It s the Small Things That Make the Big Differences Mendelian Genetics

Similar documents
Would expect variation to disappear Variation in traits persists (Example: freckles show up in unfreckled parents offspring!)

Review. 0 Genotype: alleles that are present 0 Phenotype: physical appearance. 0 If Red is dominant to white, what is the phenotype of the above?

Mendel and the Gene Idea

Mendel and the Gene Idea

Observing Patterns In Inherited Traits

Genetics and Human Inheritance

Mendel & Inheritance. SC.912.L.16.1 Use Mendel s laws of segregation and independent assortment to analyze patterns of inheritance.

Observing Patterns in Inherited Traits. Chapter 11

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

B.6.F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and non Mendelian inheritance

Classical (Mendelian) Genetics. Gregor Mendel

Beyond Mendel s Laws of Inheritance

Table of Contents. Chapter: Heredity. Section 1: Genetics. Section 2: Genetics Since Mendel. Section 3: Biotechnology

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Beyond Mendel s Laws of Inheritance

Active Learning Exercise 8 Mendelian Genetics & the Chromosomal Basis of Inheritance

Genetics. Blending Theory Mendel s Experiments Mendel Expanded Chromosomal Theory of Genetics Human Genetics

The information in this document is meant to cover topic 4 and topic 10 of the IB syllabus. Details of meiosis are found in Notes for Cells.

Exploring Mendelian Genetics. Dihybrid crosses. Dihybrid crosses

Chapter 14: Mendel and the Gene Idea

The Chromosomal Basis of Inheritance

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight?

Name Date Class. In the space at the left, write the letter of the term or phrase that best completes each statement or answers each question.

Gen e e n t e i t c c V a V ri r abi b li l ty Biolo l gy g Lec e tur u e e 9 : 9 Gen e et e ic I n I her e itan a ce

12 The Chromosomal Basis of Inheritance

Chapter 14: Mendel and the Gene Idea

AP Biology Chapter 14 Notes Mendel and the Gene Idea

Q.2: Write whether the statement is true or false. Correct the statement if it is false.

Genetics Sperm Meiotic cell division Egg Chromosome Segments of DNA Code DNA for traits Code for a trait Gene

Chp 10 Patterns of Inheritance

Gregor Mendel. Austrian Monk Worked with pea plants

Introduction. Thomas Hunt Morgan. Chromosomes and Inheritance. Drosophila melanogaster

Fundamentals of Genetics. 4. Name the 7 characteristics, giving both dominant and recessive forms of the pea plants, in Mendel s experiments.

Non Mendelian Genetics

Topic 11. Genetics. I. Patterns of Inheritance: One Trait Considered

Genetics Patterns of Inheritance. Biology 20

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology.

Genetics. Biology. vocabulary terms

Genetics. Chapter 10/12-ish

Heredity & Genetic Engineering. Human Chromosomes Review. Human body cells, called somatic cells, have 46 chromosomes (diploid number)

Chapter Extending Mendelian Genetics. Incomplete Dominance. Incomplete Dominance. R = red R = white. Incomplete Dominance (alt)

MENDELIAN GENETICS This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law.

DNA segment: T A C T G T G G C A A A

Genetics Essentials 9/10/13. Concepts and Connections. Mendel and His Study of Heredity. The Case of the Red Hair. Before we Continue

Inheritance Biology. Unit Map. Unit

Genetics and Heredity

! Allele Interactions


PED'IGREE, n. from L. pes,pedis, foot. Lineage; line of ancestors from which a person or tribe descends; genealogy.

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Extension of Mendelian Inheritance Chpt 4, Genetics by Brooker, Lecture Outline #4

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2017 Extension of Mendelian Inheritance Chpt 4, Genetics by Brooker, Lecture Outline #4

Genetics II: Linkage and the Chromosomal Theory

Lab Mendelian Genetics-Exploring Genetic Probability -Revisiting Mendel s Observations

8.2 Human Inheritance

Exam 1 Answers Biology 210 Sept. 20, 2006

Reproduction, Heredity, & Molecular Genetics. A. lipids B. amino acids C. nucleotides D. polysaccarides

EOC Review Reporting Category 2 Mechanisms of Genetics

Exploring Mendelian Genetics

Huether and McCance: Understanding Pathophysiology, 5 th Edition

Complex Patterns of Inheritance

Exploring Mendelian Genetics 11-3

Dr. Mallery Biology Workshop Fall Semester CELL REPRODUCTION and MENDELIAN GENETICS

Figure 1: Testing the CIT: T.H. Morgan s Fruit Fly Mating Experiments

Biology 40S: Course Outline Monday-Friday Slot 1, 8:45 AM 9:45 AM Room 311 Teacher: John Howden Phone:

Biology Genetics Practice Quiz

Biology Mrs. Howe Tues, 2/7 Agenda New Seats Bioethical Decision Making Model (pg. 1-2)-> due Block 1

17.1 Variation, 17.2 Chromosomes and DNA, 17.3 Monohybrid Inheritance, 17.4 Selection, 17.5 Genetic Engineering SYLLABUS CHECKLIST

& Practice

Mendelian Genetics. What is Gregor Mendel known for and what organism did he use? When did Mendel conduct most of his work?

We can use a Punnett Square to determine how the gametes will recombine in the next, or F2 generation.

SOLUZIONE DEL LEARN BY DOING

LINKAGE AND CHROMOSOME MAPPING IN EUKARYOTES

Phenotypic Expression & Multi-Factorial Traits (Learning Objectives)

Chromosomal Inheritance

Mendelian problems done.notebook

GENETICS. I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide chains wrap around each other to form a

GENETICS: BIOLOGY HSA REVIEW

Linkage & Genetic Mapping in Eukaryotes. Ch. 6

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium.

Solve Mendelian Genetics Problems

Genetics and Heredity. Mr. Gagnon

Chapter 6 Linkage and Chromosome Mapping in Eukaryotes

Lecture Outline 9/8/05. Question: Male-pattern baldness. Finish pedigrees for X-linked traits. Chromosomal basis of inheritance

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools

Lecture 3 Monohybrid and Dihybrid Crosses

Name: Class: Biology Weekly Packet January th, 2013 Tuesday January 22, 2013

Name # Class Date Regents Review: Genetics/DNA

Linkage & Crossing over

Chapter 4.!Extensions to Mendelian Genetics.! Gene Interactions

Course Overview. Interacting genes. Complementation. Complementation. February 15

Genetics - Problem Drill 05: Genetic Mapping: Linkage and Recombination

Answers to additional linkage problems.

DO NOT OPEN UNTIL TOLD TO START

MECHANISM OF TRANSMISSION OF CHARACTERS FROM PARENTS TO OFFSPRINGS & HEREDITARY VARIATION IN LIVING ORGANISMS BY DESCENT.

Transcription:

It s the Small Things That Make the Big Differences Mendelian Genetics Mendel and the Garden Pea Heredity is the tendency for traits to be passed from parent to offspring heritable features are called characters traits are alternative forms of a character Before the discovery of DNA and chromosomes, principles of heredity were first identified by quantitative science (i.e., counting and measuring) Gregor Mendel solved the puzzle of heredity Gregor Mendel Gregor Mendel performed experiments with garden peas peas are ideally suited to the study of heredity many varieties are available with easily distinguishable traits that can be quantitified they are small, easy to grow, and produce large numbers of offspring quickly their reproductive organs can be easily manipulated so that pollination can be controlled they can self-fertilize Mendel had a specific experimental design he first established true-breeding varieties by allowing plants to self-fertilize for several generations, he ensured that each variety contained only one type of trait he named these pure lines the P generation he then crossed two varieties exhibiting alternative traits he named the resulting offspring the F 1 generation he then allowed the plants from the F 1 generation to self-fertilize he named the resulting offspring the F 2 generation How Mendel conducted his experiments What Mendel Observed Mendel experimented with a variety of traits and repeatedly made the same observations for each pair of contrasting varieties that he crossed, one of the traits disappeared in the F1 generation but reappeared in the F2 generation he called the trait expressed in the F1 generation the dominant trait he named the trait not expressed in the F1 generation the recessive trait Mendel counted the number of each type of plant in the F2 generation he found a consistent proportion in expressed traits for his different crosses

three-fourths of the F2 individuals expressed the dominant trait while one-fourth expressed the recessive trait the dominant:recessive ratio among the F2 plants was always close to 3:1 Seven Characters Mendel Studied in his Experiments Mendel reasoned that the recessive trait must somehow be hidden in the F 1 generation but just not expressed He allowed the F 2 to self-fertilize and form the F 3 generation he found that one-fourth of the plants from the F 2 that were recessive were truebreeding in the F 3 he found that of the three-fourths of the plants from the F 2 only one-third were true breeding in the F 3 the remaining half showed both traits He determined that the ratio of 3:1 ratio that he observed in the F 2 generation was in fact a disguised 1:2:1 ratio 1 2 1 true-breeding : not true-breeding : true-breeding dominant dominant recessive The F 2 generation is a disguised 1:2:1 ratio Mendel Proposes a Theory Mendel proposed a simple set of five hypotheses to explain his results Hypothesis 1 parents do not transmit traits directly to their offspring parents transmit information about the trait in the form of what Mendel called factors in modern terms, Mendel s factors as called genes Hypothesis 2 each parent contains two copies of the factor governing each trait the two copies of the factor may or may not be the same homozygous individuals have two of the same copies heterozygous individuals have two different copies Hypothesis 3 alternative forms of a factor lead to alternative traits alleles are defined as alternative forms of a factor

appearance is determined by the alleles a plant receives from its parents this is the plant s genotype the expression of the alleles is the appearance or phenotype Hypothesis 4 the two alleles that an individual possesses do not affect each other Hypothesis 5 the presence of an allele does not ensure that a trait will be expressed in the individual that carrier it in heterozygotes, only the dominant allele is expressed Alternative alleles of genes are located on homologous chromosomes Some Dominant and Recessive Traits in Humans By convention, genetic traits are assigned a letter symbol referring to their more common form dominant traits are capitalized while a lower-case letter is reserved for the recessive trait for example, flower color in peas is represented as follows P signifies purple p signifies white The results from a cross between a true-breeding, white-flowered plant (pp) and a true breeding, purple-flowered plant (PP) can be visualized with a Punnett square A Punnett square lists the possible gametes from one individual on one side of the square and the possible gametes from the other individual on the opposite side The genotypes of potential offspring are represented within the square A Punnett square analysis How Mendel analyzed flower color Mendel devised the testcross in order to determine the genotype of unknown individuals in the F 2 generation the unknown individual is crossed with a homozygous recessive individual if the unknown is homozygous, then all of the offspring will express dominant traits if the unknown is heterozygous, then one-half of the offspring will express recessive traits How Mendel used the testcross to detect heterozygotes

Mendel s Laws Mendel s hypotheses so neatly predict the results of his crosses that they have elevated to laws Mendel s First Law: Segregation the two alleles of a trait separate from each other during the formation of gametes, so that half of the gametes will carry one copy and half will carry the other copy Mendel also investigated the inheritance pattern for more than one factor when crossing individuals who are true-breeding for two different characters, the F1 individual that results is a dihybrid after the dihybrid individuals self-fertilize, there are 16 possible genotypes of offspring Analysis of a dihybrid cross Mendel concluded that for the pairs of traits that he studied, the inheritance of one trait does not influence the inheritance of the other trait Mendel s Second Law: Independent Assortment genes located on different chromosomes are inherited independently of one another The journey from DNA to phenotype Why Some Traits Don t Show Mendelian Inheritance Often the expression of phenotype is not straightforward Continuous variation characters can show a range of small differences when multiple genes act jointly to influence a character this type of inheritance is called polygenic Height is a continuously varying character Pleiotropic effects an allele that has more than one effect on a phenotype is considered pleiotropic these effects are characteristic of many inherited disorders, such as cystic fibrosis and sickle-cell anemia Pleiotropic effects of the cystic fibrosis gene Incomplete dominance not all alternative alleles are either fully dominant or fully recessive in heterozygotes in such cases, the alleles exhibit incomplete dominance and produce a heterozygous phenotype that is intermediate between those of the parents

Incomplete dominance Environmental effects the degree to which many alleles are expressed depends on the environment for example, some alleles are heat-sensitive arctic foxes only produce fur pigment when temperatures are warm the ch allele in Himalayan rabbits and Siamese cats encodes a heat-sensitive enzyme, called tyrosinase, that controls pigment production tyrosinase is inactive at high temperatures Environmental effects on an allele Epistasis in some situations, two or more genes interact with each other, such that one gene contributes to or masks the expression of the other gene in epistasis, one gene modifies the phenotypic expression produced by the other for example, in corn, to produce and deposit pigment, a plant must possess at least one function copy of each of two genes one gene controls pigment deposition the other gene controls pigment production How epistasis affects kernel color The effect of epistatic interactions on coat color in dogs Codominance a gene may have more than two alleles in a population often, in heterozygotes, there is not a dominant allele but, instead, both alleles are expressed these alleles are said to be codominant The gene that determines ABO blood type in humans exhibits more than one dominant allele the gene encodes an enzyme that adds sugars to lipids on the membranes of red blood cells these sugars act as recognition markers for cells in the immune system the gene that encodes the enzyme, designated I, has three alleles: I A,I B, and i different combinations of the three alleles produce four different phenotypes, or bloodtypes (A, B, AB, and O) both I A and I B are dominant over i and also codominant Multiple alleles controlling the ABO blood groups Chromosomes Are the Vehicles of Mendelian Inheritance

The chromosomal theory of inheritance was first proposed in 1902 by Walter Sutton supported by several pieces of evidence reproduction involves the initial union of only eggs and sperm each gamete contains only copy of the genetic information since sperm have little cytoplasm, the material contributed must reside in the nucleus chromosomes both segregate and assort independently during meiosis A potential problem with the chromosomal theory of inheritance is that there are many more traits that assort independently than there are chromosomes Experimental study of the fruit fly, Drosophila melanogaster, by Thomas Hunt Morgan provided confirmation of the chromosomal theory of inheritance Morgan discovered, in 1910, a mutant male fruit fly who had white eyes instead of the typical red he tried to determine whether this trait would be inherited by the Mendelian pattern he crossed a mutant male with a normal female as predicted, eye color segregated and all the F 1 individuals had red eyes but, in the F 2 generation, only males were white-eyed and not females Morgan determined that sex was key to explaining the results of his cross in fruit flies, sex is determined by the number of copies of a particular chromosome, the X chromosome, that an individual possesses a fly with two X chromosomes is female in male flies, there is only one X chromosome and that is paired with a Y chromosome Morgan reasoned that the white-eyed trait resided only on the X chromosome a trait determined by a gene on the sex chromosome is said to be sex-linked Morgan s experiment demonstrating the chromosomal basis of sex linkage Morgan s demonstration of sex linkage in Drosophila confirmed the chromosomal theory of inheritance that Mendelian traits reside on chromosomes it also explains why Mendel s First Law of Segregation works traits assort independently because chromosomes assort independently Human Chromosomes Each human somatic cell normally has 46 chromosomes, which in meiosis form 23 pairs 22 of the 23 pairs are perfectly matched in both males and females and are called autosomes

1 pair are the sex chromosomes females are designated XX while males are designated XY the genes on the Y chromosome determine maleness Sometimes errors occur during meiosis nondisjunction is the failure of chromosome to separate correctly during either meiosis I or meiosis II this leads to aneuploidy, an abnormal chromosome number most of these abnormalities cause a failure to develop or an early death before adulthood in contrast individuals with an extra copy of chromosome 21 or, more rarely, chromosome 22 can survive to adulthood however, these individuals have delayed development and mental impairment Down syndrome is caused by having an extra copy of chromosome 21 Nondisjunction in anaphase I Down Syndrome Nondisjunction may also affect the sex chromosomes nondisjunction of the X chromosome creates three possible viable conditions XXX female usually taller than average but other symptoms vary XXY male (Klinefelter syndrome) sterile male with many female characteristics and diminished mental capacity XO female (Turner syndrome) sterile female with webbed neck and diminished stature Nondisjunction of the X chromosome Nondisjunction of the Y chromosome also occurs in such cases, YY gametes are formed, leading to XYY males these males are fertile and of normal appearance The Role of Mutations in Human Heredity Accidental changes in genes are called mutations mutations occur only rarely and almost always result in recessive alleles not eliminated from the population because they are not usually expressed in most individuals (heterozygotes) in some cases, particular mutant alleles have become more common in human populations and produce harmful effects called genetic disorders

Some Important Genetic Disorders To study human heredity, scientists examine crosses that have already been made the identiy which relatives exhibit a trait by looking at family trees or pedigree often one can determine whether a trait is sex-linked or autosomal and whether the trait s phenotype is dominant or recessive for example, hemophilia is a sex-linked trait A general pedigree The Royal hemophilia pedigree Sickle-cell anemia is a recessive hereditary disorder affected individuals are homozygous recessive and carry a mutated gene that produces a defective version of hemoglobin the hemoglobin sticks together inappropriately and produces a stiff red blood cell with a sickle-shape the cells cannot move through the blood vessels easily and tends to clot this causes sufferers to have intermittent illness and shortened life spans The sickle-cell mutation to hemoglobin affects the stickiness of the hemoglobin protein surface but not its oxygen-binding ability Heterozygous individuals have some of their red blood cells become sickled when oxygen levels become low this may explain why the sickle-cell allele is so frequent among people of African descent the presence of the allele increases resistance to malaria infection Sickle-cell Anemia Tay-Sachs disease is another disease caused by a recessive allele it is an incurable disorder in which the brain deteriorates sufferers rarely live beyond five years of age Huntington s disease is a genetic disorder caused by a dominant allele it causes progressive deterioration of brain cells every individual who carries the allele expresses the disorder but most persons do not know they are affected until they are more than 30 years old Huntington s disease is a dominant genetic disorder Genetic Counseling and Therapy Genetic counseling is the process of identifying parents at risk of producing children with genetic defects and of assessing the genetic state of early embryos

One method of genetic counseling focuses on identify high-risk pregnancies through pedigree analysis, one can identify the chances of both parents being heterozygote carriers of an allele for a recessive genetic disorder high-risk pregnancies are also identified when the mothers are more than 35 years old Genetic counselors also utilize genetic screening amniocentesis is when amniotic fluid is sampled and isolated fetal cells are then grown in culture and analyzed chorionic villus sampling is when fetal cells from the chorion in the placenta are removed for analysis Amniocentesis Genetic counselors look at three things from the cell cultures obtained from either amniocentesis or chorionic villus sampling chromosomal karyotype analysis can reveal aneuploidy or gross chromosomal alterations enzyme activity in some cases, it is possible to test directly for the proper functioning of enzymes associated with genetic disorders genetic markers test for the presence of mutations at the same place on chromosomes where disorder-causing mutations are found DNA screening is the most recent form of genetic counseling and screens DNA for the presence of key genes utilizing information from the Human Genome Project, the DNA of patients is assessed for copies of genes that lead to hereditary disorders, such as cystic fibrosis and muscular dystrophy in addition, parents conceiving by in vitro fertilization (i.e., test-tube babies) can screen zygotes for potential genetic anomalies this procedure is called preimplantation screening Pre-implantation genetic diagnosis