Population Genetics in the Genomic Era

Similar documents
Human linkage analysis. fundamental concepts

An introduction to genetics and molecular biology

Population and Community Dynamics. The Hardy-Weinberg Principle

Mendel & Inheritance. SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance.

CS273B: Deep Learning in Genomics and Biomedicine. Recitation 1 30/9/2016

Answers to additional linkage problems.

Genetic Variation and Genome- Wide Association Studies. Keyan Salari, MD/PhD Candidate Department of Genetics

Chp 10 Patterns of Inheritance

Linkage & Genetic Mapping in Eukaryotes. Ch. 6

Review. 0 Genotype: alleles that are present 0 Phenotype: physical appearance. 0 If Red is dominant to white, what is the phenotype of the above?

Genome-wide association studies (GWAS) Part 1

Computational Workflows for Genome-Wide Association Study: I

How about the genes? Biology or Genes? DNA Structure. DNA Structure DNA. Proteins. Life functions are regulated by proteins:

Genetic variation, genetic drift (summary of topics)

Conifer Translational Genomics Network Coordinated Agricultural Project

Name Date Class. In the space at the left, write the letter of the term or phrase that best completes each statement or answers each question.

Basic Concepts of Human Genetics

The Making of the Fittest: Natural Selection in Humans

Non Mendelian Genetics

Human Genome Most human cells contain 46 chromosomes: Statistical Human Genetics Linkage and Association Haplotyping algorithms.

can be found from OMIM (Online Mendelian Inheritance in Man),

Gen e e n t e i t c c V a V ri r abi b li l ty Biolo l gy g Lec e tur u e e 9 : 9 Gen e et e ic I n I her e itan a ce

4.1. Genetics as a Tool in Anthropology

Introduction. Thomas Hunt Morgan. Chromosomes and Inheritance. Drosophila melanogaster

Biology 40S: Course Outline Monday-Friday Slot 1, 8:45 AM 9:45 AM Room 311 Teacher: John Howden Phone:

AP BIOLOGY Population Genetics and Evolution Lab

The Evolution of Populations

Genotype AA Aa aa Total N ind We assume that the order of alleles in Aa does not play a role. The genotypic frequencies follow as

Exam 1 Answers Biology 210 Sept. 20, 2006

Basic Concepts of Human Genetics

REVIEW 5: EVOLUTION UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

Human disease genes summary. Some examples of single-gene diseases

POPULATION GENETICS: The study of the rules governing the maintenance and transmission of genetic variation in natural populations.

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017

Genome-Wide Association Studies (GWAS): Computational Them

An introductory overview of the current state of statistical genetics

Population Genetics (Learning Objectives)

LINKAGE AND CHROMOSOME MAPPING IN EUKARYOTES

Genomic Selection Using Low-Density Marker Panels

Principles of Population Genetics

Linkage Disequilibrium. Adele Crane & Angela Taravella

Observing Patterns In Inherited Traits

Figure 1: Testing the CIT: T.H. Morgan s Fruit Fly Mating Experiments

Table of Contents. Chapter: Heredity. Section 1: Genetics. Section 2: Genetics Since Mendel. Section 3: Biotechnology

POPULATION GENETICS. Evolution Lectures 4

Inheritance Biology. Unit Map. Unit

DESIGNS FOR QTL DETECTION IN LIVESTOCK AND THEIR IMPLICATIONS FOR MAS

Genotypes, Phenotypes and Hardy Weinberg Equilibrium. Biostatistics 666 Lecture II

Chapter 14: Mendel and the Gene Idea

Concepts: What are RFLPs and how do they act like genetic marker loci?

Exploring Mendelian Genetics

Age-Adjusted Death Rates for Coronary Heart Disease, U.S.,

Bio 311 Learning Objectives

Summary Genes and Variation Evolution as Genetic Change. Name Class Date

By the end of this lecture you should be able to explain: Some of the principles underlying the statistical analysis of QTLs

DO NOT OPEN UNTIL TOLD TO START

& Practice

GENETICS. I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide chains wrap around each other to form a

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight?

Review. Molecular Evolution and the Neutral Theory. Genetic drift. Evolutionary force that removes genetic variation

Mendel and the Gene Idea

BTRY 7210: Topics in Quantitative Genomics and Genetics

DNA segment: T A C T G T G G C A A A

General aspects of genome-wide association studies

Beyond Mendel s Laws of Inheritance

POPULATION GENETICS Winter 2005 Lecture 18 Quantitative genetics and QTL mapping

Biology Genetics Practice Quiz

HARDY WEIBERG EQUILIBRIUM & BIOMETRY

Random Allelic Variation

Conifer Translational Genomics Network Coordinated Agricultural Project

Population genetics. Population genetics provides a foundation for studying evolution How/Why?

Evaluation of Genome wide SNP Haplotype Blocks for Human Identification Applications

Concepts of Genetics Ninth Edition Klug, Cummings, Spencer, Palladino

Manitoba Education, Citizenship and Youth

Chapter 14: Mendel and the Gene Idea

AP Biology Laboratory 8 Population Genetics Virtual Student Guide

Report. General Equations for P t, P s, and the Power of the TDT and the Affected Sib-Pair Test. Ralph McGinnis

Observing Patterns in Inherited Traits. Chapter 11

Lecture 10 Molecular evolution. Jim Watson, Francis Crick, and DNA

1) Genetic Drift. Genetic Drift - population with stable size ~ 10

Biology Mrs. Howe Tues, 2/7 Agenda New Seats Bioethical Decision Making Model (pg. 1-2)-> due Block 1

Classical (Mendelian) Genetics. Gregor Mendel

Oral Cleft Targeted Sequencing Project

Reproduction, Heredity, & Molecular Genetics. A. lipids B. amino acids C. nucleotides D. polysaccarides

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology.

FORENSIC GENETICS. DNA in the cell FORENSIC GENETICS PERSONAL IDENTIFICATION KINSHIP ANALYSIS FORENSIC GENETICS. Sources of biological evidence

The information in this document is meant to cover topic 4 and topic 10 of the IB syllabus. Details of meiosis are found in Notes for Cells.

We can use a Punnett Square to determine how the gametes will recombine in the next, or F2 generation.

Section 4 - Guidelines for DNA Technology. Version October, 2017

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1

Genomic Selection using low-density marker panels

HARDY-WEINBERG EQUILIBRIUM

Lab 8: Population Genetics and Evolution. This may leave a bad taste in your mouth

B.6.F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non Mendelian inheritance

Michelle Wang Department of Biology, Queen s University, Kingston, Ontario Biology 206 (2008)

GENETICS: BIOLOGY HSA REVIEW

Transcription:

Harvard-MIT Division of Health Sciences and Technology HST.512: Genomic Medicine Prof. Marco F. Ramoni Population Genetics in the Genomic Era Marco F. Ramoni Children s Hospital Informatics Program and Harvard Partners Center for Genetics and Genomics Harvard Medical School

Introduction On February 12, 2001 the Human Genome Project announces the completion of a first draft of the human genome. Among the items on the agenda of the announcement, a statement figures prominently: A SNP map promises to revolutionize both mapping diseases and tracing human history. SNP are Single Nucleotide Polymorphisms, subtle variations of the human genome across individuals. You can take this sentence as the announcement of a new era for population genetics.

Outline Background 80s revolution and HGP Genetic Polymorphisms Their nature Types of polymorphisms Foundations Terminology Hardy Weinberg Law Types of inheritance Complex Traits Definition Factors of Complexity Study and Experiment Design Case Control Studies Pedigree Studies Analysis Methods Association Studies Linkage Studies Allele-sharing Studies QTL Mapping The New Ways Haplotypes HapMap htsnps

Background Intuition: We can find the genetic bases of observable characters (like diseases) without knowing how the actual coding works. Origins: Sturtevant (1913) finds traits-causing genes. Early History: Genetic maps of plants and insects. Outcast: Ernst Mayr called it Beans bag genetics. Reasons: No markers to identify coding regions. Markers: Botstein (1977) showed that naturally occurring DNA already contains markers identifying regions of the genome: polymorphisms.

Central Dogma of Molecular Biology Traits RNA Proteins Diseases Physiology DNA mrna Metabolism Drug Resistance

The 80s Revolution and the HGP The intuition that polymorphisms could be used as markers sparkled the revolution. Mendelian (single gene) diseases: Autosomal dominant (Huntington). Autosomal recessive (C Fibrosis). X-linked dominant (Rett). X-linked recessive (Lesch-Nyhan). Today, over 400 single-gene diseases have been identified. This is the promise of the HGP. 16.3 16.2 16.1 15.3 15.2 15.1 14 13 12 11 Chromosome 4 Short Arm (4p) D4S98 D4S182 D4S95 D4S127 2642 D4S180 D4S10 DNA Markers Delineating HD Region ADD1 IT10C3 GPRK2L HD (CAG)n Genes in the HD Region

Terminology Allele: A sequence of DNA bases. Locus: Physical location of an allele on a chromosome. Linkage: Proximity of two alleles on a chromosome. Marker: An allele of known position on a chromosome. Distance: Number of base-pairs between two alleles. centimorgan: Probabilistic distance of two alleles. Phenotype: An outward, observable character (trait). Genotype: The internally coded, inheritable information. Penetrance: No. with phenotype / No. with allele.

Distances Physical distances between alleles are base-pairs. But the recombination frequency is not constant. Segregation (Mendel's first law): Allele pairs separate during gamete formation and randomly reform pairs. A useful measure of distance is based on the probability of recombination: the Morgan. A distance of 1 centimorgan (cm) between two loci means that they have 1% chances of being separated by recombination. A genetic distance of 1 cm is roughly equal to a physical distance of 1 million base pairs (1Mb).

More Terminology Physical maps: Maps in base-pairs. Human autosomal physical map: 3000Mb (bases). Linkage maps: Maps in centimorgan. Human Male Map Length: 2851cM. Human Female Map Length: 4296cM. Correspondence between maps: Male cm ~ 1.05 Mb; Female cm ~ 0.88Mb. Cosegregation: Alleles (or traits) transmitted together.

Hemophilia, a Sex Linked Recessive Hemophilia is a X-linked recessive disease, that is fatal for women. X-linked means that the allele (DNA code which carries the disease) is on the X-chromosome. A woman (XX) can be carrier or non-carrier: if x=allele with disease, then xx=carrier; xx=dies; XX=non carrier. A male (YX) can be affected or not affected: (xy= affected; XY=not affected).

Hemophilia: A Royal Disease

Genetic Markers One of the most celebrated findings of the human genome project is that humans share most DNA. Still, there are subtle variations: Simple Sequence Repeats (SSR): Stretches of 1 to 6 nucleotide repeated in tandem. Microsatellite: Short tandem repeat (e.g. GATA) varying in number between individuals. Single nucleotide polymorphism (SNP): Single base variation with at least 1% incidence in population.

Single Nucleotide Polymorphisms Variations of a single base between individuals:... ATGCGATCGATACTCGATAACTCCCGA...... ATGCGATCGATACGCGATAACTCCCGA... A SNP must occur in at least 1% of the population. SNPs are the most common type of variations. Differently to microsatellites or RTLPs, SNPs may occur in coding regions: csnp: SNP occurring in a coding region. rsnp: SNP occurring in a regulatory region. ssnp: Coding SNP with no change on amino acid.

Single Nucleotide Polymorphisms Variations of a single base between individuals:... ATGCGATCGATACTCGATAACTCCCGA...... ATGCGATCGATACGCGATAACTCCCGA... A SNP must occur in at least 1% of the population. SNPs are the most common type of variations. Differently to microsatellites or RTLPs, SNPs may occur in coding regions: csnp: SNP occurring in a coding region. rsnp: SNP occurring in a regulatory region. ssnp: Coding SNP with no change on amino acid.

Evolutionary Pressure Kreitman (1983) sequenced the first 11 alleles from nature: alcohol dehydrogenase locus in Drosophila. 11 coding regions / 14 sites have alternative bases. 13 variations are silent: ie do not change amino acid. With a random base change, we have 75% chances of changing the amino acid (i.e. creating a csnp). Why this disparity? Drosophilae and larvae are found in fermenting fruits. Alcohol dehydrogenase is important in detoxification. A radical change in protein is a killer.

Reading SNP Maps SNPer snapshot Courtesy of Alberto Riva. Used with permission.

Hardy-Weinberg Law Hardy-Weinberg Law (1908): Dictates the proportion of major (p), minor alleles (q) in equilibrium. p2 + 2pq + q 2 = 1. Equilibrium: Hermaphroditic population gets equilibrium in one generation, a sexual population in two. Example: How many Caucasian carriers of C. fibrosis? Affected Caucasians (q 2 ) = 1/2,500. Affected Alleles (q)= 1/50 = 0.02. Non Affected Alleles (p) = (1-0.02) = 0.98. Heterozygous (2pq) = 2(0.98 0.02) = 0.04= 1/25.

Assumptions Random mating: Mating independent of allele. Inbreeding: Mating within pedigree; Associative mating: Selective of alleles (humans). Infinite population: Sensible with 6 billions people. Drift: Allele distributions depend on individuals offspring. Locality: Individuals mate locally; Small populations: Variations vanish or reach 100%. Mutations contrast drift by introducing variations. Heresy: This picture of evolution as equilibrium between drift and mutation does not include selection!

Natural Selection Example: p=0.6 and q=0.4. AA Aa aa 336% 48% 16% Fitness (w): AA=Aa=1, aa=0.8. Selection: s = 1-w = 0.2: 2 δp = spq = (0.2)(0.6)(0.4)2 = 0.019 = 0. 02 2 1 sq 1 - (0.2)(0.4) 2 0.968 Selection: Effect on the 1 st generation is A=0.62 a=0.38. AA Aa aa 339.7% 46.6% 13.7% +3.7% -1.4% -2.3% Rate: The rate decreases. Variations do not go away.

Does it work? Race and Sanger (1975) 1279 subjects blood group. p = p(m) = (2 x 363) + 634 / (2 x 1279) = 0.53167. Observed Expected MM MN NN 363 634 282 361.54 636.93 280.53 Caveat: Beta-hemoglobin sickle-cell in West Africa: Observed Expected AA AS SS 25,374 5,482 64 25,561.98 5,106.03 254.98

Does it work? Race and Sanger (1975) 1279 subjects blood group. p = p(m) = (2 x 363) + 634 / (2 x 1279) = 0.53167. Observed Expected MM MN NN 363 634 282 361.54 636.93 280.53 Caveat: Beta-hemoglobin sickle-cell in West Africa: AA AS SS Observed 25,374 5,482 64 Expected 25,561.98 5,106.03 254.98

Does it work? Race and Sanger (1975) 1279 subjects blood group. p = p(m) = (2 x 363) + 634 / (2 x 1279) = 0.53167. Observed Expected MM MN NN 363 634 282 361.54 636.93 280.53 Caveat: Beta-hemoglobin sickle-cell in West Africa: AA AS SS Observed 25,374 5,482 64 Expected 25,561.98 5,106.03 254.98 Reason: Heterozygous selective advantage: Malaria.

Linkage Equilibrium/Disequilibrium Linkage equilibrium: Loci Aa and Bb are in equilibrium if transmission probabilities π A and π Β are independent. π AB = π A π B. Haplotype: A combination of allele loci: π AB,π Ab,π ab,π ab. Linkage disequilibrium: Loci linked in transmission as. 2 (π π π ) r 2 AB A B = π π π π A B a a measure of dependency between the two loci. Markers: Linkage disequilibrium is the key of markers. b

Phenotype and Genotype Task: Find basis (genotype) of diseases (phenotype). Marker: Flag genomic regions in linkage disequilibrium. Problem: Real genotype is not observable. Strategy: Use marker as genotype proxy. Condition: Linkage di sequilibrium. Dependency: Observable measure of dependency between marker and phenotype. Phenotype Dependency Cause Marker Linkage Disequilibrium Genotype

Complex Traits Problem: Traits don t always follow single-gene models. Complex Trait: Phenotype/genotype interaction. Multiple cause: Multiple genes create phenotype. Multiple effect: Gene causes more than a phenotype. Caveat: Some Mendelian traits are complex indeed. Sickle cell anemia: A classic Mendelian recessive. Pattern: Identical alleles at beta-globulin locus. Complexity: Patients show different clinical courses, from early mortality to unrecognizable conditions. Source: X-linked locus and early hemoglobin gene.

Reasons for Complex Traits Incomplete Penetrance: Some individuals with genotype do not manifest trait. Breast cancer / BRCA1 locus. Age Carrier Non Carrier 40 55 80 37% 66% 85% 0.4% 0.3% 8% Genetic Heterogeneity: Mutation of more than one gene can cause the trait. Difficult in non experiment setting. Retinitis pigmentosa: from any of 14 mutations. Polygenic cause: Require more than one gene. Hirshsprung disease: needs mutation 13c and 21c.

Study Design Classification by sample strategy: Pedigrees: Traditional studies focused on heredity. Large pedigree: One family across generations. Triads: Sets of nuclear families (parents/child). Sib-pairs: Sets of pair of siblings. Case/control: Unrelated subjects with/out phenotype. Classification by experimental strategy: Double sided: Case/control studies. Single sided: e.g triads of affected children.

Analysis Methods Study designs and analysis methods interact. We review five main analysis types: Linkage analysis: Traditional analysis of pedigrees. Allele-sharing: Find patterns better than random. Association studies: Case/control association. TDT: transmission disequilibrium test. Experimental crosses: Crosses in controlled setting. Typically, these collections are hypothesis driven. The challenge is to collect data so that the resulting analysis will have enough power.

Method: Parametric model building. Linkage Analysis Strategy: Compare a model with dependency between phenotype and allele against independence model. Test: Likelihood ratio - or lod score log(lr). p(data M 1 ) LR = p(data M 0 ) Sample: Large pedigree or multiple pedigrees. Caveats: Multiple comparison, hard for complex traits.

Allele Sharing Method: Non parametric method to assess linkage. Test: An allele is transmitted in affected individuals more than it would be expected by chance. Sample: It uses affected relatives in a pedigree, counts how many times a region is identical-by-descent (IBD) from a common ancestor, and compares this with expected value at random. Caveats: Weak test, large samples required.

Association Studies Method: Parametric method of association. Strategy: Traditional case vs control approach. Test: Various tests of association. Sample: Split group of affected/unaffected individuals. Caveats: Risk of stratifications (admixtures) - case/control split by populations. Advantages: Easily extended to complex traits and ideal for exploratory studies.

Transmission Disequilibrium Test Method: Track alleles from parents to affected children. Strategy: Transmitted=case / non transmitted=controls. Test: Transmission disequilibrium test (TDT). Sample: Triads of affected child and parents. Caveats: Test is not efficient and is prone to false negatives. Advantages: Powerful test and stratification not an issue.

Quantitative Trait Locus Maps Method: Complex trait variable in intensity (alcoholism). Complex Trait: Different since all about phenotype. Strategy: Controlled mating to induce recombination. Sample: Animal populations. Test: Pedigree-based transmission tests. Caveats: In humans, it is hard to have the controlled conditions of an animal setting. Advantages: Highly controlled setting and, as in the case of hypertension in rats, animal models can stimulate and direct research in humans.

Genotyping Cohort Studies Traditionally, data collection is phenotype driven. During the past 3 years, an increasing number of large cohort studies started subjects genotyping. Nurses Health Study. Framingham Hearth Study. This process will provide genotypes for a vast array of phenotypes recorded in these cohort studies. This situation calls for a brand new generation of analytical tools able to provide high throughput phenotyping of whole-genome genotypes.

Feasibility: Time and Cost Base: Number of SNPs per individual: 3,000,000 Costs: How much for a genome-wide SNP scan? Cost of 1 SNP: 0.30-0.45$ (soon 0.10-0.20$) Cost of a 10kb SNP map/individual: 90,000 (30,000) Cost of a 1000 individuals study: 90,000k (30,000k) Cost of 1000 complete maps: 900,000k (300,000k) Time: How long does it take? 1 high throughput sequencer: 50,000 SNPs/day Effort 1000 10kb SNP maps: ~700 days/man Effort 1000 complete SNP maps: ~7000 days/man

Haplotypes LD (r2) distances can be used to identify haplotypes. Haplotypes are groups of SNPs transmitted in blocks. These blocks can be characterized by a subset of their SNPs (tags). Since they are the result of an underlying evolutionary process, they can be used to reconstruct ancestral DNA.

Haplotype Tagging Haplotypes: As not all combinations appear, we need fewer SNPs. Goal: Smallest set of SNPs deriving all the other SNPs. htsnps: These tagging SNPs are called haplotype tagging SNPs. Problem: Intractable task (for 136 bases any relativistic machine would take more than the age of the universe).

Haplotype Tagging Haplotypes: As not all combinations appear, we need fewer SNPs. Goal: Smallest set of SNPs deriving all the other SNPs. htsnps: These tagging SNPs are called haplotype tagging SNPs. Problem: Intractable task (for 136 bases any relativistic machine would take more than the age of the universe).

The Importance of Haplotypes Haplotypes make a SNP map of the human genome redundant: as some SNPs will be transmitted together, we only need a subset of SNPs to tag the entire region. NHGRI launched in October the HapMap project: a description of the set of haplotype blocks and the SNPs that tag them. The HapMap will be valuable because it will reduce the number of SNPs required to examine the entire genome for association with a phenotype from all 10 million common SNPs to perhaps 200,000 to 300,000 htsnps.

Identifying Haplotypes Dely et at. report an high-resolution analysis of the haplotype structure of a stretch of chromosome 5q31 500Kbs long. There are 103 SNPs in the stretch. The SNPs were selected if the minor allele frequency was higher than 5%. Sample were 129 trios (nuclear families) of European descent with children affected by Crohn disease. Therefore, they had 258 transmitted and 258 nontransmitted chromosomes.

Haplotype Blocks The resulting picture portraits the stretch separated in 11 blocks separated by recombination points. Haplotype patterns travel together (blocks in LD) and therefore the authors infer 4 ancestral haplotypes.

Hidden Markov Models To identify the 4 ancestral haplotypes, the authors use Hidden Markov Models (HHMs). The idea behind HMMs is that there is a directed process generating the data and that each observation is independent of the previous one given its generator and the previous generator. Each variable has 4 states (one per haplotype).

htsnps Identification Johnson et al. propose a transmission-based method to identify Haplotype Tag SNPs (htsnps), the necessary SNPs to identify an haplotype. The method is claimed to capture the majority (80%) of the haplotype diversity observed within a region. They genotyped polymorphisms in INS H19 SDF1 TCF8 and GAS2 in 418 UK families with at least 2 siblings with diagnosed type 1 diabetes. They constructed haplotypes at CASP8 CASP10 and CFLAR of 598 Finnish families with type 1 diabetes.

Characterizing Phenotypes Simple phenotypes: Mendelian diseases usually have also the advantage of simple (binary) phenotypes. Complex diseases: Twenty years of AI in medicine show that often diseases do not obey these patterns. Dissecting phenotypes: It is critical as dissecting gene expression patterns. Animal models: QTL strategy may be an answer. Opportunity: Better clinical definition of disease states. Clinical data: With dropping costs of sequencing, good clinical data about patients are the real wealth.

Take Home Messages The Past: Hypothesis-driven phenotype-focused data; Interesting discoveries with simple models. The Present: HGP changes the perspectives of genetic studies; SNPs are a critical tool to break the code; HGP technology makes sequencing a commodity. The Future: Exploratory genotyping will streamline discoveries; Phenotypes will be the real goodies of the future; The challenge is to handle complex traits.

A Must Read List Human genome mapping: Genomics Issue, Nature, February 2001 Genomics Issue, Science, February 2001 Visions of polymorphisms: ES Lander and NJ Schork, Science, 265, 1994 DG Wang et al., Science, 280, 1998 ES Lander, Nat Gen, 21, 1999 MJ Daly et al., Nat Gen, 29, 2001 Visions of population genetics: LL Cavalli-Sforza, Genes, People, Languages, 2001