A Case Study Based Simulation of Green Supplier Selection Using Fmcdm and Order Allocation through Molp

Similar documents
Procedia - Social and Behavioral Sciences 109 ( 2014 )

European Journal of Operational Research

Available online at ScienceDirect. Information Technology and Quantitative Management (ITQM 2014)

Weighting Suppliers Using Fuzzy Inference System and Gradual Covering in a Supply Chain Network

[Rathore* et al., 5(9): September, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

Facility Location Selection using PROMETHEE II Method

A Decision Support System for Performance Evaluation

A Hybrid Method of GRA and DEA for Evaluating and Selecting Efficient Suppliers plus a Novel Ranking Method for Grey Numbers

Application of Association Rule Mining in Supplier Selection Criteria

VENDOR RATING AND SELECTION IN MANUFACTURING INDUSTRY

The Multi criterion Decision-Making (MCDM) are gaining importance as potential tools

A Model for Group Decision Support for Supplier Selection

Keywords: Fuzzy failure modes, Effects analysis, Fuzzy axiomatic design, Fuzzy AHP.

A Fuzzy Multiple Attribute Decision Making Model for Benefit-Cost Analysis with Qualitative and Quantitative Attributes

Implementation of Just-In-Time Policies in Supply Chain Management

Fuzzy Logic Based Vendor Selection for the Public Procurement Sector: a Case Study

Supplier Evaluation and Selection: a Review of the Literature since 2007

VENDOR SELECTION AND SUPPLY QUOTAS DETERMINATION BY USING THE ANALYTIC HIERARCHY PROCESS AND A NEW MULTI-OBJECTIVE PROGRAMMING METHOD

Application of the Fuzzy Delphi Method and the Fuzzy Analytic Hierarchy Process for the Managerial Competence of Multinational Corporation Executives

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 11 Nov p-issn:

GIS-BASED SITE SELECTION FOR UNDERGROUND NATURAL RESOURCES USING FUZZY AHP-OWA

Available online at ScienceDirect. Procedia Manufacturing 2 (2015 ) A Fuzzy TOPSIS Model to Rank Automotive Suppliers

Developing a Green Supplier Selection Model by Using the DANP with VIKOR

Single and Multiple Sourcing in the Auto-Manufacturing Industry

A Fuzzy Optimization Model for Single-Period Inventory Problem

PERFORMANCE MEASUREMENT OF DISTRIBUTION CENTRE COMBINING DATA ENVELOPMENT ANALYSIS AND ANALYTIC HIERARCHY PROCESS

A Fuzzy AHP Approach for Supplier Selection

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 9, March 2014

PERFORMANCE EVALUATION USING A COMBINED BSC-FUZZY AHP APPROACH

The Analysis of Supplier Selection Method With Interdependent Criteria

Evaluating Overall Efficiency of Sewage Treatment Plant Using Fuzzy Composition

Supplier Selection Using Analytic Hierarchy Process: An Application From Turkey

INTEGRATION OF ECQFD IN CONCEPTUAL DESIGN ACTIVITIES FOR ENABLING ENVIRONMENTALLY CONSCIOUS DESIGN

This is a refereed journal and all articles are professionally screened and reviewed

PoS(CENet2017)051. Green Suppliers Evaluation by Fuzzy Clustering and TOPSIS Suppliers. Speaker. Mingwei Zhang 1

Using Macbeth Method for Technology Selection in Production Environment

Proposing an Aggregate Production Planning Model by Goal Programming Approach, a Case Study

Grey-entropy analytical network process for green innovation practices

Multi-Criteria Analysis of Advanced Planning System Implementation

Abstract: * Prof. P. Sheela ** Mr. R.L.N. Murthy

Supplier Selection Criteria and Methods in Supply Chains: A Review

CONSTRAINT MODELING AND BUFFER MANAGEMENT WITH INTEGRATED PRODUCTION SCHEDULER

DETERMINING THE WEIGHTS OF MARKETING MIX COMPONENTS USING ANALYTIC NETWORK PROCESS

Optimal Policy for an Inventory Model without Shortages considering Fuzziness in Demand, Holding Cost and Ordering Cost

Capacity Dilemma: Economic Scale Size versus. Demand Fulfillment

Analytic Hierarchy Process (AHP) in Ranking Non-Parametric Stochastic Rainfall and Streamflow Models

A Decision Support System for Facility Layout Changes

ARTICLE IN PRESS Resources, Conservation and Recycling xxx (2012) xxx xxx

A FUZZY AHP APPROACH FOR SUPPLIER SELECTION PROBLEM: A CASE STUDY IN A GEARMOTOR COMPANY

Analytic Network Process (ANP): An Approach for Supplier Selection in an Automobile Organization

A Fuzzy Inference System Approach for Knowledge Management Tools Evaluation

PROMETHEE USE IN PERSONNEL SELECTION

Technology Selection for Product Innovation Using Analytic Network Process (ANP) A Case Study

A Genetic Algorithm for a Bicriteria Supplier Selection Problem

Multi Criteria Decision Analysis for Optimal Selection of Supplier Selection in Construction Industry A Case Study

Analysis Of Barriers For Implementing Green Supply Chain Management In Small and Medium Sized Enterprises (SMEs) of India.

Identification of Factors Affecting Production Costs and their Prioritization based on MCDM (case study: manufacturing Company)

Implementing SWOT-FTOPSIS Methods for Selection of the Best Strategy: Pharmaceutical Industry in Bangladesh

Sustainable sequencing of N jobs on one machine: a fuzzy approach

SUPPLIER SELECTION USING FUZZY INTERFACE SYSTEM

Proposal for using AHP method to evaluate the quality of services provided by outsourced companies

Chapter 2 A Fuzzy Multi-Attribute Decision-Making Method for Partner Selection of Cooperation Innovation Alliance

A novel multiobjective programming approach dealing with qualitative and quantitative objectives for environmental management

CHAPTER 5 SOCIAL WELFARE MAXIMIZATION FOR HYBRID MARKET

Exploring Fuzzy SAW Method for Maintenance Strategy Selection Problem of Material Handling Equipment

Genetic Algorithms-Based Model for Multi-Project Human Resource Allocation

CAHIER DE RECHERCHE n E4

RECONFIGURING STRATEGY POLICY PORTFOLIOS FOR TAIWAN S TOURISM INDUSTRY DEVELOPMENT WITH A NOVEL MODEL APPLICATION

Application of Kim-Nelson Optimization and Simulation Algorithm for the Ranking and Selecting Supplier

Multi-objective optimization

AN AHP APPLICATION IN VENDOR SELECTION

Comparison of Fuzzy logic, AHP, FAHP and Hybrid Fuzzy AHP for new supplier selection and its performance analysis

An Application of Fuzzy Delphi and Fuzzy AHP on Evaluating Wafer Supplier in Semiconductor Industry

Decision Science Letters

ESTABLISHING RELATIVE WEIGHTS FOR CONTRACTOR PREQUALIFICATION CRITERIA IN A PRE-QUALIFICATION EVALUATION MODEL

An Integrated Multi-Criteria Decision Making Model for Evaluating Wind Farm Performance

THE EFFECTS OF FULL TRANSPARENCY IN SUPPLIER SELECTION ON SUBJECTIVITY AND BID QUALITY. Jan Telgen and Fredo Schotanus

Incorporating cost and environmental factors in quality function deployment using TOPSIS method

Managing risks in a multi-tier supply chain

Introduction to Management Science 8th Edition by Bernard W. Taylor III. Chapter 1 Management Science

Application of the method of data reconciliation for minimizing uncertainty of the weight function in the multicriteria optimization model

Understanding Performance Criterions for Leagile Supply Chain using Fuzzy AHP

Group Decision Support System for Multicriterion Analysis A Case Study in India

Cost-Effectiveness Analysis of Supplier Performance based on SCOR Metrics

An Application of Fuzzy Delphi and Fuzzy AHP for Multi-criteria Evaluation on Bicycle Industry Supply Chains

An empirical DEA investigation for development of new bank s branches

A Stochastic AHP Method for Bid Evaluation Plans of Military Systems In-Service Support Contracts

International INTERNATIONAL Journal of Mechanical JOURNAL Engineering OF MECHANICAL Research and Development (IJMERD), ISSN

MULTI CRITERIA EVALUATION

A Bayesian Approach to Operational Decisions in Transportation Businesses

Reorder Quantities for (Q, R) Inventory Models

Economic Computation and Economic Cybernetics Studies and Research, Issue 3/2017, Vol. 51

Effective Multi-echelon Inventory Systems for Supplier Selection and Order Allocation

PROCUREMENT-DISTRIBUTION MODEL FOR PERISHABLE ITEMS WITH QUANTITY DISCOUNTS INCORPORATING FREIGHT POLICIES UNDER FUZZY ENVIRONMENT

Operation and supply chain management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology Madras

RESEARCH ON DECISION MAKING REGARDING HIGH-BUSINESS-STRATEGY CAFÉ MENU SELECTION

Design Method for Concurrent PSS Development

Even Swaps Method for Developing Assessment Capabilities of E-Negotiation System

An Exploratory Study of Critical Success Factors of Brand Extension Strategies using Fuzzy Analytical Hierarchy Process.

Military Application of Multi-Criteria Decision Making

Transcription:

IOSR Journal of Business and Management (IOSR-JBM) e-iss: 78-487X, p-iss: 39-7668. Volume 9, Issue 6. Ver. I (June 07), PP 6-68 www.iosrournals.org A Case Study Based Simulation of Green Supplier Selection Using Fmcdm and Order Allocation through Molp Mahmud Parvez, Md. Bony Amin, Md. Fashiar Rahman 3 Department of Industrial Engineering and Management, Khulna University of Engineering & Technology, Khulna- 903, Bangladesh Abstract: The purpose of this paper is to select Green Supplier using Integrated Fuzzy Multi Criteria Decision Making (FMCDM) and allocates order through Multi Obective Linear Programming (MOLP) approach along with and Supplier Selection Software development. To select supplier this paper investigates various qualitative and quantitative criteria. For that, this paper integrates Fuzzy Analytic Hierarchy Process (FAHP), Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS), and Fuzzy MOLP to solve the problem of supplier selection and order allocation. At first the authors used Fuzzy AHP to calculate the relative weights of supplier selection criteria; then, the authors used Fuzzy TOPSIS for ranking of suppliers according to the selected criteria. Finally, the weights of the criteria and ranks of suppliers were incorporated into the MOLP model to determine the optimal order quantity from each supplier while being subected to some resource constraints. Research provides the weight and rank of the suppliers and also optimum order quantity among them according to their rank. Keywords: Fuzzy AHP, Fuzzy TOPSIS, Order Allocation, Software, Green Supplier I. Introduction: In the face of acute global competition, supplier management is rapidly emerging as a crucial issue to any companies striving for business success and sustainable development. To optimize competitive advantages, a company should incorporate suppliers as an essential part of its core competencies. In developing countries like Bangladesh, for most of the company cost is often considered as a maor concerned in their procurement strategy. Others important criteria like quality, reliability, defect rate, environmental competency have been skipped in their recent procedure of supplier selection. But it is not accepted for a company. As a result most often they failed to choose their correct eco-friendly supplier. Supplier selection is a Multiple Criteria Decisionmaking (MCDM) problem which is affected by several conflicting factors. MCDM techniques support the decision makers DMs in evaluating a set of alternatives. MCDM refers to finding the best opinion from all of the feasible alternatives in the presence of multiple, usually conflicting, decision criteria. Depending upon the purchasing situations, criteria have varying importance and there is a need to weight criteria. In the supplier selection process, if suppliers have limited capacity or other constraints, it is necessary to determine the best supplier and order quantity of each supplier. In other words not only one supplier can satisfy the buyer s total requirements and the buyer needs to purchase some part of demand from one supplier and the other part from another supplier to compensate for the shortage of capacity or low quality of the first supplier. In this paper, we use an integrated approach; of fuzzy set theory, FAHP and fuzzy TOPSIS and multi-obective programming, for rating and selecting the best green suppliers according to economic and environmental criteria and then allocating the optimum order quantities among them. II. Literature Review Supplier selection is a MCDM problem containing both quantitative and qualitative criteria which, together, are in conflict. Over the last few years, many researchers have worked on the supplier selection problem to develop suitable decision making methods which can deal with the problem effectively (Zeydan et al., 0).Regarding the analytical methods employed in the supplier selection process, De Boer et al. (00) and Ha and Krishnan (008) performed an extensive review of decision methods for supporting supplier selection. Ho et al. (00) reviewed the literature of the MCDM approaches for supplier evaluation and selection. Extensive single model approaches have been proposed for supplier selection, such as the AHP (Kannan et al., 00), analytic network process (AP) (Choy et al., 003), interpretive structural modeling (ISM) (Ghodsypour and O Brien, 00) case based reasoning (CBR), data envelopment analysis (DEA) (Zeydan et al., 0), genetic algorithm (GA) (Kannan and Murugesan, 0), neural networks (Ding et al., 005) Fuzzy TOPSIS (Rao, 005) Fuzzy extent analysis (Hong, et al., 005) and mathematical programming (MPm) and their hybrids. In multiple sourcing, many researchers have applied different methods of MP such as linear programming (LP), mixed integer (Rezaei and Davoodi, 0), multi-obective programming (MOP) (Lee et al., 009), and goal programming (GP) (Wu and Barnes, 0). An MPm model formulates the decision DOI: 790/487X-9060668 www.iosrournals.org 6 Page

problem in terms of a mathematical obective function that needs to be maximized or minimized by varying the values of variables in the obective function (Hong et al., 005). In his review work, (Kull and Talluri, 008) mentioned that there are several hybrid techniques that have been used for solving supplier selection in multiple sourcing environments and order allocation, such as AHP and (Govindan et al., 0), DEA and MOP (Talluri et al., 0 08), AHP and GP (Haq and Kannan, 006), AHP, DEA, and neural networks (Ha and Krishnan, 008), AHP and grey relational analysis (Huang and Keskar, H., 007 ) and AP and GP and ISM and TOPSIS. Amin and Zhang (0) have summarized the modelsused for a supplier selection and order allocation problem currentlyavailable in literature. III. Methodology 3.The proposed integrated approach for green supplier evaluation This study integrates fuzzy AHP, fuzzy TOPSIS, and fuzzy MOLP to solve the problem of supplier selection and order allocation. Fuzzy set theory was conceived. to resolve the vagueness and ambiguity of human cognition and udgment; it is a way of processing data by providing mathematical strengths to resolve such uncertainties associated with human thinking and reasoning and allowing partial set membership rather than crisp set membership. Fuzzy MCDM theory can strengthen the comprehensiveness and reasonableness of the decision-making process presented some applications of fuzzy theories to the various decisions making processes in a fuzzy environment, and introduced the fuzzy MCDM methodology. Triangular fuzzy numbers are used in this paper to assess the preferences because it is easy for the DMs to use and calculate. A triangular fuzzy number is defined as (a, b, c) where a b c. The parameters a, b, and c represent the smallest possible value, the most promising value, and the largest possible value, respectively. Let X is a set of items, known as the universe, and its elements are denoted byx. A fuzzy subset A in X is represented by a membership function f A (x) and is associated with each element x in A and a real number between 0 and. 3. FAHP methodology for determining criteria weights: AHP was first developed by Saaty (980) who mainly conducts a MCDM problem by examining the pair-wise comparison of decision criteria. The hierarchical structure of the AHP model can enable users to imagine the problem in terms of criteria and subcriteria. The steps are described below Identifying DMs supplier selection criteria and modeling the problem as a hierarchy containing the decision goal. Performing the pair-wise comparison about the relative importance of the supplier selection criteria by using a geometric mean method to integrate the opinions of DMs as follows: Geometric mean: R= (a, b, c), K=, K (R: Triangular fuzzy number; K: o. of DMs) Where a= (a * a * a 3 * a k ) /k, b= (b * b * b 3 * b k ) /k, c= (c * c * c 3 * c k ) /k Aggregating all the DMs matrix of pair-wise comparisons and synthesize these udgments to yield a set of overall priorities for the hierarchy. To make sure that the DMs do not make mistakes which may cause conflicting ratings, a final consistency of the udgments is calculated. If the consistency ratio (CR) is less than 0., the udgment is true for criteria weights. Transforming pair-wise comparison matrix of criteria weights into linguistic variables using Table. Calculate priority weights of each criterion using Chang (996) method. The basic concept of FAHP for finding triangular fuzzy number weights is presented as follows: (i). Let X = {x, x, x3,., xn}an obect set, and G ¼ {g, g,g3,., gn}be a goal set and M gi (i =,,.,n, =,,.,m ) all are triangular fuzzy numbers. The value of fuzzy synthetic extent of the ith obect form goals is defined as: m M g i n m S i = = M i= = g i = ( n, i= u n, i i= m n... () i i= l i (ii). The degree of possibilitym = (l, m, u ) M = (l, m, u ) is defined as: V (M M) = supx y[min (μm (x), μm (y))].......() DOI: 790/487X-9060668 www.iosrournals.org 63 Page

(iii). The degree of possibility for a convex fuzzy number to be greater than k convex fuzzy numbers M i (i=,,., k) can be defined by: V(M, M,.MK) =min V (M M i ), i=,,.,k can be defined by: d (Ai) = min V (S i S k ); k=,.. n; k I.........(3) (iv). The weight vector is given by: W = (d( A ) ; (A ) ;.d (A n)) T ; A i ( i =, n) are n elements. (v). The normalized weight vector is calculated as: W i = W i W i. (4) 3.3 The fuzzy TOPSIS method for ranking suppliers: Step : The normalized fuzzy-decision matrix can be represented as R=[r i ] m*n.......(5) r i = a i c, b i c, c i c, B. (6) r i = a, a, a c i b i c =max i c i, B, C......(7) a i a = min i a i, C Step : Weighted normalized decision matrixv i is calculated bymultiplying normalized matrix with the weights of the criteria V = [v i ] m*n i =,, 3 m and =, n Where [v i ]=r i * w and w is the weight of the th attribute or criterion. Step 3: The positive-ideal solution (PIS,A ) and negative-ideal solution (IS,A ) can be calculated as: A = (v, v,, v n ) A =(v,v,, v n ) Where v = max i { v i 3 } and v = min i { v i }, i=,,.,m, =,,.. n. Step 4: The distance of each alternative from PIS and IS is calculated as: d i = d i = n = n Step 5: The closeness coefficient (CC i ) of each alternative is calculated as: CC i = d i = d i d v (v i, v ), i=, m...(8) d v (v i, v ), i=, m....(9) +di i=,, m......... (0) Step 6: At the end of the analysis, the ranking of alternatives is determined by comparing CCi values. Alternative Ai is closer to the FPIS (A ) and farther from FIS (A ) CCi approaches to. The ranking order of all alternatives determines according to the descending order of CCi. 3.4 The proposed fuzzy MOLP model for order allocation: The following assumptions are used in formulating the MOLP model: Assumptions: (i) Only one item is purchased from one supplier; (ii) Quantity discounts are not taken into consideration;.(iii) o shortage of the item is allowed for any supplier;(iv) Demand for the item is constant and known with certainty. In order to formulate this model the following notations are defined: Parameters: =the number of suppliers; D = Demand for the planning period; X i = Order quantity from the ith supplier; C i =Capacity of the ith supplier; W i = the overall weight (priority value) of the ith supplier (Obtained from the fuzzy TOPSIS model); P i =Unit purchasing price from the ith supplier; O i = Unit ordering cost from the ith supplier; T i = Unit transportation cost from the ith supplier; Q = Maximum acceptable defect ratio (percent); q i = Average defect percent from the ith supplier; H= unit holding cost for planning period and Y i = 0 if X i = 0& Y i = if X i > 0 Obective functions: DOI: 790/487X-9060668 www.iosrournals.org 64 Page

Total cost of purchasing: The total costs of purchasing considered in the MOLP model including product price, ordering, and transportation and holding costs. The obective function can be formed as follows: Min (TCP)= i= P i X i +O i * i= Y i + i= T i X i +H* P i ( X i /) i= Total value of purchasing: we used the supplier s weights as coefficients of an obective function to allocate order quantities among the suppliers such that the total value of purchasing (TVP) becomes a maximum. The mathematical model is as follows: Max (TVP) = i= W i X i Constraints: Quality control e the total defect quantity of each item cannot exceed maximum total acceptable defect quantity: q i X i Q D i= Production demand e the total order quantity of each item from all suppliers must meet the demand quantity for the item: i= X i D Suppliers capacity e the order quantity of each item from the ith supplier cannot exceed each supplier s capacity: X i C i Variable non-negativity constraints e the final constraints are non-negativity restrictions on the decision variables: X i 0,X i integers; i =,... The above MOLP model can be converted into a single obective model by using a maxi-min formulation. This case study has been done on a pharmaceuticals company in Bangladesh. Finally ten criteria such as Cost, Quality, Backlog, Wrapping Quality, Packaging Size, Arranging Presentation, Defect Rate, Supplier Location, Environmental Competency, and Experience have been determined by experts, and four possible suppliers Metro Foils Limited, Fairbiz Ltd., Kabir Foils Limited, and Trendy Foils Limited thought to have green competencies are engaged for supplier selection and order allocation decision making. The criteria(c) C, C3, C7 and C8 are the cost criteria and the others are the benefit criteria. FAHP methodology for determining criteria weight: The DMs use the linguistic weighting variables to assess the importance of the criteria. The consistency property of each expert s comparison results is examined by calculating the CR. The value of CR must be less than 0.0 to make the comparison trustworthy and consistency. In our approach we got CR = 0.05 respectively for DMs, it shows that the udgment matrix processes consistency. The values of fuzzy synthetic extents with respect to the criteria weights are calculated by using (Eq. ()) : S= (0.09406, 0.555, ); S = (0.7, 0.86, ); S3 = (, 0.67, 0.8974); S4 = ( 0.66, 83) ; S5= (0.047, 6, 0.); S6 = (0.05, 0.04, 8); S7= (0.0805, 0.66, 0.03); S8 = (0.044, 0.08, 0.3); S9 = (0.033, 0.047, ); S0 = (0.0095, 0.039, 0.0006) The final FAHP importance criteria weights are calculated as:w= (0.09406, 0.555, ); W= (0.7, 0.86, ); W3= (, 0.67, 0.8974); W4= ( 0.66, 83); W5= (0.047, 6, 0.) ;W6= (0.05, 0.04, 8); W7= (0.0805, 0.66, 0.03); W8= (0.044, 0.08, 0.3); W9= (0.033, 0.047, ); W0= (0.0095, 0.039, 0.0006) Using fuzzy TOPSIS for evaluating suppliers: The linguistic variables are used for rating of criteria. The two DMs express their opinions on the ratings of each supplier with respect to the ten criteria independently. Table : The aggregated fuzzy pair-wise comparison matrix of criteria (for all DMs) C C C3 C4 C5 C6 C7 C8 C9 C0 C,, 0.33,0.5,,3,4.73,.8,3.8 7 4,5,6 5, 6, 7,, 3,, 3 4,5,6 4.47,5.47, C,, 3.03,, 5.47,, 7.48,.4,.73 5,6,7 4.89,5.9, 6.9.4,.44,3. 46.44,3.46, 4.47 4,5,6 4.47,5.47, C3, 0.,0.4,,, 0.57,,.73 3.46,4.47, 4.47,5.47, 0.408,0.63,,,3 3,4,5 4,5,6 0.3,0.5 0.67 5.47 0.86 C4,0. 35,0.57,,,,3.03,, 6, 7, 8 4.47,5.47,,, 3 4, 5,6 4, 5, 6 4.47,5.47, C5 0.67,0., 0.4,0.6 6,0. 0.,,0. 33 0.,0.4,0. 67,, 4, 5,6 0.67,0.,0. 5 0.57,,.73.44,3.46,4. 47 3.4, 4.47, 5.47 C6 0.4,0.6,0.,0.4, 0.67 0.67,0., 0.67,0.,0. 5 0.67,0.,,, 0.54,0.8,0. 0.8,0.3, 0.3.4,.44,3. 46.8, 3.87, 4.9 DOI: 790/487X-9060668 www.iosrournals.org 65 Page

C7 0.33, 0.5, C8 0.33,.5, C9 0.67,0., C0 0.5,0. 8,0.,0.33, 0.5 0.,,0. 33 0.67,0., 0.67,0., 0.33,0.5, 0.33,0.5, 4,5,5.98 4, 5,5.98,,.44,3.46, 4.47 4, 5, 6 4.47, 5.4, 0.33,0.5, 0.67,0.,0.,,3.03, 3.03, 4 0.,,,,.8,3.87,4. 3.46,4.47, 5 0.33 89 5.47 0.,,0. 0.67,0.,0.,0.33,, 0.67,0.,0.,0.33,,, 6, 7, 8 33 5 0.5 0.33, 0.5 5 0.5 0.667,0. 0.67,0.,0. 0.,,0 0.67,0., 0.67,0.,0. 0.,,0,0.4,,,, 5.33 5.33 0.67 In Table, the aggregated fuzzy pair-wise comparison matrix of criteria comes from the geometric mean of the relative fuzzy number Table : Fuzzy aggregated decision matrix and fuzzy weights of critera C C C3 C4 C5 C6 C7 C8 C9 C0 Weights 0.094, 0.6, 0.7, 0.86,, 0., 0.0, 0.6, 0.047, 6, 0.05, 0.04, 0.0805, 0.66, 0.044, 0.08, 0.033, 0.047, 0.009, 0.0, SP 3.87,5.9,7.93 9,0,0 7.93, 9.49, 0 7.93, 9.49, 0 0. 8 0.03 0.3 5, 7, 9 7, 9 0 7, 9, 0 7, 9, 0 SP 5.9,7.9,9.49 5, 7, 9 7, 9, 0 7, 9, 0 7, 9, 0 5, 7, 9.73,.4, 4.58 SP3,, 3 37, 9, 0 5, 7, 9 5, 7, 9 7, 9, 0 7, 9, 0 7.94, 9.486, 0 SP4 7.94, 9.49, 0.73,.3, 4.58 9, 0, 0 3.87, 5.9, 7.9 3, 5,7 5, 7, 9 9, 0, 0 5, 7, 9 5, 7, 9.73,.36, 0.0 7, 9, 0 7, 9, 0 7.94, 9.48, 7, 9, 0 0 7, 9, 0 5.9, 7.94, 9.5 3.87, 5.9, 7.93 In Table, fuzzy aggregated decision matrix and fuzzy weights of criteria comes from the geometric mean of the fuzzy numbers of the linguistic variable assigned to each criterion by each decision maker SP 0.6, 0.69, 0.6 SP 0., 0.3, 0.7 Table 3: ormalized fuzzy-decision matrix C C C3 C4 C5 C6 C7 C8 C9 C0,, 0.3, 0.3, 0.79, 0.7, 0.7, 0.38 5,,, SP3 0.33,, SP4 0., 0., 0.3 0.7, 0., 0.46 0.3, 0.33, 0.43 0.33, 0.43, 0.6 0.43, 0.6,,, 0.38, 0.78, 0.7, 0.8, 0.,, 0.35 0.7, 0.7, 0.,,0.44 0.79, 5, 0.38, 0.78, 0.38, 0.59, 0.79 ormalized fuzzy-decision matrix comes by following the equation (6) and (7). Here C is the cost criteria, so that the value of a (a = min i a i, C)for the C column is Here C is the benefit criteria, so that the value of c (c =max i c i, B) for the C column is 0 DOI: 790/487X-9060668 www.iosrournals.org 66 Page 9, 0, 0 0.59, 0.79, 5,, Table 4: Weighted normalized fuzzy-decision matrix C C C3 C4 C5 C6 C7 C8 C9 C0 SP 0.,, 0.3 0.08, 0.5, 0.05, 0. 0.08, 0.037, 0.05 0.008, 0.05, 0.03 0.007, 0.0 SP 0.009, 0.095, 0.043 SP3 0.55, SP4 0.009,, 0.03, 0.3, 0.3 0.08, 0.67, 0.33 0.08 0.05, 0.3 0.030,,, 0.4, 0.05, 0.3, 0.3 0.05, 0., 0.3 0.033, 9, 0. 0.033, 9, 0. 0.043, 6, 0. 0.05, 0.09, 0.0, 0.097, 0.03 0.044 0.007, 0.03 0.0097, 0.0,,, 0.3, 0.007, 0.0 0.006, 0.09 0.009, 0.0 In Table 4, weighted normalized fuzzy-decision matrix is achieved by multiplying each value of normalized fuzzy-decision matrix with the corresponding criteria weight.

Table 5: Distances between suppliers and A, A with respect to each criterion C C C3 C4 C5 C6 C7 C8 C9 C0 d(sp,a*).67.40.66.46.63.66.68.7.65.7 d(sp,a*).69.47.65.47.60.67.55.7.65.7 d(sp3,a*).48.4.6.5.60.66.69.68.65.7 d(sp4,a*).69.6.57.5.59.67.66.6.68.7 C C C3 C4 C5 C6 C7 C8 C9 C0 d(sp,a-) 0.36 0.08 0.3 0. 9 0.036 0.086 0.04 d(sp,a-) 0.048 0.09 0.3 0.44 9 0.3 0.09 0.088 0.04 d(sp3,a-) 0.34 0.3 0.6 0.44 9 0.05 3 0.086 0.0 d(sp4,a-) 0.037 0.4 0.0 0.6 0.5 9 8 0.43 5 0.05 Table 5 contains the distances between suppliers and A, A with respect to each criterion. The values d (SP, A ) are obtained by determining the distance from the point (,, ). And so on. The values d (SP, A ) are obtained by determining the distance from the point (0, 0, 0). Table 6: Computations of d +, d - and CC i d + d - CC i Rank Metro Foils Limited (SP).6980 0.367 05534 3 Fairbiz Ltd. (SP).6748369 0.383769 554794 Kabir Foils Limited (SP3).604708085 0.47638665 0.084597 Trendy Foils Limited.(SP4).6335508 0.736969 7049383 4 Model development for order allocation: In this step we set the parameter values that are used in the LP model. The crisp formulation of the numerical example by using a maxi-min formulation is presented as follows: Obective function Min (TCP)= i= PX i +O i * i= Y i + i= T i X i +H* P i ( X i /)...... () i= Max (TVP) = i= W i X i... () MIIMIZATIO Total Cost Purchase: 639.5 X + 634.75 X + 60 Subected to, Production Demand: X +X = 000 Capacity: X 700, X 800 Quality Control: 0.0X +0.05X 35 X 0, X 0 Above problem has been solved by using Tora software. From the output of Tora software it has been seen that the order quantity among each supplier is 500 units. IV. Conclusion Green trends are the need of the hour to strike a balance in our ecological system. Selecting the right suppliers and splitting lot-sizes to the selected suppliers over multi-period decision horizon become a maor challenge for a buyer when suppliers offer quantity discounts with unreliable quality and delivery performance. This work presents framework of environmental criteria that a company can consider during their supplier selection process.. Inventory lot-sizing with supplier selection and carrier selection are important decisions any buyer has to make. A buyer cannot optimize them separately due to inherent interdependency among these decisions. A fuzzy TOPSIS approach applied here to evaluate performance of green suppliers because there is an increasing need to develop appropriate green supplier selection. Supplier selection is a complex multi-criteria decision-making problem, and its complexity is further aggravated if the highly important interdependence among the selection criteria is taken into consideration. Fuzzy AHP and Fuzzy TOPSIS, providing a systematic approach to set priorities among alternative suppliers, can effectively capture the interdependencies among various criteria. The advantages of the integrated method include its abilities to consider the interdependencies among various criteria and uncertain situation for ranking suppliers; Minimize the end customer s level of dissatisfaction based on demandand capacity limiting; and Facilitate the most efficient allocation of an order. In this paper a case study has been performed, where the suppliers selection and order allocation problem of a renowned pharmaceutical company has been solved. In this paper, software for supplier selection purpose has DOI: 790/487X-9060668 www.iosrournals.org 67 Page

been also developed which eliminate the excessive effort required for manual calculation of fuzzy analytic hierarchy process and fuzzy technique. References [] Amin, S.H., Zhang, G., 0. An integrated model for closed-loop supply chain configuration and supplier selection: multiobective approach. Expert Systems with Applications 39 (8), 678e679. [] Choy, K.L., Fan, K.K.H., Lo, V., 003a. Development of an intelligent customer supplier relationship management system: the application of case based reasoning. Industrial Management and Data Systems 03 (4), 63e74. 57 [3] De Boer, L., Labro, E., Morlacchi, P., 00. A review of methods supporting supplierselection. European Journal of Purchasing & Supply Management 7, 75e89 [4] Ding, H., Benyoucef, L., Xie, X., 005. A simulation optimization methodology for supplier selection problem. International Journal Computer Integrated Manufacturing 8 (e3), 0e4.. [5] Ghodsypour, S.H., O Brien, C., 00. The total cost of logistic in supplier selection under conditions of multiple sourcing, multiple criteria and capacity constraint. International Journal of Production Economics 73, 5e7. [6] Govindan, K., Murugesan, P., Zhu, Q., Devika, K., 0a. Analysis of third party reverse logistics provider using interpretive structural modeling. International Journal of Production Economics 40 (), 04e. [7] Ha, S.H., Krishnan, R., 008. A hybrid approach to supplier selection for the maintenance of a competitive supply chain. Expert Systems with Applications 34,303e3 [8] Haq, A.., Kannan, G., 006b. An integrated approach for selecting a vendor using grey relational analysis. International Journal of Information Technology & Decision Making 5 (), 77e95. [9] Hong, G.H., Park, S.C., Jang, D.S., Rho, H.M., 005. An effective supplier selection method for constructing a competitive supply relationship. Expert Systems with Applications 8 (4), 69e639. [0] Ho, W., Xu, X., Dey, P.K., 00. Multi-criteria decision making approaches for supplier evaluation and selection: a literature review. European Journal of Operational Research 0, 6e4. [] Huang, S.H., Keskar, H., 007. Comprehensive and configurable metrics for supplier selection. International Journal of Production Economics 05, 50e53 [] Kannan, G., Devika, K., oorul Haq, A., 00. Analyzing Supplier Development criteria for an Automobile Industry. Industrial Management & Data Systems 0 (), 43e6. [3] Kannan, G., Murugesan, P., 0. Selection of third party reverse logistics provider using Fuzzy extent analysis. Bench Marking: An International Journal 8 (). [4] Kull, T.J., Talluri, S., 008. A supply-risk reduction model using integrated multi criteria decision making. IEEE Transactions on Engineering Management 55 (3), 409e49. [5] Lee, A.H.I., Kang, H.Y., Hsu, C.F., Hung, H.C., 009a. A green supplier selection model for high-tech industry. Expert Systems with Applications 36, 797e797. [6] Rao, P., 005. The greening of suppliers-in the South East Asian context. Journal of Cleaner Production 3, 935e945. [7] Rezaei, J., Davoodi, M., 0. Multi-obective models for lot-sizing with supplier selection. International Journal of Production Economics 30 (), 77e86. [8] Sarkis, J., 998. Evaluating environmentally conscious business practices. European Journal of Operational Research 07 (), 59e7 [9] Zeydan, M., Colpan, C., Cobanoglu, C., 0. A combined methodology for supplier selection and performance evaluation. Expert Systems with Applications 38, 74e75. DOI: 790/487X-9060668 www.iosrournals.org 68 Page