Deoxyribonucleic Acid DNA. Structure of DNA. Structure of DNA. Nucleotide. Nucleotides 5/13/2013

Similar documents
UNIT I RNA AND TYPES R.KAVITHA,M.PHARM LECTURER DEPARTMENT OF PHARMACEUTICS SRM COLLEGE OF PHARMACY KATTANKULATUR

Protein Synthesis: Transcription and Translation

Just one nucleotide! Exploring the effects of random single nucleotide mutations

1. DNA, RNA structure. 2. DNA replication. 3. Transcription, translation

Protein Synthesis. Application Based Questions

The combination of a phosphate, sugar and a base forms a compound called a nucleotide.

Chapter 10. The Structure and Function of DNA. Lectures by Edward J. Zalisko

Honors packet Instructions

Chemistry 121 Winter 17

Molecular Level of Genetics

How life. constructs itself.

Level 2 Biology, 2017

UNIT (12) MOLECULES OF LIFE: NUCLEIC ACIDS

A Zero-Knowledge Based Introduction to Biology

Human Gene,cs 06: Gene Expression. Diversity of cell types. How do cells become different? 9/19/11. neuron

CHAPTER 12- RISE OF GENETICS I. DISCOVERY OF DNA A. GRIFFITH (1928) 11/15/2016

PROTEIN SYNTHESIS Study Guide

ANCIENT BACTERIA? 250 million years later, scientists revive life forms

Biomolecules: lecture 6

Fishy Amino Acid Codon. UUU Phe UCU Ser UAU Tyr UGU Cys. UUC Phe UCC Ser UAC Tyr UGC Cys. UUA Leu UCA Ser UAA Stop UGA Stop

Biomolecules: lecture 6

CONVERGENT EVOLUTION. Def n acquisition of some biological trait but different lineages

Mechanisms of Genetics

Bioinformatics CSM17 Week 6: DNA, RNA and Proteins

Red and black licorice sticks, colored marshmallows or gummy bears, toothpicks and string. (Click here for the Candy DNA Lab Activity)

Degenerate Code. Translation. trna. The Code is Degenerate trna / Proofreading Ribosomes Translation Mechanism

Why are proteins important?

PRINCIPLES OF BIOINFORMATICS

Lecture 19A. DNA computing

Inheritance of Traits

Describe the features of a gene which enable it to code for a particular protein.

Chapter 3: Information Storage and Transfer in Life

Today in Astronomy 106: the important polymers and from polymers to life

CISC 1115 (Science Section) Brooklyn College Professor Langsam. Assignment #6. The Genetic Code 1

7.016 Problem Set 3. 1 st Pedigree

It has not escaped our notice that the specific paring we have postulated immediately suggest a possible copying mechanism for the genetic material

Today in Astronomy 106: polymers to life

Chapter 12-3 RNA & Protein Synthesis Notes From DNA to Protein (DNA RNA Protein)

6. Which nucleotide part(s) make up the rungs of the DNA ladder? Sugar Phosphate Base

Folding simulation: self-organization of 4-helix bundle protein. yellow = helical turns

DNA Structure DNA Nucleotide 3 Parts: 1. Phosphate Group 2. Sugar 3. Nitrogen Base

iclicker Question #28B - after lecture Shown below is a diagram of a typical eukaryotic gene which encodes a protein: start codon stop codon 2 3

DNA Structure and Protein synthesis

UNIT 4. DNA, RNA, and Gene Expression

Name Date Class. The Central Dogma of Biology

DNA: The Molecule of Heredity

Do you think DNA is important? T.V shows Movies Biotech Films News Cloning Genetic Engineering

(a) Which enzyme(s) make 5' - 3' phosphodiester bonds? (c) Which enzyme(s) make single-strand breaks in DNA backbones?

DNA sentences. How are proteins coded for by DNA? Materials. Teacher instructions. Student instructions. Reflection

GENETICS and the DNA code NOTES

Station 1: DNA Structure Use the figure above to answer each of the following questions. 1.This is the subunit that DNA is composed of. 2.

Chapter 10. The Structure and Function of DNA. Lectures by Edward J. Zalisko

p-adic GENETIC CODE AND ULTRAMETRIC BIOINFORMATION

2. Examine the objects inside the box labeled #2. What is this called? nucleotide

Forensic Science: DNA Evidence Unit

Four different segments of a DNA molecule are represented below.

The Molecule of Heredity. Chapter 12 (pg. 342)

Name: Family: Date: Monday/Tuesday, March 9,

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!!

Basic Biology. Gina Cannarozzi. 28th October Basic Biology. Gina. Introduction DNA. Proteins. Central Dogma.

Protein Synthesis Review Bi 12 /25

DNA is the MASTER PLAN. RNA is the BLUEPRINT of the Master Plan

NUCLEIC ACIDS AND PROTEIN SYNTHESIS

DNA, RNA, and PROTEIN SYNTHESIS

Gene Expression REVIEW Packet

BIOLOGY. Monday 14 Mar 2016

Chapter 12 DNA & RNA

Student Exploration: RNA and Protein Synthesis Due Wednesday 11/27/13

DNA Begins the Process

DNA Structure and Replication, and Virus Structure and Replication Test Review

Warm-Up: Check your Answers

Codon Bias with PRISM. 2IM24/25, Fall 2007

Chapter 17 Nucleic Acids and Protein Synthesis

Chapter 13 From Genes to Proteins

Important points from last time

From Gene to Protein

Biology. Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

DNA- THE MOLECULE OF LIFE

Bioinformatics. ONE Introduction to Biology. Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012

UNIT 7. DNA Structure, Replication, and Protein Synthesis

Materials Protein synthesis kit. This kit consists of 24 amino acids, 24 transfer RNAs, four messenger RNAs and one ribosome (see below).

DNA- THE MOLECULE OF LIFE. Link

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below.

UNIT (12) MOLECULES OF LIFE: NUCLEIC ACIDS

Basic concepts of molecular biology

DNA, RNA and protein synthesis

Do you remember. What is a gene? What is RNA? How does it differ from DNA? What is protein?

6.C: Students will explain the purpose and process of transcription and translation using models of DNA and RNA

March 26, 2012 NUCLEIC ACIDS AND PROTEIN SYNTHESIS

PROTEIN SYNTHESIS WHAT IS IT? HOW DOES IT WORK?

CHAPTER 11 DNA NOTES PT. 4: PROTEIN SYNTHESIS TRANSCRIPTION & TRANSLATION

To truly understand genetics, biologists first had to discover the chemical nature of genes

RNA & PROTEIN SYNTHESIS

The Monster Mash A lesson about transcription and translation By Michelle Kelly, Donald Huesing, & Heather Miller

Flow of Genetic Information

BIOLOGY LTF DIAGNOSTIC TEST DNA to PROTEIN & BIOTECHNOLOGY

The Chemistry of Heredity

PROTEIN SYNTHESIS. copyright cmassengale

10/19/2015 UNIT 6: GENETICS (CH 7) & BIOTECHNOLOGY (CH 8) GENETIC PROCESSES: MUTATIONS GENETIC PROCESSES: HEREDITY

Transcription:

Deoxyribonucleic Acid DNA The Secret of Life DNA is the molecule responsible for controlling the activities of the cell It is the hereditary molecule DNA directs the production of protein In 1953, Watson and Crick proposed that DNA is made of two chains of nucleotides held together by nitrogenous bases. Watson and Crick also proposed that DNA is shaped like a long zipper that is twisted into a coil like a spring. Structure of DNA Because DNA is composed of two strands twisted together, its shape is called double helix. A double helix resembles a twisted ladder. Structure of DNA Nucleotides Nucleotide DNA is made up of subunits called nucleotides Nucleotides consist of the backbone, which is made of sugar (deoxyribose) and phosphate, as well as a nitrogenous base Phosphate Sugar Nitrogen base 1

How Did DNA Get its Name? Based on what you just learned, how do you think deoxyribonucleic acid (DNA) got its name? Nucleotides A nitrogenous base is a carbon ring structure that contains one or more atoms of nitrogen. In DNA, there are four possible nitrogenous bases: adenine (A), guanine (G), cytosine (C), and thymine (T). Adenine (A) Guanine (G) Cytosine (C) Thymine (T) Nucleotide Sequence The four nucleotides are represented by the first letter in their name A Adenine G Guanine T Thymine C Cytosine Nucleotide Sequence In DNA, Adenine always pairs with Thymine Cytosine always pairs with Guanine Nucleotides Nucleotides stack on top of one another forming the double helix, or twisted ladder 2

DNA Building Go Get It Moment! Click here to link to a DNA building activity online! When you hear Move it! you will have 30 to come get one piece of paper with an A, G, T, or C on it. Then find someone else in the room whose letter correctly matches with your nucleotide letter and stand by that person. What are the questions? Move it! 30 20 10 9 3

8 7 6 5 4 3 4

2 1 Go Get It Moment! When you hear Double Helix, you will have 1 minute to make a classroom DNA strand by standing next to another pair of nucleotides What questions are there? Double Helix 1 minute 50 5

40 30 20 10 9 8 6

7 6 5 4 3 2 7

1 DNA Replication In order for cells to divide, DNA must be able to make exact copies of itself This process is known as DNA Replication DNA Replication DNA Replication occurs before mitosis and meiosis Replication results in two identical DNA daughter strands from one mother strand Process of DNA Replication The DNA strand is unzipped at the hydrogen bonds by an enzyme named helicase. Nucleotides in the nucleus then find their corresponding nucleotides on each of the two open DNA strands and produce two new DNA double helixes. Link to DNA Replication Animation Click here to see how DNA Replication works 8

Protein Synthesis Protein Synthesis The main job for DNA is to direct the production of protein Protein makes tissues and organs and carries out the organism s metabolism Proteins are polymers (chains) of amino acids The sequence of nucleotides in each gene contains information for assembling the string of amino acids that make up a single protein RNA RNA is a nucleic acid composed of nucleotides that is crucial in making protein There are three differences between DNA and RNA RNA is a single strand The sugar in RNA is called Ribose instead of DNA s Deoxyribose Like DNA, RNA has 4 nitrogenous bases, but instead of Thymine, Uracil is the 4 th base RNA as a Single Strand You recall that DNA looks like a twisted ladder and is referred to as a double helix RNA looks like half a ladder There is only one side to RNA RNA Contains Ribose Remember how DNA got it s name? It is a nucleic acid with deoxyribose as the sugar on the backbone Hence the name Deoxyribonucleic acid Ribonucleic acid (RNA) has the sugar ribose on it s backbone RNA Has Uracil Remember the base pairs in DNA? Adenine pairs with Thymine Guanine pairs with Cytosine 9

RNA Has Uracil In RNA Adenine pairs with URACIL Guanine pairs with Cytosine Making Protein Protein production starts with DNA DNA passes instruction to RNA RNA carries out the work of linking together chains of amino acids Three Types of RNA Messenger RNA There are three types of RNA involved in Protein Synthesis Messenger RNA (mrna) Ribosomal RNA (rrna) Transfer RNA (trna) Messenger RNA (mrna), brings instructions from DNA in the nucleus to the cell s factory floor, the cytoplasm On the factory floor, mrna moves to the assembly line, a ribosome Remember that a ribosome is either a free-floating small dot in the cell or is attached to the endoplasmic reticulum making it rough ER Ribosomal RNA The ribosome, made of Ribosomal RNA (rrna) binds to the mrna and uses the instructions to assemble the amino acids in the correct order Transfer RNA Transfer RNA (trna) is the supplier Transfer RNA delivers the amino acids to the ribosome to be assembled into a protein 10

Transcription Transcription The production of messenger RNA (mrna) is known as Transcription DNA acts as a template for the RNA molecule To View a Link to Transcription Animation Click Here. The main difference between DNA Replication and transcription is that transcription results in one single strand of RNA rather than an exact duplicate of a double stranded DNA molecule Much of the information on the mrna strand codes for specific amino acids to make protein The Genetic Code Codon A code is necessary to turn the language of RNA into the language of amino acids and proteins The four nitrogenous bases make up the code The code letters are A, G, T, and C A set of three letters makes a word called a Codon There are 64 possible codons Amino Acids There are 20 different amino acids that make up proteins First Letter U C A G The Genetic Code Second Letter U C A G Phenylalanine (UUU) Phenylalanine (UUC) Leucine (UUA) Leucine (UUG) Leucine (CUU) Leucine (CUC) Leucine (CUA) Leucine (CUG) Isoleucine (AUU) Isoleucine (AUC) Isoleucine (AUA) Methionine;Start (AUG) Valine (GUU) Valine (GUC) Valine (GUA) Valine (GUG) The Messenger RNA Genetic Code Serine (UCU) Serine (UCC) Serine (UCA) Serine (UCG) Proline (CCU) Proline (CCC) Proline (CCA) Proline (CCG) Threonine (ACU) Threonine (ACC) Threonine (ACA) Threonine (ACG) Alanine (GCU) Alanine (GCC) Alanine (GCA) Alanine (GCG) Tyrosine (UAU) Tyrosine (UAC) Stop (UAA) Stop (UAG) Histadine (CAU) Histadine (CAC) Glutamine (CAA) Glutamine (CAG) Asparagine (AAU) Asparagine (AAC) Lysine (AAA) Lysine (AAG) Aspartate (GAU) Aspartate (GAC) Glutamate (GAA) Glutamate (GAG) Cysteine (UGU) Cysteine (UGC) Stop (UGA) Tryptophan (UGG) Arginine (CGU) Arginine (CGC) Arginine (CGA) Arginine (CGG) Serine (AGU) Serine (AGC) Arginine (AGA) Arginine (AGG) Glycine (GGU) Glycine (GGC) Glycine (GGA) Glycine (GGG) Third Letter U C A G U C A G U C A G U C A G 11

The Genetic Code The Genetic Code As you could see on the chart of amino acids, there are more than one codon that code for certain amino acids This results in fewer errors in protein synthesis All organisms use the same genetic code This provides evidence that all life on earth may have evolved from the same origin Ribosomes The newly produced strand of mrna travels from the nucleus to the cytoplasm where it attaches to a ribosome The ribosome is the actual site for protein synthesis Translation: From mrna to Protein The process of reading the three letter words, or codons, is known as translation Translation takes place at the ribosomes in the cytoplasm The amino acids are free-floating in the cytoplasm and congregate at the ribosome during protein synthesis The Process of Protein Synthesis The first codon is usually A-U-G, methionine, which starts the production of a new protein Following the start codon, the remaining codons call for amino acids in the order in which they appear on the mrna strand Transfer RNA (trna) At the ribosome, Transfer RNA (trna) identifies the code through translation and finds the appropriate amino acid matching the codons Each trna molecule only attaches to one specific amino acid The Anticodon on the bottom of the trna molecule corresponds with the codons on the mrna strand Transfer RNA molecule Chain of RNA nucleotides Amino acid Anticondon 12

Protein Synthesis Animation Click Here to Link to An Animation 13