layer transfer 5. Wafer bonded heterostructure ~1 µm film

Structure and Formation of Hydrophobic Bond Room temperature >400 C >600 C = Ge = Si = H Conceptual approach: room temperature weak van der Waals forces >400 C desorption and diffusion of H Reduction of hydration >600 C formation of covalent bonds Ohmic, metal free contact Source: Weldon et al., J. Vac. Sci. Tech. B 1996, 14(4)

JZ8 Exfoliation: TEM 1x10 17 cm -2, un-annealed 1x10 17 cm -2, 250ºC [100] 300 nm 300 nm 25 nm [100] 25 nm [100] Animate magnified view

Slide 14 JZ8 TEM images of defect microstructure as a function of temperature. Important points: - Dense defect network near peak range - Defects consist of platelet structures and extended defects - Upon annealing cracks begin to form in the peak damage region and travel predominantly along the (100) plane James Zahler, 4/8/2004

JZ9 Experimental procedure: MIT-FTIR MIR prism geometry MIT realized: d/λ = 0.087 0.139 Ge-H modes = 1900 2100 cm -1 Implant depth (range ± straggle) = 460 660 nm Estimated enhancement: Parallel, I/I x = 0.0 0.3 Parallel, I/I y = 1.0 0.0 Perpendicular, I/I z = 115 65 Spectra processed with an un-implanted reference z Detector p-polarized y x s-polarized θ = 45 o

Slide 15 JZ9 Discuss expected enhancement due to MIT measurement. James Zahler, 4/8/2004

JZ11 FTIR: low temperature features Ge-H 2 * Bending mode 765 cm -1 Stretch mode 1774 cm -1 Stretch mode 1989 cm -1 Nielsen et al. Phys. Rev. B 54 (8) 0.16 0.14 0.12 Un-annealed 57 o C 129 o C 170 o C 1763 cm -1 0.14 0.12 0.10 Un-annealed 57 o C 129 o C 170 o C 2050 cm -1 Absorbance 0.10 0.08 0.06 0.04 0.02 Absorbance 0.08 0.06 0.04 0.02 1763 cm -1 1821 cm -1 1845 cm -1 1870 cm -1 1921 cm -1 2009 cm -1 1977 cm -1 0.00 0.00-0.02 700 720 740 760 780 800 Wave Number (cm -1 ) -0.02 1500 1600 1700 1800 1900 2000 2100 2200 Wave Number (cm -1 )

Slide 16 JZ11 Comment on presence of discrete defects observable at low temperatures, in particular H2*. James Zahler, 4/8/2004

FTIR: 5x10 16 cm -2 un-annealed spectra 1.2 P-polarization S-polarization 0.12 1.0 0.10 0.8 0.6 0.4 1870 cm -1 0.2 0.0 0.08 0.06 0.04 0.02 1800 1900 Wave 2000 2100 2200 Absorbance 1923 cm -1 1977 cm -1 2009 cm -1 2048 cm -1 1826 cm -1 1846 cm -1 1923 cm -1 Absorbance 1870 cm -1 1978 cm -1 2008 cm -1 2050 cm -1 0.00 Number (cm -1 ) 1800 1900 2000 2100 2200 Wave Number (cm -1 ) 2050 cm-1 platelet? 500 450 Anneal Temperature ( o C) 400 350 300 250 200 150 100 50 0

FTIR: 5x10 16 cm -2 170 ºC anneal 1.2 P-polarization S-polarization 0.12 1.0 0.10 0.08 0.06 0.04 0.02 0.00 1870 cm 1923 cm -1 2009 cm -1 2049 cm -1 Absorbance 1816 cm -1 1846 cm -1 1870 cm -1 1923 cm -1 1978 cm -1 2008 cm -1 2050 cm -1 0.8 0.6 0.4 0.2 0.0 1800 1900 2000 2100 2200 ve Number (cm -1 ) 1800 1900 2000 2100 2200 Wave Number (cm -1 ) 500 450 Anneal Temperature ( o C) Wa 400 350 300 250 200 150 100 50 0 Absorbance -1

FTIR: 5x10 16 cm -2 221 ºC anneal 1.2 P-polarization S-polarization 2050 cm -1 0.12 1.0 0.10 0.8 0.08 2008 cm -1 0.06 0.04 1870 cm -1 1846 cm -1 1913 cm -1 Absorbance 0.6 0.4 0.2 0.0 0.02 0.00 1800 1900 2000 2100 2200 Wave Number (cm -1 ) 1800 1900 2000 2100 2200 Wave Number (cm -1 ) Absorbance 1845 cm -1 1923 cm -1 2009 cm -1 2049 cm -1 Cartoons? 500 450 Anneal Temperature ( o C) 400 350 300 250 200 150 100 50 0

FTIR: 5x10 16 cm -2 297 ºC anneal Absorbance 1.2 1.0 0.8 0.6 0.4 0.2 0.0 1845 cm -1 P-polarization 2026 cm -1 1800 1900 2000 2100 2200 Wave Number (cm -1 ) Absorbance 0.12 0.10 0.08 0.06 0.04 0.02 0.00 1969 cm -1 2008 cm -1 2031 cm -1 2050 cm -1 1800 1900 2000 2100 2200 Wave Number (cm -1 ) S-polarization 2031 interacting (100) monohydride 2050 consumed platelets in the formation of monohydride 500 450 400 350 300 250 200 150 100 50 0 Anneal Temperature ( o C)

FTIR: 5x10 16 cm -2 339 ºC anneal Absorbance 1.2 1.0 0.8 0.6 0.4 0.2 0.0 1845 cm -1 1971 cm -1 2015 cm -1 P-polarization S-polarization 1800 1900 2000 2100 2200 Wave Number (cm -1 ) Absorbance 0.12 0.10 0.08 0.06 0.04 0.02 0.00 1969 cm -1 2008 cm -1 2029 cm -1 1800 1900 2000 2100 2200 Wave Number (cm -1 ) 2008 cm-1 possibly (111) platelets or interacting defects 500 450 400 350 300 250 200 150 100 50 0 Anneal Temperature ( o C)

FTIR: 5x10 16 cm -2 399 ºC anneal 1.2 P-polarization S-polarization 500 Absorbance 1.0 0.8 0.6 0.4 0.2 0.0 1845 cm -1 2008 cm -1 1800 1900 2000 2100 2200 Wave Number (cm -1 ) Absorbance 0.12 0.10 0.08 0.06 0.04 0.02 0.00 1846 cm -1 1969 cm -1 2001 cm -1 2025 cm -1 1800 1900 2000 2100 2200 Wave Number (cm -1 ) 450 400 350 300 250 200 150 100 50 0 Anneal Temperature ( o C)

FTIR: 5x10 16 cm -2 501 ºC anneal Absorbance 1.2 1.0 0.8 0.6 0.4 0.2 0.0 P-polarization 1955 cm -1 1986 cm -1 2001 cm -1 1800 1900 2000 2100 2200 Wave Number (cm -1 ) Absorbance 0.12 0.10 0.08 0.06 0.04 0.02 0.00 1958 cm -1 1990 cm -1 1800 1900 2000 2100 2200 Wave Number (cm -1 ) S-polarization Ge-H physical mechanism understood: *Platelet nucleation Separation of interacting Ge(100) monohydride surfaces Coalescing of H 2 in defects Pressure induced crack opening (100) free surfaces 500 450 400 350 300 250 200 150 100 50 0 Anneal Temperature ( o C)

Layer Transfer of Ge on Si (IR transmission image) Conditions: Low power fast O2 +N2 plasma, 900mbar pressure Long pre-anneal, graphite sheet on top

Split Ge interface and surface morphology 1.0 1500 1440 1380 1320 1260 1200 1140 1080 1020 960.0 900.0 840.0 780.0 720.0 660.0 600.0 540.0 480.0 420.0 360.0 300.0 240.0 180.0 120.0 60.00 0-60.00-120.0-180.0-240.0-300.0-360.0-420.0-480.0-540.0-600.0-660.0-720.0-780.0-840.0-900.0-960.0-1020 -1080-1140 -1200-1260 -1320-1380 -1440-1500 1500 0.6 0.4 0.2 0.0 0.0-1500 0.2 0.4 0.6 x-axis (µ m) 0.8 1.0 5 2000 1920 1840 1760 1680 1600 1520 1440 1360 1280 1200 1120 1040 960.0 880.0 800.0 720.0 640.0 560.0 480.0 400.0 320.0 240.0 160.0 80.00 0-80.00-160.0-240.0-320.0-400.0-480.0-560.0-640.0-720.0-800.0-880.0-960.0-1040 -1120-1200 -1280-1360 -1440-1520 -1600-1680 -1760-1840 -1920-2000 2000 3 2 1 z-axis (Å) y-axis (µm) 4 0 z-axis (Å) y-axis (µm) 0.8 80 kev H+ 1x1017 cm-2; 250oC, 10 min -2000 0 1 2 3 x-axis (µm) 4 5 25 nm 80 kev H+ 1x1017 cm-2; >300oC rough surface 10-20 nm rms highly defective near surface region

2 Wafer Transfer of InP on Si IR transmission image Conditions: O 2 plasma, 900mbar pressure

Wafer bonding results: InP/Si Optical micrograph Si InP 25 µm Chemical Etching of Damaged Layer In HCl:H 3 PO 4 :H 2 O 2 ; 1:2:4 AFM: rms roughness = 0.9 nm

Hydrophobic Bonding Ohmic Contact Current [A cm -2 ] 0.04 0.00-0.04 p + -Ge/p + -Si p + -Ge/n + -Si Slope = 1 / R Al contacts Ge wafer Si substrate -0.1 0.0 0.1 Voltage [V] Degenerately doped p + -Ge/p + -Si and p annealed to 400 C Contact resistances of <0.1 Ω cm in p + Ge/ p + Si tunnel junction in p + Ge/ p + Si -2 + -Ge/n + -Si wafer bonded structures No twist angle dependence for degenerately doped substrates

MOCVD: three-junction solar cell on Ge/Si Sample Pre-MOCVD Ge roughness (Å) Post-MOCVD Ge roughness (Å) Bulk Ge <5 147 Ge/Si-1 236 897 Ge/Si-2 225 204 rough III-V interfaces Ge/Si-1 Si Substrate 6 µm GaAs Cap (1.4µm) Active InGaP (0.7µm) Active GaAs (3.0µm) GaAs Buffer (1.5µm) Transferred Ge (~0.7µm) Bulk Ge Ge Substrate 5 µm

MOCVD results: GaAs cap photoluminescence PL Intensity [a.u.] 1.2x10 5 1.0x10 5 8.0x10 4 6.0x10 4 4.0x10 4 2.0x10 4 0.0 Bulk Ge Ge/Si-2 Ge/Si-1 τ Ge Bulk = 0.23 ns τ Sample 2 = 0.20 ns 500 600 700 800 900 1000 Wavelength [nm] Strong GaAs band edge emission at ~880 nm PL Intensity ~ (surface roughness) -1 GaAs Cap GaInP GaAs Base Region λ = 458nm

Epitaxial growth on InP/Si templates 2x10 5 cladding layers transferred substrate InGaAsP InGaAs InGaAsP InP Si PL Intensity (a.u.) 1x10 5 0 1250 1500 1750 2000 Wavelength (nm) Bulk InP (25 mw) InP/Si x 43.5 (75 mw)

Thin Film Microcell with Microconcentrator LED-like Technology for Photovoltaics: Composite Fresnel/SIL Optics for Concentration (cm 2 ) PDMS (RTV Silicone) Microlense Array, 30-100 Suns, ( few cm 2 ) High Efficiency 4 J MicroCells (2-5 mm x 2-5 mm)

Fabrication of Fresnel Lenses From an existing glass fresnel lens make a mold of the lens pour PDMS into petri dish degas and cure lay glass lens onto PDMS until it sticks cover the lens completely with an excess of PDMS degas and cure peel the layers apart real and imaginary images

Thin Film Microcell Microconcentrator UHE PV Arrays 3J or 4J Tandem MicroCells (2-5 mm x 2-5 mm) PDMS Microlense Array, 30-50 Suns PC Board Like-Substrate; Cells Surface Mounted

Summary Multijunction Absorbers Essential for Ultrahigh Efficiency Lattice-mismatched III-V Semiconductors Enable Very Flexible Absorber Design Wafer Bonding and Layer Transfer: New Design Freedoms for High Efficiency PV Detailed Balance Calculations can be used as Materials Selection/Interconnection Guide Microconcentrators: LED-like Technology for Low-Cost Multijunction III-V Terrestrial PV