Dr. Mallery Biology Workshop Fall Semester CELL REPRODUCTION and MENDELIAN GENETICS

Similar documents
Exam 1 Answers Biology 210 Sept. 20, 2006

GENETICS. I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide chains wrap around each other to form a

Mendel & Inheritance. SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance.

Genetics Sperm Meiotic cell division Egg Chromosome Segments of DNA Code DNA for traits Code for a trait Gene

Q.2: Write whether the statement is true or false. Correct the statement if it is false.

four chromosomes ` four chromosomes correct markers (sister chromatids identical!)

Gen e e n t e i t c c V a V ri r abi b li l ty Biolo l gy g Lec e tur u e e 9 : 9 Gen e et e ic I n I her e itan a ce

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Gregor Mendel. Austrian Monk Worked with pea plants

Chapter 14: Mendel and the Gene Idea

B.6.F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non Mendelian inheritance

& Practice

Biology Mrs. Howe Tues, 2/7 Agenda New Seats Bioethical Decision Making Model (pg. 1-2)-> due Block 1

Mendel and the Gene Idea

Chp 10 Patterns of Inheritance

Chapter 14: Mendel and the Gene Idea

Answers to additional linkage problems.

The information in this document is meant to cover topic 4 and topic 10 of the IB syllabus. Details of meiosis are found in Notes for Cells.

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight?

Table of Contents. Chapter: Heredity. Section 1: Genetics. Section 2: Genetics Since Mendel. Section 3: Biotechnology

EOC Review Reporting Category 2 Mechanisms of Genetics

Name: Class: Biology Weekly Packet January th, 2013 Tuesday January 22, 2013

LINKAGE AND CHROMOSOME MAPPING IN EUKARYOTES

Observing Patterns in Inherited Traits. Chapter 11

Genetics and Human Inheritance

Non Mendelian Genetics

Name Date Class. In the space at the left, write the letter of the term or phrase that best completes each statement or answers each question.

Genetics Patterns of Inheritance. Biology 20

Observing Patterns In Inherited Traits

DNA/Genetics Test 2016

Reproduction, Heredity, & Molecular Genetics. A. lipids B. amino acids C. nucleotides D. polysaccarides

Linkage & Genetic Mapping in Eukaryotes. Ch. 6

Exploring Mendelian Genetics

wheat yield (tonnes ha 1 ) year Key: total yield contribution to yield made by selective breeding Fig. 4.1

Biology Genetics Practice Quiz

Mendelian problems done.notebook

Classical (Mendelian) Genetics. Gregor Mendel

Beyond Mendel s Laws of Inheritance

Would expect variation to disappear Variation in traits persists (Example: freckles show up in unfreckled parents offspring!)

DNA segment: T A C T G T G G C A A A

We can use a Punnett Square to determine how the gametes will recombine in the next, or F2 generation.

Yesterday s Picture UNIT 3D

Genetics II: Linkage and the Chromosomal Theory

Genetics. Chapter 10/12-ish

Introduction. Thomas Hunt Morgan. Chromosomes and Inheritance. Drosophila melanogaster

Genetics Culminating Project

CBA #4 Practice Exam Genetics. 1) (TEKS 5A) Which of the diagrams below shows the process of transcription:

Beyond Mendel s Laws of Inheritance

M1. (a) C 1. cytoplasm and cell membrane dividing accept cytokinesis for 1 mark 1. to form two identical daughter cells 1.

LECTURE 5: LINKAGE AND GENETIC MAPPING

Student Sheet 1.1: KWL Chart

12 The Chromosomal Basis of Inheritance

PED'IGREE, n. from L. pes,pedis, foot. Lineage; line of ancestors from which a person or tribe descends; genealogy.

The Chromosomal Basis of Inheritance

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium)

GENETICS: BIOLOGY HSA REVIEW

Problem Set 2B Name and Lab Section:

Chapter Extending Mendelian Genetics. Incomplete Dominance. Incomplete Dominance. R = red R = white. Incomplete Dominance (alt)

Figure 1: Testing the CIT: T.H. Morgan s Fruit Fly Mating Experiments

ch03 Student: If a phenotype is controlled by the genotypes at two different loci the interaction of these genes is called

Exploring Mendelian Genetics 11-3

Review. 0 Genotype: alleles that are present 0 Phenotype: physical appearance. 0 If Red is dominant to white, what is the phenotype of the above?

Exploring Mendelian Genetics. Dihybrid crosses. Dihybrid crosses

Genetics. Biology. vocabulary terms

An introduction to genetics and molecular biology

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools

Gene Linkage and Genetic. Mapping. Key Concepts. Key Terms. Concepts in Action

Genetics and Heredity. Mr. Gagnon

Genetics Essentials 9/10/13. Concepts and Connections. Mendel and His Study of Heredity. The Case of the Red Hair. Before we Continue

Human linkage analysis. fundamental concepts

-Genes on the same chromosome are called linked. Human -23 pairs of chromosomes, ~35,000 different genes expressed.

Modes of Inheritance Adapted by Ellen G. Dow for QBIC Genetics Lab 2017

Linkage & Crossing over

Mendel and the Gene Idea

Heredity: The process in which characteristics or traits pass from parents to offspring. Think, Pair, Share some characteristics that you have in

1a. What is the ratio of feathered to unfeathered shanks in the offspring of the above cross?

Population and Community Dynamics. The Hardy-Weinberg Principle

1. Describe the structure of DNA. Be sure to include what forms the skeleton and how are the strands held together? 2. Compare and contrast

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology.

... (1) ... (1) 2. Describe the consequence of a base substitution mutation with regards to sickle cell anaemia. (Total 7 marks)

Basic Concepts of Human Genetics

Genetic variation, genetic drift (summary of topics)

Genetics. Blending Theory Mendel s Experiments Mendel Expanded Chromosomal Theory of Genetics Human Genetics

Chapter 4.!Extensions to Mendelian Genetics.! Gene Interactions

AP BIOLOGY Population Genetics and Evolution Lab

Lecture Outline 9/8/05. Question: Male-pattern baldness. Finish pedigrees for X-linked traits. Chromosomal basis of inheritance


The Genetics of Parenthood FACE LAB

Genetics and Heredity

Bio 6 Natural Selection Lab

Page 3. 18) The diagram below illustrates some key steps of a procedure in one area of biotechnology.

Genetic Equilibrium: Human Diversity Student Version

DO NOT OPEN UNTIL TOLD TO START

CELLULAR PROCESSES; REPRODUCTION. Unit 5

Your name will be covered up so that the markers will not see it. Please turn over

Transcription:

Dr. Mallery Biology 150 - Workshop Fall Semester CELL REPRODUCTION and MENDELIAN GENETICS CELL REPRODUCTION The goal of today's exercise is for you to look at mitosis and meiosis and to develop the ability to solve some standard types of genetics problems. You will need to have a working familiarity with concepts such as phenotype, genotype, heterozygous, homozygous, dominant, and recessive. Have one member, in turn, of your Learning Community answer one part of each of the questions or problems, then let the next member go on to the next part... Part 1. Mitosis & Meiosis 1. If there are 12 chromosomes in a plant cell at the G1 stage of the cell cycle, then? a) what is the diploid chromosome number of this plant? and Why? b) how many chromatids would be present at anaphase? c) the progeny cells, after cytokinesis, would contain how many chromosomes? 2. Measurements of the amount of DNA per nucleus were taken on a large number of cells from a growing cell culture of mouse fibroblasts. The measured DNA levels ranged from 3 to 6 picograms per nucleus. One nucleus had 5 picograms of DNA. What stage of the cell cycle was this nucleus in? and how did you know? 3. A common chemo-therapeutic drug used to treat cancerous cell growth is Taxol, a compound extracted from the Pacific Yew tree. In animal cells this anticancer drug disrupts microtubule formation by binding to MT s and accelerating their assembly from the precursor, tubulin. How does such a drug affect cancer cells? 4. Referring to the figure below of DNA amounts in a cell during the course a asexual cell division: a) Label the stages of mitosis that are comparable to the numbers : I, II, III, IV a) At which stage (I, II, III, IV, or V) is the centromere uncoupling and the chromatids separating? b) MPF, Mitotic Promoting Factor, reaches its highest threshold concentration in the dividing cell during this stage? c) The DNA content of the cell is tetraploid at this stage? d) This graph depicts mitosis or meiosis? and how do you know this? 5. If a liver cell of an animal contains 24 chromosomes, then the sperm cells of this animal would have how many chromosomes? Why? 6. How does the process of sex and sexual cell division increase the genetic variability in a species? Mallery - Bil 150 Cell Division & Genetics Workshop - Page 1

7. Refer to the figures of meiosis above to answer the following questions: a) Which drawing best depicts prophase I of meiosis? b) At the completion of which drawing above will the chromosomes have the least amount of DNA? c) Anaphase I is best shown in which drawing? d) Metaphase II is best shown in which drawing? 8. Refer to the diagram below, which plots DNA per cell during sexual cell division and meiosis. a) label the stages (I, II, III, IV, V) with comparable stages to sexual cell division? b) In which number (I, II, III, IV, or V) would you expect crossing over to occur? c) Which number would represent when the DNA content is that found in egg cells? d) At which number would the separation of homologous chromosomes occur? e) Where would you place crossing over on this diagram? 9. Have one member of your Learning Community describe to all the other the major significant differences between asexual cell division and sexual cell division. Mallery - Bil 150 Cell Division & Genetics Workshop - Page 2

MENDELIAN GENETICS PROBLEMS Part 2. Some practice genetic crosses: 1. In the following cross AaBB x aabb where A, red eye color is dominant over a, green eye color and B, bald is dominant over b, lots of hair a. What are the resulting genotypes and what are their ratios (assuming no linkage between the two gene loci)? b. What are the resulting phenotypes and what are their ratios? c. What fraction of the offspring are heterozygous for eye color? d. What fraction of offspring are homozygous for baldness? HINT: To answer the above questions, try the following: first determine what gametes were possible from each parent, then determine the resulting possible offspring by making all possible combinations between the two parents. 2. Consider the following dihybrid cross aabb x AaBb a. How many different genotypes can be present in the first-generation offspring from such a cross? b. How many phenotypes? HINT: You should be able to solve problems of the type given above for any cross. This is a general tool that needs to be developed by you. Just memorizing the standard 9:3:3:1 ratios from a dihybrid cross will give you one answer to one cross. By developing the general skill you are able to do any cross. 3. Consider the following cross: AabbCcDd x aabbccdd a. What are the odds of the Fl generation being homozygous recessive at gene locus B? b. What are the odds of the Fl generation being homozygous dominant at gene locus D? c. What are the odds of the Fl generation being both homozygous recessive at gene locus B and homozygous dominant at gene locus D? [Hint: just combine the two results above. Can you determine bow the combination is to be done?] d. Using the way you answered the above three questions, can you think of a general way to approach such multiple-gene-locus probabilities? Part 3. Sex-linked traits Sex-linked traits work somewhat differently from above. Alleles that are found on the X chromosome in humans have a special inheritance in males, since they get just one copy of the X and it comes from the mother. This is one of the distinctions between autosomal and sex chromosomes. 1. If a woman who is homozygous for normal color vision marries a man who is color blind (a sex-linked, recessive trait), what proportion of their offspring (separately indicate results for males and females among their offspring) would a. be carriers of the color blindness trait? b. be color-blind? 2. If a woman is heterozygous for color blindness (sex-linked, recessive) and marries a male with normal color vision, among their offspring (separately consider males and females), what proportion would a. be carriers? b. be color-blind? Mallery - Bil 150 Cell Division & Genetics Workshop - Page 3

Part 4. Pedigree Analysis 1. Consider the following pedigree: squares - males; circles = females. A filled square or circle indicates that the individual has a disorder that causes premature aging. To answer the questions, use A = dominant allele, a = recessive allele. a. Is the trait dominant or recessive? How do you know? b. Is there any indication that the trait is sex-linked? Give your reasoning. c. What is the genotype of each of the three individuals (1, 2, 3) indicated above? Part 5. Multiple Alleles. (Refer to textbook pg 257-259) In the above cases we have considered a maximum of two alleles at each gene locus. Of course, in an individual this is the maximum number possible, but that is not true in a population. There can be many alleles at a given gene locus in a population. 1. Consider a gene locus with three different alleles in a population. a. How many different possible allele combinations are there in the individuals in the population? b. It so happens that there are three alleles that determine blood groups (A, B, and 0 are the three alleles). Antibodies can be made against A and B gene products, but not 0 gene products, and these antibodies are only made if an individual does not have that allele. Given the above, list the different possible blood types, and determine what transfusions are and are not possible between these different blood types? 2. The Major Histocompatibility Complex (MHC) in humans consists of a group of cell surface glycoproteins. These are involved in immune system's response and the rejection of organ transplants. About twenty gene loci are involved and at each locus there are about 50 different alleles in the population today. How many different allele combinations are possible? Compare this to the number of humans alive today, about 5.6 billion. Part 6. Epistasis. (Refer to textbook pg 258) The product of one gene can influence the phenotypic expression of another gene. Consider the Black/Brown gene locus in mice and the influence of the alleles at a second gene locus, designated C. BB and Bb animals are black, and bb animals are brown UNLESS the animals also are homozygous recessive at the C locus, in which case they have white fur color. Review this case of epistasis in your book, p. 250, and then answer the following: 1. consider the cross: BBCC x BbCc a. What color are each of these parents? b. What percent of the Fl offspring will be black, what % brown, and what % white? 2. Consider the cross: BBCC x Bbcc a. What color are each of these parents. b. What percent of the Fl offspring will be black, what % brown, and what % white? Mallery - Bil 150 Cell Division & Genetics Workshop - Page 4

Part 7. Linked genes and mapping. (Refer to textbook pg 275-276) Genes can be close enough to one another on a chromosome that they are more likely to be inherited together. These are linked genes. Only recombination through crossing-over allows them to be separated during meiosis. The fraction of recombinant offspring can be used as a measure of how close the two gene loci are on the chromosome. A series of such fractions among mutually linked genes also can be used to map genes on chromosomes. 1. Imagine that you have performed a cross and seen that there are 499 parental types and 502 recombinants, for a total of 1,001 offspring. a. What is the recombination frequency? b. Are these two genes linked? 2. In a cross there are 500 parental types and 100 recombinants. a. What is the recombination frequency? b. Are these two genes linked? 3. a. Use the following recombination frequencies to map four genes, A-D. Gene pair Recombination frequency A, B 8% A, C 4% A, D 4% B, C 4% B, D 12% After drawing the appropriate map, what is the map distance between genes D & C? b. Consider that there is a fifth gene E that also is linked. If you know that the A-to-E recombination frequency is 4%, can you locate E on the map you constructed above? Part 8. Genetic Counseling. (Refer to textbook pg 260-266) Imagine that you are a physician. How would you deal with each of the following cases? 1. A woman comes in whose only child has Down syndrome. She informs you that she is pregnant and asks what the odds are of her having another child with Down's. Can you give her odds of whether she will have another such child? What one piece of information about her would be most helpful? 2. A man comes in to ask about his chances of getting Huntington's disease, a relatively rare, dominant disorder. His mother has just come down with the disorder. What could you immediately tell him about the odds? Is there a test that could be done to tighten the odds? 3. Hemophilia is a sex-linked, recessive trait. A woman whose father had the trait wants to know what the odds are that her sons will have the disorder. What do you tell her? Part 9. I.Q. tests, and polygenic inheritance. Many phenotypic traits, such as height, intelligence, and cardiovascular health in humans, depend upon a number of different genes (polygenic inheritance), and also depend upon environment. The following is a discussion question. 1. If one does a test of the proportion of variance due to genotypes and environment in a limited population of humans, say white males in the United States, one finds that more than half of the variation at any time can be accounted for by variation in genotypes: different alleles and combinations of alleles in different individuals. At the same time, if one looks across time during the last seventy years, I.Q. scores have increased dramatically in the United States. Do you think that intelligence has increased dramatically, too? Are genotypes changing rapidly enough to account for such dramatic changes? Can the fraction of variance caused by genotype be high in a population and still have that population dramatically affected by changes in environment? What implications does this have for explanations of differences in I.Q. scores between different populations of humans? Mallery - Bil 150 Cell Division & Genetics Workshop - Page 5