Non-Recovery Coke Ovens For North-East Indian Coals: An Attempt For Energy Utilization

Similar documents
CO 2 Capture and Storage: Options and Challenges for the Cement Industry

Introduction: Thermal treatment

IRISH CEMENT PLATIN INVESTING IN OUR FUTURE

Energy consumption, waste heat utilisation and pollution control in ferro alloy industry

NEW EAF DUST TREATMENT PROCESS : ESRF MICHIO NAKAYAMA *

Experiences in using alternative fuels in Europe and Germany

OPTIMUM PROCESS CONDITIONS FOR THE PRODUCTION OF PIG IRON BY COREX PROCESS. Abstract

Effect of Quality of Raw Materials on the Quality of Sponge Iron Manufactured in Laboratory

Soda Ash ( Sodium carbonate) Manufacture

Present challenges for modern Cement Plants. Arturo Abarca, REFRATECHNIK México S.A. de C.V. XXVII Technical Congress FICEM-APCAC

Hydrogen and Syngas Generation from Gasification of Coal in an Integrated Fuel Processor

Potentials and Limitations with respect to NO x -Reduction of Coke Plants

STRENGTH PROPERTIES OF GEOPOLYMER MORTAR CONTAINING BINARY AND TERNARY BLENDS OF BENTONITE

MANGANESE ORE, CHROME ORE, FERRO ALLOYS

HeidelbergCement India Ltd. Welcome To Threshold Value of Minerals Workshop

REDUCTION OF CO 2 EMISSION TO METHANE USING HYDROGENATION WITH NICKEL (110) SURFACE CATALYST

Effectiveness of Use of Rice Husk Ash as Partial Replacement of Cement in Concrete

(Part 2: Cement Industry Sector) Stanley Santos

FINEX - AN OLD VISION OF THE IRON AND STEEL INDUSTRY BECOMES REALITY*

Table of Contents. Preface...

Optimization of Coal Blend proportions for sustained improvements in generation & efficiency

THERMAL ENGINEERING & TECHNOLOGY DEVELOPMENT DIVISION, CEA

Bamboo-based. Charcoal Production INFO-SHEET IS 03 09/05

Topic 2.7 EXTRACTION OF METALS. Extraction of Iron Extraction of Aluminium Extraction of Titanium Recycling

ABSTRACT. Electrostatic precipitators (ESPs), which are particulate collectors, are now used as part

By-Products from EAF Dust Recycling and Their Valorisation. Vlad POPOVICI

COKE-OVEN GAS PROCESSING EQUIPMENT

CEMENT MANUFACTURING PROCESS

Characterization of Unburnt Carbon Recovered from Fly Ash by Froth Flotation

Treatment of lead and zinc slags in hollow electrode DC-EAF

Development and optimization of a two-stage gasifier for heat and power production

Fact Sheet. Feb 2011

IRONMAKING and THEORY AND PRACTICE. Ahindra Ghosh Amit Chatterjee

TENSILE STRENGTH OF FLY ASH BASED GEOPOLYMER MORTAR

Electric Furnace Off-Gas Cleaning Systems Installation at PT Inco ABSTRACT

Callidus Oxidizer Systems. Thermal and Catalytic Oxidizer Systems

Gasification of Non-Coking Coals

Lignite oxidative desulphurization. Notice 2: effects of process parameters

S.E. (Chemical) (First Semester) EXAMINATION, 2012 PROCESS CALCULATIONS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

Emissions from wood-fuelled equipment. Senior research scientist Heikki Oravainen Technical Research Centre of Finland

Co-processing of AFR in Indian cement industry- NCB experiences

Chapter 2.6: FBC Boilers

Identify three common gaseous pollutants in air and state how each of these pollutants are produced.

THE POSSIBILITY OF USING HANDHELD XRF IN CEMENT APPLICATIONS

Coke Manufacturing. Environmental Guidelines for. Multilateral Investment Guarantee Agency. Industry Description and Practices. Waste Characteristics

Complexity (Reactions & Phase Changes) in Blast

Effects of Cement Type and Fly Ash on the Sulfate Attack Using ASTM C 1012

Mercury Monitoring in a Cement Kiln

Andre Bezanson Mech 4840

Greenhouse Gas Regulation (new Federal)

An Innovative Approach for Mercury Capture

Examples in Material Flow Analysis

Introduction. 1. MIDREX R process

The developing of red mud utilization in China

IC Chapter 3. Powers and Duties Concerning Solid Waste and Hazardous Waste Management

Worldwide Pollution Control Association. August 3-4, 2010

TECHNOLOGICAL ADVANCEMENTS IN THE APPLICATION OF ALTERNATE RAW MATERIALS IN CEMENT MANUFACTURE - NCB'S EXPERIENCE

Productive recycling of basic oxygen furnace sludge in integrated steel plant

MerSim TM Mercury Model. Abstract. Introduction. Mercury Control Strategies

HELIOSOLIDS FLUIDIZED BED INCINERATOR

Coupling gasification and metallurgical applications

Coal Quality & Boiler Efficiency

Biomass co-firing. Technology, barriers and experiences in EU. Prof.dr.ir. Gerrit Brem. TNO Science and Industry

Laboratory Investigations of the Electrical Resistivity of Cokes and Smelting Charge for Optimizing Operation in Large Ferrochrome Furnaces

Article 1: Article 2:

Emission Challenges in Cement Making due to alternative Fuels

The Chemical Industry and Climate Change. A Snapshot from India

HIGHVELD STEEL PROSPECTUS IRON MAKING PLANT 1

COAL, OIL SHALE, NATURAL BITUMEN, HEAVY OIL AND PEAT Vol. I - Desulfurization of Coal - Yasuo Ohtsuka

SULPHUR RECOVERY BY TAIL GAS TREATING TECHNOLOGY (MCRC PROCESS) MAXIMUM CLAUS

One of the main ores of zinc is zinc blende, ZnS. There are two stages in the extraction of zinc from this ore.

SIPAPER Reject Power. Environmental Product Declaration. Pulp and Paper Technologies

Slag Recycling in Submerged Arc Welding and its Influence on Chemistry of Weld Metal

Energy and Climate Change Challenges and Opportunities in the South African Cement Industry

GASIFICATION THE WASTE-TO-ENERGY SOLUTION SYNGAS WASTE STEAM CONSUMER PRODUCTS TRANSPORTATION FUELS HYDROGEN FOR OIL REFINING FERTILIZERS CHEMICALS

Proposed Guidelines for the Reduction of Nitrogen Oxide Emissions from Natural Gas fuelled Stationary Combustion Turbines

A Burning Experiment Study of an Integral Medical Waste Incinerator

filtration solutions for industrial processes

Alternative Fuels for Cement Industry: A Review

Innovation to improve carbon footprint in the Cement industry Building Material Analysis meeting University of Halle, Germany March 29, 2011

Cement industry Industrial emissions IPPC

BENEFICIAL USE OF COAL COMBUSTION PRODUCTS AN AMERICAN RECYCLING SUCCESS STORY

Pelletizing technologies for iron ore

STRENGTH AND THERMAL STABILITY OF FLY ASH-BASED GEOPOLYMER MORTAR

Application of CFB (Circulating Fluidized Bed) to Sewage Sludge Incinerator

Outotec Hydrometallurgical Nickel Plants and Processes

HIGH/INDUCED DRAUGHT ZIGZAG FIRING TECHNOLOGY

Cansolv Technologies Inc. Alberta NOx and SOx Control Technologies Symposium April 9, Rick Birnbaum

Introduction of Huaxin Environmental Business. We build sustainable development world

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Concrete Technology

7th CSI Forum - Vancouver Innovative approaches to reduce CO 2 emissions

Carbon To X. Processes

Chapter 5. Current Land-Based Incineration Technologies

TOWARDS SUSTAINABLE DEVELOPMENT

MODELLING A CEMENT MANUFACTURING PROCESS TO STUDY POSSIBLE IMPACTS OF ALTERNATIVE FUELS. Abstract

Catalytic air pollution control systems for the removal of volatile organic compounds (VOCs)

2. How can the University have an expansion of the Cogeneration Facility without an increase in the amount of coal used?

The firing and co-firing of difficult biomass fuels W R Livingston Doosan Babcock R&D

Development of Energy-Saving High-Performance Continuous Carburizing Furnace

solids and fuels DEPOTEC Life+ Workshop Guillermo San Miguel Professor and Senior Research Fellow

Transcription:

Non-Recovery Coke Ovens For North-East Indian Coals: An Attempt For Energy Utilization Abstract: Nilakshi Kakati Coal Chemistry Division,CSIR-North East Institute of Science & Technology, India Jayanta J Borah Coal Chemistry Division,CSIR-North East Institute of Science & Technology, India Tonkeswar Das Coal Chemistry Division,CSIR-North East Institute of Science & Technology, India Binoy K Saikia Coal Chemistry Division,CSIR-North East Institute of Science & Technology, India Demand for coke is on the rise and is predicted to go up further in the years to come. As on today, among the various commercially established coke making technologies, non-recovery/heat recovery ovens are established to be the sustainable ones. It has been investigated that the north eastern region (NER) of India has a number of coke ovens which are non recovery types and without heat recovery systems. Huge volume of coke oven gases released from these ovens which have high calorific values and contribute to major environmental degradation. In this paper, an attempt has been made for maximum utilization of these coke oven gases (COG) for heat recovery. The modern heat recovery ovens which are environmentally sustainable and have ease in operation have minimized the stringent environmental issues. This non-recovery/heat recovery coke making technology developed for high sulphur, high volatile coals of NER India for caking coals will be a promising technology for future, particularly in developing countries that are facing power and coke shortages. Keywords: Non-recovery/heat recovery; high sulfur coals; coke oven gases; energy recovery INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 253

Introduction Coke making in beehive ovens is quite advantageous for NE coals which exhibit special features i.e. high volatile matter and high caking index etc. A number of commercial firms have successfully commissioned carbonization batteries in the NE region and are producing quality cokes which find ready market specially by the electrode industries [1]. However, with the increasing number of such units there is a strong possibility of increased environmental pollution in and around the coke oven sites. The present project aims at developing suitable strategy to combat such pollution in commercial perspective. Coke is manufactured conventionally by two methods i.e. by direct heating and indirect heating. In indirect heating, coal is pyrolysed in absence of air indirectly. Heat is supplied to the coal bed by some external source created by burning fuel gas in the combustion chamber adjacent to the coking chamber. The volatile matters come out of the coal bed after attaining the required temperature which subsequently cooled at different stages to collect various products. The coke ovens which are based on this technology are known as by-product oven [2]. The heat generated by the combustion of volatiles is then penetrated into the bed after radiating from oven top and also by conduction. The flue gas coming out of the oven carries a significant quantity of sensible heat in addition to some combustibles. As nothing other than coke is recovered it is called non-recovery coke oven and its potential of making power is utilized by generating electricity, it may be called heat recovery oven. Coke making started with the beehive ovens, which were later enhanced to non-recovery type of coke ovens. The by-product ovens because of the value addition due to the recovery of coal chemicals were preferred over non-recovery ovens as a more viable and profitable investment. The stringent pollution laws and the high cost involved in the installation of pollution control equipment led to many by-product coke oven plants to face closure in the 80 s and 90 s. This led to the revival of interest in the non-recovery coke oven technology as it was realized that it could be used with minimum investment and complied with the pollution control regulations [3]. Non-recovery coke ovens are used for production of coke, whereby products are not recovered. Power can be generated by means of waste gas heat recovery. In this way waste can be converted to wealth. Hence non-recovery type of coke oven is energy efficient and environment friendly. The northeastern region of India has a substantial deposit of INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 254

high sulphur, caking coals. Assam, Meghalaya, Arunachal Pradesh and Nagaland are the four coal producing states of the region. Unlike most of the Indian coals, these coals are of low ash content, high volatile matter, high sulphur, highly caking and friable. These coals normally belong to the tertiary age [4]. The sulphur content in these coals is in the range of 2-7% in general and majority of the sulphur is in organic matrix, which is not easily removable. Because of the sulphur content, these coals do not find easy in-take in the industries for stringent environmental regulations. However, these coals have found applications in brick, cement, ferro silicon, ferro alloys, tea garden etc. The production of coke from these coals in non-recovery coke ovens has been established as a viable proposition and has been found to be appropriate in the cement making by VSK technique. The newly constructed oven specially for NER coals is provided with sufficient free space between the oven top and the coal bed where the volatile matters coming out from the coal charged during carbonization get combusted. The adequate free space as well as controlled supply of air ensures efficient combustion of the hydrocarbons present in the volatile matter [5-7]. The unburnt volatiles along with the hot flue goes to the sole via volatile chamber provided at the side walls of the oven where secondary air is injected to facilitate the complete combustion of the remaining hydrocarbons. The burning of the volatile matter in the sole increases the temperature of the coke oven bed that increases the efficiency of the coke oven. Also an additional combustion chamber has been provided for complete combustion of volatiles and settling down of particulate matters. All the above mentioned pollution control devices are inbuilt in the oven system. The clean flue gas can also be utilized in heat recovery units. Here in this paper utilization of high sulphur coals of north-eastern region, non recovery and heat recovery ovens for maximum utilization of these coals, temperature profile across the reactor, composition of flue gases with respect to time, quality of cement clinkers produced using these cokes and also maximum recovery of COG for heat recovery are discussed. Experimental The experimental results in the non-recovery set-up for NE coals for conventional and sole heating are compared in Table 2. The temperature profile inside the reactor using INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 255

NE coals is given in the Figure1, and average temperature attained during the carbonization period for various batches is given in Figure 2. The overall material balance across the reactor for conventional ovens in terms of weight % during coking period is given in Figure 3 and rate of computed gas production in each hour based on material balance is given in Figure 4. Coking coals from NECL, Margherita, Assam and Meghalaya are collected and their physicochemical characteristics evaluated as per standard methods are given in Table 1. The process developed at NEIST, Jorhat for highly caking, low ash, high volatile and high sulphur coals of NE region has been found to yield good quality coke suitable for cement industries adopting vertical shaft technology. Coke samples have been prepared, homogenized and nodulised. The nodules were then used for clinkerisation under simulated condition as has been followed in VSK technology. The physicochemical properties show that good quality cement clinkers (as per standards) are produced. The chemical composition of the clinkers obtained using NR cokes and standard cement clinkers and coke ash are given in Table 3. INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 256

Constituents Clinker using NR coke (%) Standard Clinker (%) Composition of coke ash used in Cement clinkers Meghalaya Assam Coke Coke LOI 3.58 0.75 -- -- SiO 2 19.88 22.38 49.80 49.50 Al 2 O 3 6.87 6.10 17.10 27.07 Fe 2 O 3 3.98 4.10 18.60 18.99 CaO 63.30 65.80 5.90 1.20 MgO 1.86 1.37 3.40 0.90 SO 3 -- -- 4.40 -- Alkalis -- -- 0.80 -- Total 99.39 100.50 100.00 97.66 Table 3 Batches Figure1: Highest temperature attained inside coke oven during carbonization of Meghalaya Coal in different batches Figure2: Average temperature attained inside coke oven during carbonization of Meghalaya Coal in different batches INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 258

Time (Hours) Figure 3: Overall material balance across the reactor (weight percent) during coking period Time (Hours) Figure 4: Rate of gas production in each hour based on material balance INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 259

Figure 6: Flow sheet for Non-recovery Coke Oven for NER Coals. Results And Discussion It has been found that yield of coke has been found to improve in sole heating systems for high volatile NE coals. The coking period has been found optimum at 24-26 hours in the pilot plant scale (kg/batch). The temperature profile across the reactor has been found to improve with continuous operation of the coke oven, which is more than 1000 o C. The average sulphur retention value has been found to be 65%-70% in cokes. The yield of CO 2, O 2, CO, sulphurous (SO 2, H 2 S) and NO x has been shown in the figure (A-C). The rate of evolution of sulphurous gases during 24 hours coking period has shown that critical period of S-evolution starts after 8 hours of coking time. The overall material balance across the reactor for conventional reactor shows lower yield of coke than newer type of oven with sole heating facility. The final weight loss corresponding to % of coke produced in non-sole heating system is shown in Figure 3. The computed rate of gas production per hour is given in Figure 4. Some experiments were conducted on absorption of sulfurous gases on zinc oxide and other mixed oxide pellets prepared in the laboratory. The metal oxides i.e., zinc oxide (ZnO), Zinc ferrite (ZnFe 2 O 4 ), Copper ferrite (CuO + Fe 2 O 3 ) with 5% binder was used for making the sorbent pellets. The sintered pellets were used to absorb H 2 S at 550 o C 600 o C at reduced atmosphere and were found to desulphurize COG s. A new process has also been developed for further reduction of sulfurous gases and volatiles i.e., an additional combustion chamber is constructed in the flue tunnel where sufficient space is provided for flue gas combustion with additional air supply. For INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 260

further reduction of sulphurous gases and volatiles, an additional combustion chamber is constructed where sufficient space is provided for flue gas combustion with additional air supply. The aqueous leaching of combusted flue gases can remove sulfurous and carbonaceous gases from COG s. Conclusion Good quality cement can be manufactured using coke produced from high sulphur coal and of North-east region of India by Vertical Shaft Kiln process. Sulphur content in the coke ultimately improves strength of produced cement due to improvement in burnability of cement raw mix and the solid state reaction. These cokes are also used in foundry and metallurgical industries. The non-recovery coke making process developed for NER coals is a sustainable technology with low sulphur and carbon emissions. Acknowledgement The authors are thankful for the financial grants of Ministry of coal and CSIR, New Delhi. INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 261

Reference 1. Beehive coke oven. (1984). A project report: Regional Research Laboratory, Jorhat. 2. Hazra, S.K. Non- recovery/heat recovery coke ovens: Design considerations and methods of heating. Book published during workshop on HR Coke-2005 (held at CFRI, Dhanbad during 26 th -28 th Feb 2005), pp 33-36; published by CFRI, Dhanbad. 3. Desulphurization of flue gas generated in beehive coke oven, (1987). A project report: Regional Research Laboratory, Jorhat. 4. Baruah, B.P., Bora, J.J., Bordoloi, D.K., & Rao, P.G. Utilization of coals from Northeast India. In: Proceedings on International Conference on Coking coals & Coke making: Challenges & Opportunities; Published by Viva Books Private Limited, held at Ranchi, India on 12 th -14 th Dec, 2005, pp 67-75. 5. Baruah, B.P., & Khare, P. (2007). Pyrolysis of high sulphur coals. Energy & Fuels, 21(6), 3346-3352. 6. EPA. (2001). National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Coke Ovens: Pushing, Quenching, and Battery Stacks Background Information for Proposed Standards. Final Report. EPA-453/R-01-006. Research Triangle Park, NC: U.S. Environmental Protection Agency. 7. Barkakati, P., Bordoloi, D., Bandyopadhyay, S., & Borah, U.C. (1993). Physicochemical characteristics of cement produced using sulphur bearing fuels in the black meal process for cement manufacture. Cement and concrete research, 23, 1185-1194. INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 262