IMPROVE MIXING BY GENERATING ELONGATIONAL FLOW

Similar documents
ELONGATIONAL FLOW IN MULTIPLE SCREW EXTRUDERS

PROCESSING MICA BASED PIGMENT MASTERBATCH

Notes. Plastic Behavior In The Compounding Twin Screw Extruder. Lesson 4. I. Screw Terminology. A. Length to Diameter Ratio (L/D ratio)

SCREW DESIGN BASICS The Processor Point Of View. Andrew W. Christie Optex Process Solutions, LLC

GROOVED FEED SINGLE SCREW EXTRUDERS - IMPROVING PRODUCTIVITY AND REDUCING VISCOUS HEATING EFFECTS

Endex Foam Extrusion General Information Guide

Twin Screw Extruder and Continuous Mixer Rate Limitations

Closely Intermeshing Counter-Rotating Twin Screw Extrusion of Polymers

REPLICATION OF MIXING ACHIEVED IN LARGE CO- ROTATING SCREW EXTRUDER USING A NOVEL LABORATORY G MINIMIXER

REVIEW. E N H A N C I N G MELTING AND MIXING in a Twin-Screw Extruder. Capabilities. Page 1 of 5

Effective troubleshooting of extrusion problems

Co-Rotating Twin-Screw Extruders

Optimizing Extruder Controls, Part Two

FEED ENHANCEMENT TECHNOLOGY FOR LOW BULK DENSITY MATERIAL INTO CO-ROTATING TWIN-SCREW COMPOUNDING EXTRUDERS

Development of Advanced Structural Foam Injection Molding. Kye Kim. A thesis submitted in partial fulfillment of the requirements for the degree of

EFFECT OF SCREW SPEED ON POLYETHYLENE-CALCIUM CARBONATE COMPOSITES PRODUCED USING TWIN AND QUAD SCREW EXTRUDERS

MELTING PHENOMENA AND MECHANISM in CO-ROTATING TWIN SCREW EXTRUDER

Options. The following is a list of our most popular options. If you don t find what you need, please call us. HARDWARE

SIMULATION OF CO-ROTATING FULLY INTERMESHING TWIN-SCREW COMPOUNDING EXTRUDERS: ALTERNATIVES FOR PROCESS DESIGN

Understanding Extrusion

RHEOLOGY & SLOT DIE COATING TECHNOLOGY. Mark Miller. Coating Tech Slot Dies, LLC Alpine Road, Suite 4. Eau Claire, WI 54703

Module 3 Selection of Manufacturing Processes. IIT Bombay

P1: TIX/XYZ P2: ABC JWST166-c01 JWST166-Douroumis February 28, :19 Printer: Yet to come Trim: 244mm 168mm. Single-screw Extrusion: Principles

2.2 The Multiscrew Extruder

AN EXPERIMENTAL STUDY OF THE FLOWS IN AN ENERGY TRANSFER SCREW

Table of Contents. Robert A. Malloy. Plastic Part Design for Injection Molding. An Introduction ISBN:


HIGH SPEED TWIN SCREW EXTRUSION FOR BIODEGRADABLE POLYMER BLENDS: ANALYSIS OF COMPATIBILITY AND RHEOLOGY PREDICTION

DIE FLOW CHANNEL DISTRIBUTION

Examination of the Performance of a High Speed Single Screw Extruder for Several Different Extrusion Applications

1 : TECHNICAL BASICS P SS. Axial distance, z

New Developments in Co-Rotating Twin-Screw Extrusion for Production of Long Glass Fiber Composites

Nordson Polymer Processing Systems Screws, Barrels, Front End Components & Wear Solutions

APN029. The SER2 Universal platform for material testing. A.Franck TA Instruments Germany

Contents. 1. Introduction to Materials Processing Starting Materials 21. Acknowledgements

METHOD TO EVALUATE BIAXIAL STRETCH RATIOS IN STRETCH BLOW MOLDING

Influence of extrusion coating processing conditions on structure and tensile properties of some polyethylene grades

Twin Screw Extrusion Systems to Process PLA More Efficiently

Bulk Deformation Processes

LCM CC & TCC. A member of the Possehl Group

AN INVESTIGATION OF INJECTION MOLDING PARAMETERS ON A SINGLE-STAGE INJECTION STRETCH BLOW MOLDING

MANUFACTURING PROCESSES

A MECHANISM FOR SOLID BED BREAKUP IN SINGLE-SCREW EXTRUDERS

SCREW & BARREL METALLURGY & SERVICE LIFE. Mrunal Sanghvi Regional Sales Manager Nordson Xaloy Asia (Thailand) Ltd.

Die design and process optimization of plastic gear extrusion

MICROCELLULAR NANOCOMPOSITE INJECTION MOLDING PROCESS

Parker Engineered Materials Group Elastomers 101

Rheological Studies on Radiation Modified Polyethylene Resins. Song Cheng* and Ed Phillips

PREPARED BY: DR. RAHIMAH OTHMAN FOOD ENGINEERING (ERT 426) SEMESTER 1 ACADEMIC SESSION 2016/17

A New Styrenic Block Copolymer Designed for Polyolefin-like Processing for Compounding, Films and Fibers

Contents. 1. Making a Blue Tank 2. Material Production Options 3. Methods for Adding Color 4. Grinding the Pellets 5. Benefits of Using Micros

Soft, Processable SEBS Polymers for Compounds

Calcium Carbonate in Blown HDPE Film

COMPARISON OF BOTTLE WALL THICKNESS DISTRIBUTION OBTAIN IN REAL MANUFACTURING CONDITIONS AND IN ANSYS POLYFLOW SIMULATION ENVIRONMENT

Color change time is money

1 Polymer Processing. 1.1 Introduction

CARBON NANOTUBES: A HIGH PERFORMANCE CONDUCTIVE ADDITIVE. Patrick Collins and John Hagerstrom: Hyperion Catalysis International

Performance and productivity.

3. Mechanical Properties of Materials

PUSHTRUSION TM DIRECT IN-LINE (D-LFT) COMPOUNDING TECHNOLOGY VERSUS LFT PELLETS AND GMT SHEET

SIMPLIFIED MODELS FOR SINGLE-SCREW EXTRUSION APPLICATIONS

Effect of Processing Parameters on Polypropylene Film Properties

Productivity and efficiency in foam extrusion XE Schaumex and Schaumtandex lines

MICROPELLETIZATION AND THEIR APPLICATION TO MANUFACTURE POROUS PLASTIC PARTS

Product Bulletin 2K-3.2. stamixco. mix it up..

Barex Resins Thermoforming

Effect of Particle Size on Properties of Wood-Flour Reinforced Polypropylene Composites

Chemical Foaming Alternatives to Azodicarbonamide

ESTIMATION OF ELONGATIONAL VISCOSITY OF POLYMERS FOR ACCURATE PREDICTION OF JUNCTURE LOSSES IN INJECTION MOLDING

EFFECTS OF GRAPHITE SELECTION ON THERMALLY CONDUCTIVE COMPOUNDS FOR LED LAMP HEAT SINKS

MECHANICS OF PASTE FLOW IN RADIAL SCREEN EXTRUDERS

PARTICLE-FOAM COMPOSITE INJECTION MOLDING

THE EFFECT OF ORIENTATION ON MECHANICHAL PROPERTIES OF RECYCLED PET

Injection Molding T. Gutowski. D. Roylance 1

INTRODUCTION. Table 1. Typical applications for LDPE and Ateva EVA copolymers. Category Typical Applications Advantages

MASTERBATCHES. Masterbatch Application and Selection Guide for Irrigation Pipes

1/31/ Plastics Processing. Thermoplastics (Tampere)

Micophotometric Control of Particles and Inhomogeneities in Flowing Polymer Melts during Extrusion Processing

Prototype System to Study the Effect of Weld Lines on the Performance of Extruded Profiles

The problem lies between the ears SPECIAL PRINT

TOP 5 REASONS TO USE FILM-CAST PTFE LINER TUBING FOR YOUR NEXT CATHETER DESIGN

Chapter TYPE OF EXTRUDERS AND EXTRUSION CONDITIONS

BLOW MOULDING. Blow moulding is a process used to produce hollow objects from thermoplastic.

3D PRINTED PARTS FOR ENGINEERING AND OPERATIONS APPLICATIONS NATHAN LUCERO

MANUFACTURING TECHNOLOGY

EXTRUSION APPLICATIONS Feed and Petfood. Keith C. Behnke Professor Emeritus Kansas State University

High Modulus Carbon Fibres in Super-Structural Compounds

RANDCASTLE EXTRUSION SYSTEMS INC.

Gear Pumps. Precise, Pulseless, Repeatable Performance. In Polymer Applications.

TERPOLYMER ETHYLENE VINYL ACETATE MALEIC ANHYDRIDE

Injection Molding An Introduction

Proper Dispersion of Silberline Aluminum Pigments in Plastics

Powder-Metal Processing and Equipment

Thermoplastics start as regular pellets or granules and can be remelted.

Process considerations to achieve optimum weld strengths of Wood Plastics Composites using advanced Vibration Welding technology

Equipment & Material Considerations for Physically Foamed Films and Sheet. Mark Lindenfelzer, President, MuCell Extrusion

Homogeneous And Non-Homogeneous Blends Of Liquid Silicone Rubber (For Desired Effects)

Automotive: Applications, Processes and products -- Fiberglass for PA Reinforcement. Dr. Heinz Zhang. Product R&D Center

Powder Metallurgy. Powder-Metal Processing and Equipment 11/10/2009

IN-SITU-PULTRUSION STRUCTURAL THERMOPLASTIC FRP-PARTS

Transcription:

IMPROVE MIXING BY GENERATING ELONGATIONAL FLOW Introduction By: Dr. Chris Rauwendaal Rauwendaal Extrusion Engineering, Inc. Los Altos Hills, California 94022 USA www.rauwendaal.com Most dispersive mixers used in single screw extruders use geometries that generate shear flow to disperse agglomerates or droplets. However, shear flow is rather inefficient in dispersing agglomerates or droplets. Elongational flow is much more efficient than shear flow in achieving effective dispersion. As a result, if we want to achieve good dispersive mixing in a single screw extruder we need to use mixer that create elongational flow. A new class of mixing devices was developed with the specific objective to achieve strong elongational flow. These CRD mixers combine dispersive and distributive mixing capability. Background In polymer mixing we usually distinguish between distributive and dispersive mixing. Distributive mixing aims to improve the spatial distribution of the components without cohesive resistance playing a role; it is also called simple or extensive mixing. In dispersive mixing cohesive resistances have to be overcome to achieve finer levels of dispersion; dispersive mixing is also called intensive mixing. The cohesive component can consist of agglomerates where a certain minimum stress level is necessary to rupture the agglomerate. It can also be droplets where minimum stresses are required to overcome the interfacial stresses and deform the droplet to cause break-up. Dispersive mixing is usually more difficult to achieve than distributive mixing. Single screw extruders are generally considered to be poor dispersive mixers while twin screw compounding extruders have much better dispersive mixing capability. However, when we analyze the mixing process in co-rotating twin screw extruders (1), it is clear that the main mixing action does not occur in the intermeshing region but in the region 1

between the pushing flight flank and the barrel. This is particularly true when the flight helix angle is large as it is in kneading disks. Dispersive Mixing in Twin Screw Extruders The reason that twin screw extruders make good dispersive mixers is that the space between the pushing flight flank and the barrel is wedge shaped and thus creates elongational flow as the material is force through the flight clearance. Shear flow is not very efficient in achieving dispersive mixing because particles in the fluid are not only sheared they are also rotated, see figure 1. In elongational flow particles undergo a stretching type of deformation without any rotation; rheologists call this irrotational flow, see figure 1. Dispersion in shear flow Dispersion in elongational flow Figure 1, dispersion in shear and elongational flow Since there is no rotation in pure elongational flow the deformation of the fluid is effectively transferred to the clusters in the fluid. This results in tensile forces acting to pull apart the clusters into smaller clusters. 2

Using Twin Screw Mixing Mechanism in Single Screw Extruders In the past it was considered to be difficult to generate elongational flow in single screw extruders. However, this is not the case at all. There are at least two simple ways in which elongational flow can be achieved in single screw extruders. One is by using a slanted pushing flight flank so that the material is stretched as it is forced through the flight clearance. The other way is by using tapered slots in the flights. The tapered slot accelerates the fluid as it flows through the slots and thus creates elongational deformation. The dashed arrows in figure 2 indicate the screw velocity, the solid arrows indicate the melt velocity relative to the screw. barrel Curved flight flank Tapered flight slot Figure 2, Two methods of creating elongational flow in the CRD mixer The new dispersive (CRD) mixers developed by Chris Rauwendaal (2-4) use both methods to create elongational flow. The tapered slots in the flights serve to increase distributive mixing as well as dispersive mixing. If the material is not randomized in its passage through the mixer, only the outer shells of the fluid will be dispersed leaving the inner shells undispersed (5). Therefore, it is critical to incorporate both distributive and dispersive mixing ability within the mixer. The initial design of the CRD mixer (2) was developed using the concept of the passage distribution function (6), while the final geometry was developed using a detailed three-dimensional flow analysis. The 3D flow analysis was performed using BEMflow (7), a boundary element flow analysis package originally developed at the University of Wisconsin, 3

Madison by Professor Osswald and co-workers. The boundary element analysis allows a complete description of flow, so that the stresses, the number of passes over the mixing flights, the number of passes through the tapered slots, residence time, etc. can be quantified for a large number of particles. The CRD mixer may well be the first complex mixing device developed solely based on engineering calculations and computer modeling. With BEA many particles can be tracked as they flow through the mixer. For each particle the flow number can be determined along its streamline. The flow number is a measure of the strength of the elongational flow relative to the shear flow; its value is between zero and one. A flow number of one indicates pure elongational flow, a flow number of zero indicates pure rotation. A flow number of 0.5 indicates simple shear flow. Figure 3 shows the flow number of a particle traveling through a CRD mixer. 1.0 Flow number vs. time for V4 configuration of points traveling through the nip 0.8 Flow Number 0.6 0.4 0.2 0 0 0.1 0.2 0.3 0.4 Time [seconds] Figure 3, Flow number vs. time in CRD mixer It is interesting to note that the highest flow number is about 0.95; this is almost pure elongational flow. Similar analyses on twin screw extruders indicate that the highest flow number is about 0.80. The reason that a good 4

single screw mixer can achieve stronger elongational flow than a twin screw extruder is that there are rather severe design constraints for the screw geometry in intermeshing twin screw extruders (1). In single screw extruders we more design freedom and we can actually create more effective elongational flow as a result. Experience from the Field As of September 2000 over one hundred extruders are running with CRD mixers. The current applications are color concentrates, foamed plastic, post-consumer-reclaim with calcium carbonate, medical applications, heat shrinkable tubing, wire coating, carbon black dispersion in polyolefins, and blown film extrusion of low melt index metallocenes. All current applications are on single screw extruders in sizes ranging from 19 to 200 mm (0.75 to 8.0 inch). CRD mixing screws are also used in injection molding and even in twin screw extruders. In the manufacture of color concentrates it was possible to produce even the most difficult material, phthalate blue, with good quality using a single screw extruder. The foamed plastic application polystyrene was foamed with a physical blowing agent carbon dioxide, a demanding application requiring very good dispersive and distributive mixing. The foamed product was found to have uniform cell size and excellent surface quality, while the extrusion process was very stable with respect to melt pressure and temperature. In the PCR application film scrap is extruded with relatively high levels of calcium carbonate, up to thirty percent. The dispersion quality achieved in this application is excellent. It should be noted that this is an application that would normally use in twin screw extruder; single screw extruders are generally considered not to be capable of handling these types of compounding jobs. In the blown film application major problems were poor film quality and the inability to feed more than three percent fluff with the virgin plastic without generating gels in the film. The CRD mixing screw was able to improve film quality and handle up to twelve percent fluff without generating gels. In all applications the CRD mixing screws have been able to achieve better mixing at equal or higher levels of output at lower levels of power consumption and lower melt temperatures. In most cases, the CRD mixing 5

screws replaced barrier screws with mixing elements added after the barrier section. Since barrier screws are based on shear mixing, while CRD mixing screws are based in elongational mixing, the good results prove that elongational mixing is more efficient than shear mixing. The good results with respect to gels indicate that elongational mixing devices can effectively disperse gels as opposed to shear mixing devices. Luciani and Utracki found similar results in experiment using their extensional flow mixer (8). The experience from the field was obtained with a fifth generation mixing device, the CRD5, see figure 4. This mixer has four parallel flights with tapered slots in the flights. Each wiping flight segment is followed by three mixing flight segments. Tapered slots separate the flight segments. The wiping segments are offset such that the mixer wipes the entire barrel surface. Complete wiping of the barrel surface is important to achieve efficient heat transfer between the plastic melt and the extruder barrel. Figure 4, Three dimensional rendering of a CRD5 mixer Application to Injection Molding Mixing is not only important in extrusion, it is equally important in injection molding. CRD mixing elements can be added to an injection screw. Most injection screws have a non-return valve (NRV) at the end of the screw to 6

prevent the molten plastic flowing back into the screw during injection. It is possible to incorporate mixing capability into the NRV to combine two functions within one device. Figure 5 shows an example of a CRD mixing element incorporated in a slide ring NRV for injection molding (11). Figure 5, CRD non-return valve for injection molding screws (open position) The slide ring has multiple internal grooves that are tapered. The tapered grooves are formed by elongational pins. The pins split and reorient the fluid thus causing efficient distributive mixing. The tapered grooves accelerate the fluid and cause elongational flow with efficient dispersive mixing. The nosepiece of the valve has external pins that create a mixing action similar to that of the internal pins of the slide ring. The CRDNRV provides a convenient and cost efficient method to improve the mixing capability of injection molding screws. Good mixing action can be obtained simply by exchanging the conventional NRV with a CRDNRV. Application to Static Mixers and Breaker Plates The mixing mechanism of the CRD mixer has also been applied to static mixers and breaker plates. The Madison Group in cooperation with Rauwendaal Extrusion Engineering has developed the DDSM static mixer 7

capable of distributive and dispersive mixing and the MBP, the mixing breaker plate (12). Figure 6 shows two versions of the MBP. The first one on the left has tapered circular channels to create elongational flow, the second on the right has straight tapered channels. Different plates can be stacked together to increase the mixing action. Figure 6, Two examples of the mixing breaker plate The mixing breaker plate provides a very convenient method to increase the mixing action in an extruder. Another advantage of the MBP over conventional breaker plates is that it is much more streamlined. As a result, it has less chance of stagnation and it is easier to clean. Conclusions The CRD mixer allows the single screw extruder for the first time to be used in applications that heretofore were only possible on twin screw extruders. The high mixing efficiency of the CRD mixer is due to the generation of strong elongational flow and the fact that all fluid elements make multiple passes through the high stress regions. Elongational flow not only achieves more effective dispersion, it also creates less viscous dissipation than shear flow. As a result, the power consumption and temperature rise in the CRD are less than in mixing devices that rely on shear flow. The CRD mixer is easy to manufacture, can be mounted on existing extruder screws, and fits in a normal extruder barrel, thus providing a cost effective improvement in mixing capacity. Other mixers, such as the Cavity Transfer Mixer (9) or the Crown Cup Mixer (10), require special barrel sections that 8

increase the cost of the equipment and cost of operation. The use of the CRD mixer is being extended to injection molding and twin screw mixers and extruders. With the positive results obtained from the field it can be expected that the CRD mixer will find widespread applications in extrusion, compounding, and molding. The CRDNRV provides a quick and convenient method to improve the mixing action in injection molding machines. The CRDNRV simply replaces an existing non-return valve. The mixing breaker plate provides a fast and easy method to enhance mixing in extruders. The mixing breaker plate also has a more streamlined design than conventional breaker plates and is easier to clean. References 1. Polymer Mixing, A Self-Study Guide, C. Rauwendaal, Carl Hanser Verlag, Munich (1998) 2. A New Dispersive Mixer for Single Screw Extruders, 56 th SPE ANTEC, Atlanta, GA, 277-283, Chris Rauwendaal, Tim Osswald, Paul Gramann, and Bruce Davis (1998) 3. Experimental Study of a New Dispersive Mixer, Chris Rauwendaal, Tim Osswald, Paul Gramann, Bruce Davis, Maria del Pilar Noriega, and O. A. Estrada, 57 th SPE ANTEC, New York, 167-176 (1999) 4. Design of Dispersive Mixing Sections, Chris Rauwendaal, Tim Osswald, Paul Gramann, and Bruce Davis, International Polymer Processing, Volume 13, pp. 28-34 (1999) 5. Kinematics and Deformation Characteristics as a Mixing Measure in the Screw Extrusion Process, T.H. Kwon, J.W. Joo, and S.J. Kim, Polym. Eng. Sci., V. 34, N. 3, 174-189 (1994) 6. The Distribution of Number of Passes Over the Flights in Single Screw Melt Extruders, Z. Tadmor and I. Manas-Zloczower, Advances in Polymer Technology, V. 3, No. 3, 213-221 (1983) 7. BEMflow, Boundary Element Fluid and Heat Transfer Simulation Program, 1996 The Madison Group: PPRC 8. The Extensional Flow Mixer, A. Luciani and L. A. Utracki, Intern. Polymer Processing XI, 4, 299-309 (1996) 9. The Cavity Transfer Mixer: A Blender for all Seasonings, R. S. Hindmarch, Materials & Design, Vol. 8, No. 6, November/December (1987) 9

10. Innovation Brings High Shear Mixing for Single Screw Extruder, n.n., Plastics Additives & Compounding, April/May, 30-31 (1999) 11. Non-Return Valve with Distributive and Dispersive Mixing Capability, C. Rauwendaal, 58 th SPE ANTEC, Orlando, FL, 638-641, (2000) 12. A New Dispersive and Distributive Static Mixer for the Compounding of Highly Viscous Materials, 57 th SPE ANTEC, New York, 162-166, C. Rauwendaal, P. Gramann, B. Davis, T. Osswald (1999) 10