October 20th, Bacteria are not Lamarckian

Similar documents
The plasmid shown to the right has an oriv and orit at the positions indicated, and is known to replicate bidirectionally.

Confirming the Phenotypes of E. coli Strains

The Regulation of Bacterial Gene Expression

MCB 421 First Exam October 4, 2004

Requirement for a Functional int Product in Temperature Inductions of

Biology 201 (Genetics) Exam #3 120 points 20 November Read the question carefully before answering. Think before you write.

Genetics Lecture Notes Lectures 17 19

INDUCTION OF LACTOSE UTILIZATION IN STAPHYLOCOCCUS AUREUS

Split-Operon Control of a Prophage Gene*

Name Per AP: CHAPTER 27: PROKARYOTES (Bacteria) p559,

encodes a sigma factor to modify the recognition of the E.coli RNA polymerase (Several other answers would also be acceptable for each phage)

F 11/23 Happy Thanksgiving! 8 M 11/26 Gene identification in the genomic era Bamshad et al. Nature Reviews Genetics 12: , 2011

Biology (Microbiology): Exam #3

7.1 The lac Operon 7-1

THE RELATIONSHIP BETWEEN RESPIRATORY DEFICIENCY AND SUPPRESSIVENESS IN YEAST AS DETERMINED WITH SEGREGATIONAL MUTANTS

A Discovery Laboratory Investigating Bacterial Gene Regulation

R1 12 kb R1 4 kb R1. R1 10 kb R1 2 kb R1 4 kb R1

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION

Lectures of Dr.Mohammad Alfaham. The Bacterial Genetics

Materials and methods. by University of Washington Yeast Resource Center) from several promoters, including

Name_BS50 Exam 3 Key (Fall 2005) Page 2 of 5

REGULATION OF GENE EXPRESSION

BA, BSc, and MSc Degree Examinations

The Mosaic Nature of Genomes

SI Results Peculiarities in the consumption of ammonium and glucose by AmtB- strains SI Materials and Methods Strain Construction

GENE REGULATION IN PROKARYOTES

Beating the Odds for Lucky Mutations

Read the question carefully before answering. Think before you write. If I can not read your handwriting, I will count the question wrong.

Einführung in die Genetik

Problem Set 8. Answer Key

Designing and creating your gene knockout Background The rada gene was identified as a gene, that when mutated, caused cells to become hypersensitive

Transcription in Prokaryotes. Jörg Bungert, PhD Phone:

Genetic Background Page 1 PHAGE P22

Spostiamo ora la nostra attenzione sui batteri, e batteriofagi

7.02/ Genetics Exam Study Questions Spring The exam will be: Thursday, April 27 th, :05-11:55 AM Walker Gym, 3 rd floor (50-340)

HI-Control BL21(DE3) & HI-Control 10G Chemically Competent Cells

REPORT DOCUMENTATION PAGE

Solutions to Quiz II

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1

Lecture 18. 2) Check to see whether the mutation is recessive and trans-acting (most will be).

CHAPTER 2A HOW DO YOU BEGIN TO CLONE A GENE? CHAPTER 2A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved.

Effect of Mutations in the Cyclic AMP Receptor Protein-Binding

3 Designing Primers for Site-Directed Mutagenesis

Summary of Mutagenic Toxicity Test Results for EvaGreen

Material and Methods Bacterial strains. Construction of C4750 strain derivatives. Mutagenesis assays.

Histidine Regulation in Salmonella typhimurium VIII. Mutations of the hist Gene

GeNei TM Transformation Teaching Kit Manual

BACTERIAL CONJUGATION. To demonstrate the technical procedure to monitor the conjugational transfer of genetic material from one cell to another.

Molecular Genetics Student Objectives

Use of Gene Editing Technologies in Rodents. Carlisle P. Landel, Ph.D.

7.013 Problem Set 3 FRIDAY October 8th, 2004

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

Green Fluorescent Protein (GFP) Purification. Hydrophobic Interaction Chromatography

CHAPTER 13 LECTURE SLIDES

TightRegulation, Modulation, and High-Level Expression byvectors ContainingtheArabinose Promoter

1. DNA replication. (a) Why is DNA replication an essential process?

7.02/ Microbial Genetics Exam Study Questions

AP Biology Gene Expression/Biotechnology REVIEW

The Fertility Factor, or F

What is RNA? Another type of nucleic acid A working copy of DNA Does not matter if it is damaged or destroyed

QUESTIONS 16 THROUGH 30 FROM EXAM 3 OF FALL, 2010

MCB 140 2/16/05 2. chromosome; if it is a fictitious unit, it must be. If the gene is a material unit, it is a piece of a

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Competence Modulation by the NADH Oxidase of Streptococcus pneumoniae Involves Signal Transduction

A ph-conditional mutant of Escherichia coli (fl-galactosidase/intracellular ph)

As sentences in scientific papers go, this was guaranteed to raise eyebrows: "We describe here. experiments and some circumstantial

capr (or capt) was- shown to be independent of the galr

E. coli Genome Manipulation by P1 Transduction

Biology Lab Activity 4-5 DNA Transformation

Bio 311 Learning Objectives

I (ALLEN 1965; GIBSON 1970). In Tetrahymena pyriformis, syngen 1, a genetically

Einführung in die Genetik

Einführung in die Genetik

3. A student performed a gel electrophoresis experiment. The results are represented in the diagram below.

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY

Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs

Genetic Mapping of Salmonella typhimurium Peptidase

Genetics Final Exam Summer 2012 VERSION B. Multiple Choice (50 pts. possible) IF you completed the in-class workshop put a CHECK MARK HERE --->

Pharma&Biotech. XS Microbial Expression Technologies Optimize Productivity, Speed and Process Robustness

DO NOT OPEN UNTIL TOLD TO START

3. human genomics clone genes associated with genetic disorders. 4. many projects generate ordered clones that cover genome

The Production of a Recombinant Biotechnology Product. Chapter 8

Prokaryotic Transcription

Link between iron homeostasis, oxidative mutagenesis and antibiotic resistance evolution

Adaptive, or Stationary-Phase, Mutagenesis, a Component of Bacterial Differentiation in Bacillus subtilis

MCB421 FALL2005 EXAM#3 ANSWERS Page 1 of 12. ANSWER: Both transposon types form small duplications of adjacent host DNA sequences.

Accuracy of DNA Repair During Replication in Saccharomyces Cerevisiae

Heredity and DNA Assignment 1

Cell autonomous vs. cell non-autonomous gene function

Prokaryotic Transcription

Enhancer genetics Problem set E

COPYRIGHTED MATERIAL. Introduction

7 Gene Isolation and Analysis of Multiple

HiPer Transformation Teaching Kit

(b) Draw a genetic linkage map showing map distances between met, thi, and pur.

Phenotypic and Genomic Evolution during a 20,000-Generation Experiment with the Bacterium Escherichia coli

ONTARIO SCIENCE CENTRE. Teacher Guide. Way to Glow Program

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology.

Supplementary Figure S1 Selected examples of nodulation with M. loti in plate experiments

MIT Department of Biology 7.013: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor Tyler Jacks, Dr.

Transcription:

October 20th, 1993 Bacteria are not Lamarckian Antoine Danchin Institut Pasteur Unité de Régulation de l'expression Génétique Département de Biochimie et Génétique Moléculaire 28 rue du Dr Roux - 75724 PARIS CEDEX 15 Tel 33 (1) 45 68 84 42 Fax 33 (1) 45 68 89 48 E-Mail adanchin@pasteur.fr Instructive influence of environment on heredity has been a debated topic for centuries. Darwin's identification of natural selection coupled to chance variation as the driving force for evolution, against a formal interpretation proposed by Lamarck, convinced most scientists that environment does not specifically instruct evolution in an oriented direction. This is true for multicellular organisms. In contrast, bacteria were long thought of as prone to receive oriented influences from their environment, although much was in favour of the Darwinian route (1). In this context Cairns et al. raised a passionate debate by suggesting that bacteria generate mutations oriented by the environmental conditions (2). Several independent pieces of work subsequently demonstrated that mutations overcoming specific defects arised as a consequence of cultivation on specific media (3-7). Two diametrically opposed interpretations were proposed to explain these observations : either induction of mutations instructed by the environment (e.g. by a process involving a putative reverse transcription) or selection of variants among a large set of mutant bacteria generated when stress conditions are present. The experiments presented below indicate that the Darwinian paradigm is the most plausible. In order to separate between the two opposite interpretations (instruction vs selection) it was necessary to find as a starting mutation, chosen for its reversion potential, a mutation (i) that was unable to generate true revertants (e. g. a deletion rendering impossible the restoration of original activity) and (ii) that could manifest similar growth properties on different growth media, so that influence of the growth medium could be assayed for (a) induction of outgrowing mutants and (b) induction of mediumoriented mutations. Inactivation of the adenylyl cyclase gene of Escherichia coli fulfils such requirements. For this reason I used the deletion mutant cyaδ854 (8) that renders

bacteria unable to ferment a variety of carbon sources. In particular cya deficient mutants are unable to ferment maltose, lactose, melibiose, glycerol or mannitol, even when plated on rich media. As a consequence a cya mutant yields white colonies on McConkey plates supplemented with these carbon sources (but, as a control, form red colonies on such plates supplemented with glucose). I therefore investigated the fate of colonies obtained on McConkey plates supplemented with glycerol, melibiose, rhamnose, lactose, maltose or mannitol, after one day at 37 C followed by several days at room temperature (18-22 C). As shown in Table 1 after 8-10 days red papillae started to appear on individual colonies from several plates. Strain TP2000 (argh1 cyaδ854 lacδx74) was used in the first set of experiments. It carries a lactose deletion that was used as an internal control : no red papillae appeared after one month on McConkey plates supplemented with lactose. The overall number of papillae still grew steadily after one month on all media except lactose and glycerol. The case of glycerol plates is particular, because on such plates growth was found to continue at the low temperature, the colonies slowly increasing in size and displaying a rose, not a white colour. Individual papillae were purified on the original medium at low temperature, then analysed for their fermentation capacity on the other media. Most papillae isolated from maltose, melibiose or rhamnose plates were red on all three media, at low temperature as well as at 37 C (except as expected for melibiose, because of its natural thermosensitivity). They failed to ferment mannitol. In sharp contrast the mannitol papillae were found to be red only on mannitol plates. As already stated no papillae were isolated on glycerol, indicating that papillae could only develop on non growing colonies, but the papillae isolated on maltose, melibiose or rhamnose were found to be red on glycerol at 37 C demonstrating additional capacity for fermenting various carbon sources. The behaviour of the mutant papillae (which were stable, as shown by repeated streaking on similar plates) was reminiscent of the behaviour of the crp* allele of the crp gene, coding for a mutated receptor of camp that is able to activate transcription of catabolite sensitive operon in the absence of the mediator (9). However, because the original crp* mutant had been obtained only from heavily mutated bacteria (9, and A. Ullmann personal communication) the genetic background of the original strain was tested by repeating the experiment in a different background (strain TP7860 : arg his cyaδ854 λ). It yielded similar results. Several P1 lysates were performed on clones isolated from independent plates, and were used to transduce the crp region of strain TP2339 (argh1 cyaδ854 crpδ39 lacδx74), selecting for Mal + recombinants. All transductants were found to display the pleiotropic carbon positive phenotype, thus substantiating that the mutation is of the crp* type. In one experiment recovery of the

wild type arob marker (which is located near the crp gene) in a cya arob background was used as a selection for P1 transductants : 38% of the transductants were found to have also recovered a pleiotropic carbon positive phenotype. Subsequently it was found that several different mutants of the cya gene (including a Mu insertion) yielded after some time on plates or in stabs bacteria that were able to ferment most if not all carbon sources that depended on the presence of an active CAP-cAMP complex for expression. It was also found that a reca derivative of strain TP2000 generated red papillae on maltose, after a lag that was significantly longer (two weeks), demonstrating that reca is probably not involved in the generation of papillae, and suggesting that the lag depends on the growth rate of the bacteria : only those colonies that have completely stopped growing seem to be able to generate papillae. Taken together these results indicate that on most such carbon sources a crp* allele can be obtained from papillae outgrowing dormant colonies from cya mutants. If the instructive paradigm was to be verified one would have expected to find mostly mutations located in the transcription control regions of the operons specific to each carbon source added to the plates. Indeed, in a few cases (especially on rhamnose plates), mutant types could be obtained, showing specificity towards the original carbon source added to the plates. The crp* result cannot be taken as a demonstration of an induction of specific mutations in a carbon source operon, unless one accepts that bacteria possess a magic foresight permitting them to identify this general control gene as the gene that will permit them to escape starvation. The present experiments rule out the lamarkian interpretation of Cairns' experiments, and substantiate the recent theoretical analysis of Lenski and Mittler (9), but they do not give an explanation at the molecular level of the phenomenon that permits generation of papillae. In this respect it is worth noticing (as already remarked by Cairns or Hall) that papillae grew on colonies only after a certain delay (in a somewhat unpredictable fashion, generally more than five days in our case). In addition it seems important that only those colonies that stopped growing were able to generate papillae (see the glycerol plates experiments). In the same way, when using bacteria that harboured a plasmid permitting synthesis of a very small amount of camp (not sufficient to permit the colonies to be red or even rose), no papillae were found. Finally, there was an effect of the nature of the carbon source : on mannitol plates a large number of papillae were obtained, but they did not correspond to crp* mutants (no red colonies on the other carbon sources), but to some other mutation permitting expression of the mtl operon. All this may suggest that, when in the stationary phase of growth for a significant period of time bacteria are able to enhance the overall mutagenic capacity of a subpopulation, permitting them to generate mutants, some of which are selected as

capable of outgrowing the dormant (and probably dying) colony. This should be a further incentive to study gene expression in the late period of the stationary phase. Acknowledgements I wish to thank Agnès Ullmann for her interest, and J. Mazé for her help in some experiments. References 1.T. D. Brock The emergence of bacterial genetics Cold Spring Harbor Laboratory Press 1990 2. J. Cairns et al Nature 335 142 1988 3. B.G. Hall Genetics 120887 1988 4. S. A. Benson Nature 336 21 1988 5. B.G. Hall Proc Natl Acad Sci US 88 5882 1991 6. P. L. Foster J. Cairns Genetics 128 695 1991 7. B.G. Hall Proc Natl Acad Sci US 89 4300 1992 8. P. Glaser et al (1989) J. Bacteriol. 171 5176-5178 9. R.E. Lenski & J. E. Mittler (1993) Science 259 188-194

Table I Papillae on 1000 colonies after 15 days of strain TP2000 (cya-δ854) Number of papillae Pleiotropic sugar positive Maltose 32 + Melibiose + Rhamnose + Glycerol no papillae, rose colonies Mannitol >1000 Lactose no papillae, white colonies