Failure Analysis: The Right Way

Similar documents
R Sensor resistance (Ω) ρ Specific resistivity of bulk Silicon (Ω cm) d Diameter of measuring point (cm)

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals

Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities)

Radiation Defects and Thermal Donors Introduced in Silicon by Hydrogen and Helium Implantation and Subsequent Annealing

Defects and Diffusion

Implant Metrology for Bonded SOI Wafers Using a Surface Photo-Voltage Technique

Fabrication Technology

Citation for the original published paper (version of record):

Formation, evolution, and annihilation of interstitial clusters in ion-implanted Si

Project III. 4: THIN FILM DEVICES FOR LARGE AREA ELECTRONICS

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity?

Transmission Mode Photocathodes Covering the Spectral Range

TOPIC 2. STRUCTURE OF MATERIALS III

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity?

Point Defects. Vacancies are the most important form. Vacancies Self-interstitials

Fe doped Magnetic Nanodiamonds made by Ion

National Semiconductor LM2672 Simple Switcher Voltage Regulator

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

1. Introduction. What is implantation? Advantages

Long-term reliability of SiC devices. Power and Hybrid

Performance and Radiation Resistance of Quantum Dot Multi-Junction Solar Cells

The Nernst-Einstein equation indicates that the ratio β /D for a given material varies only with temperature. Calculate β/d for oxygen ions in Zr 0.

2007 Elsevier Science. Reprinted with permission from Elsevier.

Radiation Tolerant Isolation Technology

LANDOLT-BÖRNSTEIN. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. Neue Serie. Gesamtherausgabe: K.-H. Hellwege O.

Electrical Properties of Ultra Shallow p Junction on n type Si Wafer Using Decaborane Ion Implantation

Doping and Silicon Reference: Chapter 4 Jaeger or Chapter 3 Ruska

CdTe and CdZnTe Crystal Growth and Production of Gamma Radiation Detectors

N-PERT BACK JUNCTION SOLAR CELLS: AN OPTION FOR THE NEXT INDUSTRIAL TECHNOLOGY GENERATION?

Definition and description of different diffusion terms

IMP EPD End Point Detector

Section 4: Thermal Oxidation. Jaeger Chapter 3. EE143 - Ali Javey

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST

Newsletter. Test Services & Failure Analysis Laboratory. April The Reality of Flip-Chip Solder Bump Electromigration Failure INSIDE THIS ISSUE

PHOTOVOLTAIC SOLAR ENERGY POLYCRYSTALLINE MODULES - SI-ESF-M-P156-60

Kinetics. Rate of change in response to thermodynamic forces

Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons.

Chapter 1.6. Polished Single-Crystal Silicon, Prime Wafers (all numbers nominal) Wafer Specification Table. Diameter 100 mm 4-inch 150 mm 6-inch

2006 UPDATE METROLOGY

Alloys and Solid Solutions

Deformation Twinning in Bulk Aluminum with Coarse Grains

Dallas Semicoductor DS80C320 Microcontroller

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( =

Increased Efficiency and Improved Reliability in ORing functions using Trench Schottky Technology

Solar Energy Research Institute of Singapore (SERIS), National University of Singapore (NUS), Singapore

Ph.D. Admission 20XX-XX Semester X

Ferroelectric Oxide Single-Crystalline Layers by Wafer Bonding and Hydrogen/Helium Implantation

Isolation Technology. Dr. Lynn Fuller

ELECTRICAL RESISTIVITY AS A FUNCTION OF TEMPERATURE

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film

Silicon Oxides: SiO 2

2. High Efficiency Crystalline Si Solar Cells

Measurement data at orders of magnitude lower cost than other techniques BENEFITS Simple UVC source ideal for compact sensors

Challenges of Silicon Carbide MOS Devices

Metallization. Typical current density ~10 5 A/cm 2 Wires introduce parasitic resistance and capacitance

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Fabrication, Electrical Characterization, and Annealing of Al/, Cu/, and Au/4H-SiC Schottky Diodes

COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING

PHOTOVOLTAIC SOLAR ENERGY POLYCRYSTALLINE MODULES - SI-ESF-M-BIPV-SM-P125-36

Photovoltaics under concentrated sunlight

Semiconductor Technology

COMPUTER SIMULATION AND EXPERIMENTAL RESEARCH OF CAST PISTON POROSITY

Quality and Reliability Report

Fast recovery Radiation Enhanced Diffusion (RED) Diode:

Silver and Sulfur: Case Studies, Physics, and Possible Solutions. C. Hillman, S. Binfield, J. Seppi, and J. Arnold DfR Solutions April 15, 2009

State of the art quality of a GeOx interfacial passivation layer formed on Ge(001)

Boron Diffusion and Silicon Self-Interstitial Recycling between SiGeC layers

a) The self-diffusion coefficient of a metal with cubic structure can be expressed as

Features. Benefits. Min Typical Max Min Max. OPTAN-250H-BL 245 nm 250 nm 255 nm 0.5 mw 1.0 mw. OPTAN-255H-BL 250 nm 255 nm 260 nm 0.5 mw 1.

Module-6. Dislocations and Strengthening Mechanisms

Formation and Annihilation of Hydrogen-Related Donor States in Proton-Implanted and Subsequently Plasma-Hydrogenated N-Type Float-Zone Silicon

Effect of Growth Process on Polycrystalline Silicon Solar Cells Efficiency.

C h a p t e r 4 : D e f e c t s i n C r y s t a l s

Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained by Crystallization of Cast Amorphous Phase

Section 4: Thermal Oxidation. Jaeger Chapter 3

Schottky-Barrier-Height Modulation of Ni Silicide/Si Contacts by Insertion of Thin Er or Pt Layers

Experiment E: Martensitic Transformations

High-efficiency GaN-based light-emitting diodes fabricated with identical Ag contact formed on both n- and p-layers

Doris Ehrt and Doris Möncke. Friedrich Schiller University of Jena, Otto-Schott-Institut, Fraunhoferstr. 6, D Jena, Germany,

Reflow Profiling: Time a bove Liquidus

9. Welding Defects 109

BONDING OF MULTIPLE WAFERS FOR HIGH THROUGHPUT LED PRODUCTION. S. Sood and A. Wong

Quality and Reliability Report

Study of a Thermal Annealing Approach for Very High Total Dose Environments

Rockwell R RF to IF Down Converter

BAR STRAIN GAGE DATA SEMICONDUCTOR BAR STRAIN GAGES DATA SHEET

Heatsink Optimization Nathan Blattau

Unit 1 The Solid State

Fabrication of Ti-Ni-Zr Shape Memory Alloy by P/M Process

GRAPHIC MANUFACTURING CAPABILITY Q217-18

V I S H AY I N T E R T E C H N O L O G Y, I N C. Vishay Electro-Films. w w w. v i s h a y. c o m

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process

J = D C A C B x A x B + D C A C. = x A kg /m 2

KGC SCIENTIFIC Making of a Chip

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation.

HBLED packaging is becoming one of the new, high

Available online at ScienceDirect. Energy Procedia 55 (2014 )

Objective To study the time and temperature variations in the hardness of Al-4% Cu alloy on isothermal aging.

Metallization. Typical current density ~105 A/cm2 Wires introduce parasitic resistance and capacitance

Ivan Bazarov Physics Department, Cornell University. Fundamental processes in III-V photocathodes; application for high-brightness photoinjectors

Transcription:

i Failure Analysis: The Right Way Counterfeit Diode Investigation DfR Staff i

Introduction 1 A DfR customer received diodes through broker distribution channels that had shown a very high failure rate during in-process testing. Testing of as received diodes showed a significant portion of the diodes did not meet their data sheet reverse breakdown voltage and reverse current specifications. Failure analysis on sample diodes that did not meet their electrical characteristics indicated high current stress damage. In-house diodes were screened electrically for reverse breakdown voltage/leakage current. A sample of 24 diodes that passed this screening was subjected to a Steady State Operation Life test in accordance with MIL-PRF-19500/477G, Para. 4.4.3.1 and Mil Std 750 Method 1026. The sample of 24 diodes was initially checked for electrical performance per group A (reverse breakdown voltage, reverse current, forward voltage drop at 4A pulse and forward voltage drop at 6A pulse). All diodes passed. At 250 hours into the 1000 hour steady state life test the test articles were subject to an interim group A electrical test. At that point diode D21 was reported as failed. Experimental Procedure The failed diode was subjected to the following analyses: X-ray Imaging Electrical Characterization Decapsulation, Cross-Sectioning with Optical Microscopy was performed to inspect the die for damages X-ray imaging Initial examination of D21 was performed through X-ray. The X-ray images were taken at three different magnifications and at different X-ray energies, allowing the viewing of the molding compound, the insulation and the die as well. No definitive anomalies were identified. Example images are shown below. 11 For the purposes of clarity and confidentiality, this report has been abbreviated

Electrical Characterization Figure 1 shows the small signal current voltage characteristic of diode D21. At -3V bias, the reverse current is approximately -20mA. The diode is shorted exhibiting a resistance of 150 Ohms. Figure 1: I-V characteristic of diode D21

Cross-sectioning Diode D21 was cross-sectioned for further investigation of the die. Shown below is the picture of the die sandwiched between the leads. The dark line inside the die was identified as a metallic layer with a definitive variation in thickness. Two subsequent picture series show the die area from top to bottom (next page, left image) and the active region of the die (next page, right image).

Failure Site DFR Solutions performed sequential cross sectioning on D21 with curve tracing performed in between grinding/polishing steps. Cross sectioning proceeded to the center of the diode without any change in the curve trace signature. Just beyond the center of the diode the curve trace showed that the fault was no longer present (see Figure 2). A finer polish was performed to see if any artifacts of the fault remained. A crack in the bulk silicon is visible (Figure 3). The loss of the failure signature by grinding a small distance further into the diode suggests a highly localized failure site of the short. Figure 2: Curve trace of diode D21; left, before grinding past failure site; right, after Figure 3: Failed Diode D21 after grinding past the main short

Current (A) The diode with approximately half of the area still present still exhibited a high reverse leakage current of -370μA at -160V (see Figure 4). This indicates the presence of a distribution of failure sites across the die, of which one failed catastrophically. 0.00E+00 Reverse Bias Diode D21 after grinding past the main failure site -5.00E-05-1.00E-04-1.50E-04-2.00E-04-2.50E-04-3.00E-04-3.50E-04 Diode D21-4.00E-04-4.50E-04-5.00E-04-180 -160-140 -120-100 -80-60 -40-20 0 Voltage (V) Figure 4: Measurements of reverse leakage current after grinding past failure site Electron Microscopy Energy dispersive spectroscopy (EDS) performed during examination by electron microscopy identified silver as the primary element in the metallic layer. A small amount of gold was also identified. As can be seen in the figure to the right, gold energy transition peaks at 2.120 kev (Au Mα) and at 9.710 kev (Au Lα 1 ) are evident in Spectrum 3 and Spectrum 2. The image resolution of Spectrum 1 is unfortunately insufficient to clearly prove the presence of gold in the silicon, but the Au Mα peak seems to be present. Gold is known to be used as a dopant in fast-recovery diodes. While contamination of silver does not necessarily lead to a strong degradation of the diode properties, contamination with gold is known to degrade the junction performance severely..

Diffusivity (cm 2 /sec) Metal contamination Metal contamination of silicon can occur throughout the fabrication process. Impurities can be introduced by contaminated wafer handling, improper surface or etching treatments, by the presence of a contaminated gas atmosphere during high temperature treatments, or by inappropriate post-processing of metallized devices. The influence of these contaminants will depend on the type of contaminant, its concentration, and the environmental parameters, time and temperature, the silicon device experiences after exposure to the contaminant. Silicon p-n diodes are the oldest and one of the most common of all semiconductor devices. A p-n diode is created by doping silicon wafers with Group III elements (such as boron) to create p-type layers and Group V elements (such as phosphorous) to create n-type layers. Silicon power diodes are also more susceptible because their manufacture requires higher temperatures and longer diffusion times compared to standard semiconductor technology. Additional steps after wafer production, such as welding and glass sealing, can also involve temperatures high enough to induce the diffusion of excessive amounts of impurities. Crystallographic defects present in the silicon, such as vacancies, dislocations, and stacking faults, can have a large effect on the solubility and diffusivity of transition metal impurities. As a result, the solubilities and diffusivities provided in Figure 5 and Figure 6 are based upon research-level purity silicon wafers and are not necessarily appropriate for silicon wafers with different defect characteristics. Taking the bulk diffusivity values in Figure 5 and assuming Fickian behavior, it can be seen that the present interface metals silver and gold will all easily diffuse to the junction of the silicon die over the time and temperatures used during the bonding and glass sealing processes 1.E-04 1.E-05 1.E-06 Cu Au i Ni Fe Ag i 1.E-07 1.E-08 Ti 1.E-09 1.E-10 Au s 1.E-11 1.E-12 600 700 800 900 1000 1100 1200 Temperature ( o C) Figure 5: The diffusivity of transition metals in silicon. Au i is the interstitial diffusivity of gold in silicon; Au s is the substitutional diffusivity of gold in silicon; Ag i is the interstitial diffusivity of silver in silicon 2. 2 Klaus Graff, Metal Impurities in Silicon-Device Fabrication, Springer-Verlag, Berlin (1995)

Solubility (cm -3 ) 1E+18 1E+17 Cu Ni Au s 1E+16 1E+15 Ag i 1E+14 1E+13 Au i Fe Ti 1E+12 1E+11 600 700 800 900 1000 1100 1200 Temperature ( o C) Figure 6: Solubility of transition metals in silicon. Au i is the interstitial solubility of gold in silicon; Au s is the substitutional solubility of gold in silicon; Ag i is the interstitial solubility of silver in silicon 2. Because the solubility has a steep temperature dependence, upon cooling from high temperatures the transition metal atoms will tend to exceed their saturation limit in silicon. In response to the changing equilibrium condition and the increasing driving force to nucleate, the impurity atoms can exhibit four different behaviors: The impurity atoms will diffuse to the surface of diode (outdiffusion) and form precipitates at the surface. This process requires a high diffusion rate, such as found in nickel and copper (see Figure 5). The impurity atoms will precipitate within the bulk of silicon. For homogeneous nucleation, a high diffusion rate and high solubility are necessary. For heterogeneous nucleation, a high diffusion rate and the presence of crystallographic defects are required. The impurity atom remains dissolved within the bulk of the silicon. This process requires low diffusion rates coupled with high cooling rates. Dissolved impurities are electrically active and form deep energy levels within the silicon band gap. The impurity atoms form complexes with other impurities present in the silicon. These complexes are unstable and will result in changes in the electrical behavior with variations in the external stimuli, i.e., temperature, current, etc.

The following paragraphs will review the influence of silver, and gold on the electrical properties of p-n diodes. Silver Silver is also a fast diffuser in silicon (see Figure 5). Silver acts as a singly ionizable donor in p- and n-type silicon. In p-type silicon, the donor level is 0.26eV above the valence band; in n-type silicon, the acceptor level is 0.29eV below the conduction band. Previous work has found that at room temperature. Because the capture cross-section at room temperature for silver atoms is low [2], carrier mobilities and carrier lifetimes in silicon diodes are relatively unaffected by the introduction of large concentrations of silver. Gold Because gold acts as a strong recombination center in silicon, it has been widely used as a dopant to control minority carrier lifetime and improve the speed of semiconductor devices. However, the unintended doping of silicon with gold can lead to the degradation of important electrical properties. Tolerable gold impurity content during wafer production is often much less than 10 12 cm -3, which necessitates the use of Deep Level Transient Spectroscopy (DLTS) for impurity detection. Concerns about gold impurity have led to stricter quality control during wafer processing and replacement of gold as a rear contact material. These steps have led to a reduction in the frequency of excessive gold contamination. The contamination of silicon with gold is easily performed by the mechanical contact of gold with silicon because gold rapidly migrates into silicon, even at low temperatures (< 800 C). As an example, Mielke 3 and Makhkamov 4 measured a three orders of magnitude increase in the gold concentration in silicon, from 10 10 cm -3 to approximately 10 13 cm -3, after a heat treatment of 800 C for one hour. This high diffusion rate is in part due to the formation of a gold-silicon eutectic at 370 C. With increasing temperatures, this liquid phase acts as a rapid diffusion source. Gold diffusion in silicon occurs by an interstitial-substitutional process. The diffusivity of interstitial gold is very high while the solubility is low. The reverse is true for substitutional gold, which has a low diffusivity and a high solubility 5. The net result is that the diffusive flux is carried almost entirely by interstitial diffusion. The interstitials can then combine with vacancies in the silicon lattice to form substitutional defects. These substitutional gold defects are electrically active and will tend to have the greatest effect on the electrical properties of the p-n diode. [2] Two orders of magnitude lower than gold. 3 W. Mielke, "Penentration of Gold and Platinum Through Phosphorous-Doped N+ Layers in Silicon," Journal of the Electrochemical Society, vol. 122, no. 7, pp. 965-969 (1975) 4 S. Makhkamov, N.A. Tursunov, M. Mamanova, and M. Ashurov, "The Effect of a New Gold Center on the Characteristics of Silicon Diodes," Soviet Tech. Phys. Letters, vol. 17, no. 12, pp. 887-889 (1991) 5 Substitutional gold diffusion and solubility is strongly dependent upon crystal perfection and the presence other defects. As a result, diffusivity and solubility measurements for homogeneous silicon cannot be applied indiscriminately to silicon with other defect characteristics or to all regions of a particular device.

Gold tends to have a greater influence on junction behavior than other transition metals, because the position of acceptor energy level for substitutional gold in n-type silicon, -0.54eV below the conduction band edge or in the middle of the band gap, makes gold a very effective recombination center. In addition, since gold introduces both a deep donor and acceptor in silicon, it decreases the net carrier concentration in both p-type and n-type material. Gold can also combine with iron impurities already present in the silicon crystal to create irongold complexes. These iron-gold complexes form between 200-300 C and can result in a reduction in the carrier lifetime by a factor of five in comparison to substitutional gold of equal concentration. It is therefore important to avoid the formation of iron-gold pairs. This requires avoiding gold contamination, since iron is almost always present in silicon wafers, at least in low concentrations. A summary of previous work on the effect of gold on the electrical properties of silicon diodes is provided below: Resisitivity Gold increases the resistivity of silicon diodes by decreasing the net carrier concentration 6. Reverse Leakage Current The leakage current in gold doped silicon can be estimated from I = qwante t p, where q is the electronic charge, W is the depletion width, A is the area of the diode, Nt is the gold concentration, and e t p is the thermal emission rate of holes from neutral acceptors 7,8 (see Figure 7). The reverse current at 1000V at 180 C was found to increase from 4 ma to 130 ma after diffusing gold into silicon at 865 C. Diffusion time and gold concentration were not provided 9. Due to increases in the leakage current with increasing temperature, for a gold dopant level of 2x10 14 cm -3, silicon p + -n diodes will become unstable at 150 C 8. 6 E.D. Wolley and R. Stickler, "Formation of Precipitates in Gold Diffused Silicon," Journal of Electrochemical Society, vol. 114, no. 12, pp. 1287-92 (1967) 7 W.M. Bullis, "Properties of Gold in Silicon," Solid-State Electronics, vol. 9, pp. 143-168 (1966). 8 M.D. Miller, "Differences Between Platinum- and Gold-Doped Silicon Power Devices," IEEE Trans. Electron Devices, vol. ED-23, no. 12, p. 1279-83, (1976) 9 B.J. Baliga and E. Sun, "Comparison of Gold, Platinum, and Electron Irradiation for Controlling Lifetime in Power Rectifiers," IEEE Trans. Electron Devices, vol. ED-24, no. 6, p. 685-8, (1977)

Reverse Current (Amps) 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 0 25 50 75 100 125 150 175 Temperature ( o C) Applied Voltage: 800V Gold Concentration: 2x10 14 cm -3 Area of the Diode: 0.032 cm 2 Depletion Width: 100 m Figure 7: The predicted leakage current for gold doped silicon p+-n diode as a function of junction temperature 8 Breakdown Voltage The addition of gold for a p + -n junction results in a reduction in the electric field. For breakdown to occur, the electric field must reach a critical value. Therefore, the breakdown voltage of p + -n silicon diodes will increase with gold doping 10 (see Figure 8). The breakdown voltage of golddoped p + -n silicon diodes changes with frequency 11. There is a sharp decrease in the breakdown voltage in n + -p silicon diodes for gold diffusion temperatures greater than 800 C 12 (see Figure 9). The gold doping of silicon decreases the low-current (20 μa) breakdown voltage in n + -p diodes. Can also cause localized avalanche breakdowns, resulting in I-V curves with double break characteristics 13. 10 D.K. Schroder, "Impedance and Other Properties of Gold Doped Silicon P-N Junctions," Thesis. University of Illinois. (1968) 11 K. Kijima, H. Gamo, and S. Ohsaki, "Frequency Dependence of the Breakdown Voltage of Gold-Doped Si P+N junctions," Electrochemical Society Fall Meeting - Battery Division, New York, NY, p. 470-1, (1974) 12 T. Ogawa, "Influence of Metal Impurities on Breakdown Characteristics of High Voltage Silicon n+p Junctions," Japanese Journal of Applied Physics, vol. 5, no. 2, pp. 145-152 (1966) 13 J.M Fairfield and B.V. Gokhale, "Control of Diffused Diode Recovery Time Through Gold Doping," Solid-State Electronics, vol. 9, pp. 905-07, (1966)

Breakdown Voltage (V) Reverse Leakage Current (Amps) Breakdown Voltage (V) 300 250 p + -n silicon mesa diode 200 150 n + -p silicon mesa diode 100 50 0 750 800 850 900 950 1000 1050 Diffusion Temperature ( o C) Figure 8: Change in breakdown voltage as a function of gold diffusion temperature 10. Device characteristics: Junction area was 4.5x10-3 cm2; junction depth was approximately 2.5 microns; diffusion time was 48 hours. Over the diffusion temperatures selected, 800-1000 C, gold concentration ranged from 1x10 14 to 1x10 16 cm -3. 1200 1.E+00 1000 Breakdown Voltage 1.E-01 800 1.E-02 600 1.E-03 400 1.E-04 200 1.E-05 0 Reverse Current 600 700 800 900 1000 1100 1200 Diffusion Temperature ( o C) 1.E-06 Figure 9: Change in breakdown voltage and leakage current as a function of diffusion temperature in gold-doped n + -p silicon diodes. Breakdown voltage was defined as a reverse current of 3 µa for samples with sharp I-V characteristics and 1mA for devices with soft I-V characteristics (>800 C). Reverse current was measured at 900V. Diffusion time was 1 hour.

Forward Current Forward current is also dependent upon gold concentration. The dependency is linear or square root depending if low current or high current densities 7. Junction Capacitance The transition capacitance of silicon p-n diodes is frequency independent. When gold is added, the junction capacitance of gold-doped p + -n diodes becomes frequency dependent 14 and varies with gold concentration 10. 14 C.T. Sah and V.G. Reddi, Transactions of the Institute of Electrical and Electronic Engineers, vol. ED-11, pp. 345 (1964)

Summary Cross-sectioning of the diode showed the failure sites being distributed across the die, with a catastrophic failure (150Ω) occurring very localized at one of those sites. A review of the EDS data shows the presence of silver and gold close to the diode region. The silver is present in the die attach between the two dies, which is expected as silver is a common conductor in commercial die attach material. Since gold is frequently used as a dopant for fast recovery diodes, it is not clear whether the gold is present as part of the silver attach or as a dopant. Gold is known to diffuse easily into the p-n region of a diode. The effects of gold contamination are among others reduction in reverse breakdown voltage and increased reverse leakage current, as well as increase in forward bias resistivity. Given the evidence of multiple failure sites, the presence of gold is the likely root-cause of diode failure and its presence in the critical regions of the die should be confirmed through the use of secondary ion mass spectroscopy (SIMS)

Disclaimer DfR represents that a reasonable effort has been made to ensure the accuracy and reliability of the information within this report. However, DfR Solutions makes no warranty, both express and implied, concerning the content of this report, including, but not limited to the existence of any latent or patent defects, merchantability, and/or fitness for a particular use. DfR will not be liable for loss of use, revenue, profit, or any special, incidental, or consequential damages arising out of, connected with, or resulting from, the information presented within this report. Confidentiality The information contained in this document is considered to be proprietary to DfR Solutions and the appropriate recipient. Dissemination of this information, in whole or in part, without the prior written authorization of DfR Solutions, is strictly prohibited.