LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium.

Similar documents
LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017

AP BIOLOGY Population Genetics and Evolution Lab

EVOLUTION/HERDEDITY UNIT Unit 1 Part 8A Chapter 23 Activity Lab #11 A POPULATION GENETICS AND EVOLUTION

POPULATION GENETICS AND EVOLUTION

AP Biology Laboratory 8 Population Genetics Virtual Student Guide

Lab 8: Population Genetics and Evolution. This may leave a bad taste in your mouth

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools

Chapter 8. An Introduction to Population Genetics

We can use a Punnett Square to determine how the gametes will recombine in the next, or F2 generation.

The Making of the Fittest: Natural Selection in Humans

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium)

Genetic Equilibrium: Human Diversity Student Version

Population and Community Dynamics. The Hardy-Weinberg Principle

Genetic Variation. Genetic Variation within Populations. Population Genetics. Darwin s Observations

POPULATION GENETICS. Evolution Lectures 4

Laboratory. Hardy-Weinberg Population Genetics

Population genetics. Population genetics provides a foundation for studying evolution How/Why?

The Making of the Fittest: Natural Selection in Humans

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool.

Mendel & Inheritance. SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance.

Study Guide A. Answer Key. The Evolution of Populations

Population Genetics (Learning Objectives)

The Genetics of Parenthood FACE LAB

REVIEW 5: EVOLUTION UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

Chapter 14: Mendel and the Gene Idea

Population Genetics and Evolution

Biol Lecture Notes

Population Genetics. Lab Exercise 14. Introduction. Contents. Objectives

wheat yield (tonnes ha 1 ) year Key: total yield contribution to yield made by selective breeding Fig. 4.1

Lab Mendelian Genetics-Exploring Genetic Probability -Revisiting Mendel s Observations

Bio 6 Natural Selection Lab

The Genetics of Parenthood: Background Information

Summary Genes and Variation Evolution as Genetic Change. Name Class Date

Genetic variation, genetic drift (summary of topics)

Advanced Placement Biology

Would expect variation to disappear Variation in traits persists (Example: freckles show up in unfreckled parents offspring!)

The Evolution of Populations

Genetics II: Linkage and the Chromosomal Theory

Genotype AA Aa aa Total N ind We assume that the order of alleles in Aa does not play a role. The genotypic frequencies follow as

Genetics. Chapter 10/12-ish

Gregor Mendel. Austrian Monk Worked with pea plants

B.6.F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non Mendelian inheritance

11.1. A population shares a common gene pool. The Evolution of Populations CHAPTER 11. Fill in the concept map below.

Principles of Population Genetics

Modes of Inheritance Adapted by Ellen G. Dow for QBIC Genetics Lab 2017

Exploring Mendelian Genetics. Dihybrid crosses. Dihybrid crosses

Linkage & Genetic Mapping in Eukaryotes. Ch. 6

1. For each of these genetic traits which is the dominant allele and which is the recessive allele:

HARDY-WEINBERG EQUILIBRIUM

Genetics Essentials 9/10/13. Concepts and Connections. Mendel and His Study of Heredity. The Case of the Red Hair. Before we Continue

Michelle Wang Department of Biology, Queen s University, Kingston, Ontario Biology 206 (2008)

Mendel and the Gene Idea

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology.

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight?

Genetics Sperm Meiotic cell division Egg Chromosome Segments of DNA Code DNA for traits Code for a trait Gene

Mendel and the Gene Idea

HARDY WEIBERG EQUILIBRIUM & BIOMETRY

SAMPLE LITERATURE Please refer to included weblink for correct version.

Gen e e n t e i t c c V a V ri r abi b li l ty Biolo l gy g Lec e tur u e e 9 : 9 Gen e et e ic I n I her e itan a ce

Student Sheet 1.1: KWL Chart

Chapter 14: Mendel and the Gene Idea

Chp 10 Patterns of Inheritance

Genetics Culminating Project

Observing Patterns in Inherited Traits. Chapter 11

& Practice

M1. (a) C 1. cytoplasm and cell membrane dividing accept cytokinesis for 1 mark 1. to form two identical daughter cells 1.

Classical (Mendelian) Genetics. Gregor Mendel

Genetics. Blending Theory Mendel s Experiments Mendel Expanded Chromosomal Theory of Genetics Human Genetics

Exam 1 Answers Biology 210 Sept. 20, 2006

-Genes on the same chromosome are called linked. Human -23 pairs of chromosomes, ~35,000 different genes expressed.

Hardy-Weinberg Principle

Beyond Mendel s Laws of Inheritance

Heredity: The process in which characteristics or traits pass from parents to offspring. Think, Pair, Share some characteristics that you have in

The Making of the Fittest: Natural Selection and Adaptation Allele and phenotype frequencies in rock pocket mouse populations

LINKAGE AND CHROMOSOME MAPPING IN EUKARYOTES

DNA segment: T A C T G T G G C A A A

Reproduction, Heredity, & Molecular Genetics. A. lipids B. amino acids C. nucleotides D. polysaccarides

Mendelian problems done.notebook

12 The Chromosomal Basis of Inheritance

Genetic Problems (II) TWO or MORE GENE INHERITANCE

Exploring Mendelian Genetics 11-3

AP BIOLOGY. Investigation #2 Mathematical Modeling: Hardy-Weinberg. Slide 1 / 35. Slide 2 / 35. Slide 3 / 35. Investigation #2: Mathematical Modeling

Random Allelic Variation

Figure 1: Testing the CIT: T.H. Morgan s Fruit Fly Mating Experiments

The Modern Synthesis. Causes of microevolution. The Modern Synthesis. Microevolution. Genetic Drift. Genetic drift example

Video Tutorial 9.1: Determining the map distance between genes

Genetics. Genetics- is the study of all manifestation of inheritance from the distributions of traits to the molecules of the gene itself

The Chromosomal Basis of Inheritance

Introduction. Thomas Hunt Morgan. Chromosomes and Inheritance. Drosophila melanogaster

EOC Review Reporting Category 2 Mechanisms of Genetics

can be found from OMIM (Online Mendelian Inheritance in Man),

Exploring Mendelian Genetics

The Making of the Fittest: Natural Selection and Adaptation

Mendelian Genetics. What is Gregor Mendel known for and what organism did he use? When did Mendel conduct most of his work?

Bean Bunny Evolution Modeling Gene Frequency Change (Evolution) in a Population by Natural Selection

Heredity and DNA Assignment 1

Biology 3201 Grading Standards June 2005

Transcription:

Period Date LAB. POPULATION GENETICS PRE-LAB 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. 2. List and briefly explain the 5 conditions that need to be met to maintain a population in Hardy Weinberg equilibrium. a. : b. : c. : d. : e. : 1 of 18 Developed by Kim B. Foglia www.explorebiology.com 2008

In 1908, G.H. Hardy and W. Weinberg independently suggested a mathematical approach to study evolution. In this approach, evolution is viewed as changes in the frequency of alleles in a population of organisms. The Hardy-Weinberg theorem can be used to predict the frequencies that one would expect of different genotypes in a population. Of what value is such a prediction? It provides a yardstick by which changes in a population changes in allele frequency, and thereby evolution can be measured. One can study a population and ask: Is evolution occurring for a specific gene? Then one can hypothesize and further investigate: What force(s) is acting on this population to cause this change over time? CASE 1. A TEST OF AN IDEAL HARDY-WEINBERG POPULATION In this case, the whole class will represent a breeding population. As an ideal case, we will try to maintain the five Hardy-Weinberg conditions that would keep allele frequencies the same from generation to generation. To model random mating, students must choose another student as a mate at random. In this simulation, neither sex (male or female) nor genotype influences mate selection. 1. As the breeding population, the class will start out with an equal percentage of dominant and recessive alleles in the gene pool. To simulate this all individuals will start out as heterozygotes (Aa). 2. As heterozygotes, each individual will be given a cup with two A alleles (2 black chips) and two a alleles (2 white chips). These alleles (chips) represent the gametes produced during meiosis. (Remember meiosis produces 4 gametes.) When mating each parent contributes one of these alleles to their offspring, just as any parent supplies a haploid set of chromosomes to their new offspring. 3. To mate and produce an offspring, each parent will select a gamete out of their mate s cup. This will give the parents a pair of haploid gametes (sperm & egg). Put these two gametes together (fertilization) to make a diploid offspring. Only one of the parents records this genotype as their offspring in the Data Table below. 4. Each parental pair, must produce two offspring, so the gametes (chips) must be returned to the original cups, so a second pair of gametes can produce a second offspring in the same manner. Only the other parent then records the genotype of their offspring in the Data Table. 5. This generation has now reproduced, and as with many organisms, after reproduction these parents senesce and die. The two student partners will now become the next generation by assuming the genotypes of the two offspring they just produced. 6. Each student should obtain, if necessary, new chips representing the alleles that would be produced from meiosis in this new individual. For example, if you are now aa, then your gametes would be a, a, a, a and you would place 4 white chips in your cup.) 7. Each student should now seek out a new mate at random from the other individuals in the classroom. Remember the sex and genotype of your classmates should be disregarded. 8. Pool class data for data analysis. 2 of 18

CASE 1. IDEAL HARDY WEINBERG POPULATION A. INDIVIDUAL DATA My Genotype Initial F1 F2 F3 F4 F5 B. CLASS DATA Generation # Surviving genotypes AA Aa aa Individuals Surviving alleles A a alleles Parental 5 11 5 21 21 21 42 F1 3 11 7 21 17 25 42 F2 5 11 5 21 F3 4 12 5 21 F4 3 12 6 21 F5 2 15 4 21 19 23 42 9. Complete the table below: For the population (class data), what are the theoretical allele & genotype frequencies in the initial parental generation? Based on the Hardy-Weinberg theorem, what would the theoretical allele & genotype frequencies be for the 5 th generation? What are the actual allele & genotype frequencies at the end of the 5 th generation? Generation # p 2 (AA) Frequency of genotypes 2pq (Aa) q 2 (aa) Frequency of alleles Parental (H-W theoretical).25.5.25.5.5 F5 (H-W theoretical).25.5.25.5.5 F5 (actual).1.71.19.45.55 p (A) q (a) 10. Do the class results for the p and q values of the 5 th generation agree with the predicted values? 3 of 18

11. What does this mean about the population? 12. What major assumption(s) were not strictly followed in this simulation for a population in Hardy-Weinberg equilibrium? CASE 2. SELECTION AGAINST HOMOZYGOUS RECESSIVE In the natural world, not all genotypes have the same rates of survival. The environment may favor some genotypes while selecting against others. In Case 2, we will create a more realistic simulation by applying a selection pressure to the population. In this Case, you will assume that the homozygous recessive individuals never survive (100% selection against), and that heterozygous and homozygous dominant individuals survive 100% of the time. 13. Start again with your initial heterozygote genotype (2 white chips & 2 black chips). Produce your offspring as you did in Case 1. This time however, if your offspring is aa it does not survive to reproduce. Since we want to maintain a constant population size, the same two parents must try again until they produce two surviving offspring. Record your surviving offspring in the Data Table below. 14. As in Case 1, after successfully reproducing, you become your surviving offspring and mate at random with another individual in the population. Record the genotype of your offspring in the Data Table below. 15. Pool class data for data analysis. A. INDIVIDUAL DATA My Genotype Initial F1 F2 F3 F4 F5 4 of 18

B. CLASS DATA Generation # Surviving genotypes AA Aa aa Individuals Surviving alleles A a alleles Parental 5 11 5 21 21 21 42 F1 4 17 0 21 25 17 42 F2 4 17 0 21 F3 8 13 0 21 F4 5 16 0 21 F5 11 10 0 21 16. Complete the table below: For the population (class data), what are the theoretical allele & genotype frequencies in the initial parental generation? Based on the Hardy-Weinberg theorem, what would the theoretical allele & genotype frequencies be for the 5 th generation? What are the actual allele & genotype frequencies at the end of the 5 th generation? Generation # p 2 (AA) Frequency of genotypes 2pq (Aa) q 2 (aa) Frequency of alleles p q (A) (a) Parental (H-W theoretical).25.5.25.5.5 F5 (H-W theoretical).25.5.25.5.5 F5 (actual) 17. Do the class results for the p and q values of the 5 th generation agree with the predicted values? 18. How do the new p and q frequencies compare to the parental frequencies? 5 of 18

19. What major assumption(s) were not strictly followed in this simulation for a population in Hardy-Weinberg equilibrium? 20. Predict what would happen to the p and q frequencies if you simulated another five generations? 21. Since homozygous recessives are strongly selected against, would you expect the recessive (a) allele to be completely removed from the population? In other words, in a large population would it be possible to completely eliminate a deleterious (or even lethal) recessive allele. Explain. 22. Describe a real-life example of selection against a homozygous recessive genotype. 6 of 18

CASE 3. HETEROZYGOUS ADVANTAGE From Case 2, it is easy to see what happens to the lethal recessive allele in a population. However, data from human populations, sometimes show an unexpected high frequency of a deleterious allele in some populations. Sometimes there is a slight advantage to being heterozygous for a trait rather than homozygous dominant. So the situation is now more complicated: homozygous recessives are still strongly selected against and do not survive to reproduce, but now, in addition, homozygous dominants have a lower reproductive rate than heterozygotes. We will incorporate this fact into our simulation. 23. Keep everything the same as in Case 2 (all homozygous recessives do not survive to reproduce), but now if your offspring is AA, you must flip a coin. If the coin lands heads up, the offspring does not survive; if the coin lands tails up the offspring does survive. 24. As in Case 1 & 2, after successfully reproducing, you become your surviving offspring and mate at random with another individual in the population. Record the genotype of your offspring in the Data Table below. This Case will be run for 10 generations. 25. Pool class data for data analysis. A. INDIVIDUAL DATA My Genotype Initial F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 B. CLASS DATA Generation # Surviving genotypes AA Aa aa Individuals Surviving alleles A a alleles Parental 5 11 5 21 21 21 42 F1 3 18 0 21 F2 8 13 0 21 F3 10 11 0 21 F4 8 13 0 21 F5 10 11 0 21 7 of 18

Generation # Surviving genotypes AA Aa aa Individuals F6 8 13 0 21 Surviving alleles A a alleles F7 8 13 0 21 F8 6 15 0 21 F9 5 16 0 21 F10 10 11 0 21 26. Complete the table below: For the population (class data), what are the theoretical allele & genotype frequencies in the initial parental generation? Based on the Hardy-Weinberg theorem, what would the theoretical allele & genotype frequencies be for the 5 th and 10 th generations? What are the actual allele & genotype frequencies at the end of the 5 th and 10 th generations? Generation # p 2 (AA) Frequency of genotypes 2pq (Aa) q 2 (aa) Frequency of alleles Parental (H-W theoretical).25.5.25.5.5 F5 (H-W theoretical).25.5.25.5.5 p (A) q (a) F5 (actual) F10 (H-W theoretical).25.5.25.5.5 F10 (actual) 27. Explain how the changes in p and q frequencies in Case 3 (Heterozygote Advantage) compare with the frequencies in Case 1 (H-W Equilibrium) & Case 2 (Selection)? 8 of 18

28. Do you think the recessive allele will be eliminated in Case 3? Explain. 29. What is the impact of heterozygote advantage to genetic variation in a population? Explain. 30. Describe a real-life example of heterozygote advantage. 9 of 18

CASE 4. GENETIC DRIFT Remember that even though natural selection is creating adaptive change, it is not the only force molding a population. Equally important are the forces of random chance that can cause changes over time in a population even though they are not adaptive. We will simulate this by creating smaller population the classroom. 1. The class will be divided into several smaller sub-populations. These populations will remain isolated from each other and cannot interbreed. 2. Keep the mating process the same as in Case 1 (all individuals survive and reproduce). As before, after successfully reproducing, you become your surviving offspring and mate at random with another individual, but only in your sub-population. Record the genotype of your offspring in the Data Table below. 3. Record class data from other sub-populations for data analysis. A. INDIVIDUAL DATA My Genotype Initial F1 F2 F3 F4 F5 B. SUB-POPULATION DATA Generation # Parental F1 F2 F3 F4 Surviving genotypes AA Aa aa Individuals A Surviving alleles a alleles F5 Group 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 10 of 18

4. Complete the table below: For the population (class data), what are the theoretical allele & genotype frequencies in the initial parental generation? Based on the Hardy-Weinberg theorem, what would the theoretical allele & genotype frequencies be for the 5 th generation of any sub-population? What are the actual allele & genotype frequencies at the end of the 5 th generation for each sub-population? CLASS DATA Surviving genotypes Surviving alleles Generation # p 2 (AA) 2pq (Aa) q 2 (aa) Parental (H-W theoretical).25.5.25.5.5 F5 (H-W theoretical).25.5.25.5.5 Group 1 F5 (actual) p (A) q (a) Group 2 F5 (actual) Group 3 F5 (actual) 5. Compare the initial parental genotype and allele frequencies in the different sub-populations in the classroom. 6. Compare the final genotype and allele frequencies in the different sub-populations in the classroom. 11 of 18

7. What do these results indicate about the importance of population size as an evolutionary force? 8. How is this issue significant in conservation biology and endangered species conservation? 9. Describe a real-life example of genetic drift. 12 of 18

HARDY-WEINBERG PROBLEMS 10. In fruit flies, Drosophila melanogaster, the allele for normal-length wing is dominant over the allele for vestigial wings (vestigial wings are stubby little curl that cannot be used for flight). In a population of 1,000 individuals, 360 show the recessive phenotype. How many individuals would you expect to be homozygous dominant and how many would be heterozygous for this trait? a. Choose the letters you will use to represent the alleles & genotypes: Dominant allele recessive allele Homozygous Dominant Heterozygous Homozygous recessive b. Translate to known frequencies: p (Dominant allele) q (recessive allele) p 2 (Homozygous Dominant) 2pq (Heterozygous) q 2 (Homozygous recessive) c. Choose which Hardy-Weinberg formula you will primarily use: d. Solve. Neatly show work below. Write final answer in box. ANSWER 13 of 18

11. The allele for unattached ear lobes is dominant over the allele for attached earlobes. In a population of 500 individuals, 25% show the recessive phenotype. How many individuals would you expect to be homozygous dominant and how many would be heterozygous for this trait? a. Choose the letters you will use to represent the alleles & genotypes: Dominant allele recessive allele Homozygous Dominant Heterozygous Homozygous recessive b. Translate to known frequencies: p (Dominant allele) q (recessive allele) p 2 (Homozygous Dominant) 2pq (Heterozygous) q 2 (Homozygous recessive) c. Choose which Hardy-Weinberg formula you will primarily use: d. Solve. Neatly show work below. Write final answer in box. ANSWER 14 of 18

12. The allele for the hair pattern called widow s peak is dominant over the allele for no widow s peak. In a population of 1,000 individuals, 510 show the dominant phenotype. How many individuals would you expect of each of the three possible genotypes for this trait? a. Choose the letters you will use to represent the alleles & genotypes: Dominant allele recessive allele Homozygous Dominant Heterozygous Homozygous recessive b. Translate to known frequencies: p (Dominant allele) q (recessive allele) p 2 (Homozygous Dominant) 2pq (Heterozygous) q 2 (Homozygous recessive) c. Choose which Hardy-Weinberg formula you will primarily use: d. Solve. Neatly show work below. Write final answer in box. ANSWER 15 of 18

13. Rh refers to a protein maker on red blood cells. In the United States about 16% of the population is Rh negative. The allele for Rh negative is recessive to the allele for Rh positive. If the student population of a high school in the U.S. is 2,000, how many students would you expect of each of the three possible genotypes for this trait? a. Choose the letters you will use to represent the alleles & genotypes: Dominant allele recessive allele Homozygous Dominant Heterozygous Homozygous recessive b. Translate to known frequencies: p (Dominant allele) q (recessive allele) p 2 (Homozygous Dominant) 2pq (Heterozygous) q 2 (Homozygous recessive) c. Choose which Hardy-Weinberg formula you will primarily use: d. Solve. Neatly show work below. Write final answer in box. ANSWER 16 of 18

14. In certain African countries 4% of the newborn babies have sickle-cell anemia, which is a recessive trait. Out of a random population of 1,000 newborn babies, how many would you expect of each of the three possible genotypes for this trait? a. Choose the letters you will use to represent the alleles & genotypes: Dominant allele recessive allele Homozygous Dominant Heterozygous Homozygous recessive b. Translate to known frequencies: p (Dominant allele) q (recessive allele) p 2 (Homozygous Dominant) 2pq (Heterozygous) q 2 (Homozygous recessive) c. Choose which Hardy-Weinberg formula you will primarily use: d. Solve. Neatly show work below. Write final answer in box. ANSWER 17 of 18

15. In a population, the dominant phenotype of a certain trait occurs 91% of the time. What is the frequency of the dominant allele? a. Choose the letters you will use to represent the alleles & genotypes: Dominant allele recessive allele Homozygous Dominant Heterozygous Homozygous recessive b. Translate to known frequencies: p (Dominant allele) q (recessive allele) p 2 (Homozygous Dominant) 2pq (Heterozygous) q 2 (Homozygous recessive) c. Choose which Hardy-Weinberg formula you will primarily use: d. Solve. Neatly show work below. Write final answer in box. ANSWER 18 of 18