Characterization of plant growth promoting rhizobacteria from legume rhizosphere

Similar documents
Biotechnology Research Department Ministry of Education Kyaukse, Myanmar

Isolation, Screening and Characterization of PGPR from Rhizosphere of Rice

SCREENING OF FLUORESCENT PSEUDOMONAS FOR PLANT GROWTH PROMOTING ACTIVITIES

Available Online at International Journal of Pharmaceutical & Biological Archives 2011; 2(4): ORIGINAL RESEARCH ARTICLE

Efficiency of microbial population in rhizosphere at different growth stages of paddy in Vertisol of Chhattisgarh

Studies on the Effect of Microbial Inoculants on the Growth of Silver Oak

Isolation and Characterization of Protease Producing Bacteria from Soil Samples of District Kohat, Pakistan

Department of Environmental Microbiology, Baba Saheb Bhim Rao Ambedkar University, Vidya Vihar Rai Barely Road, Lucknow , India

Molecular characterization and phylogenetic analysis of protease producing Streptomyces sp. isolated from mangrove sediments

EVALUATION OF ROCK PHOSPHATE SOLUBILIZATION CAPACITY BY ISOLATED STRAINS AND THEIR EFFECT ON MUNGBEAN ABSTRACT

Isolation and Characterization of Protease Producing Bacteria from Rhizosphere Soil and Optimization of Protease Production Parameters

BIODEGRADATION OF CRUDE OIL BY GRAVIMETRIC ANALYSIS

Activity 9 Canola and Microbial Signals Annual Report March 31, 2016

PHYSICOCHEMICAL PROPERTIES OF CULTIVATED SOILS AND THEIR EFFECT ON NATIVE ENDOSULFAN TOLERANT BACTERIA

International Journal of Pharma and Bio Sciences

Optimisation of fermentation conditions of phosphate solubilising bacteria- a potential biofertilizer

Degradation assessment of low density polythene (LDP) and polythene (PP) by an indigenous isolate of Pseudomonas stutzeri

ENGINEERED FOR HIGH PERFORMANCE GROWTH. IgniteS HEALTHIER SOILS STRONGER PLANTS HIGHER YIELDS

Production and characterization of biosurfactant from Pseudomonas spp

Dynamics of soil biological fertility as influenced by organic and inorganic inputs under soybean in vertisol

ABSTRACT I. INTRODUCTION

Isolation and Characterization of Sulfosulfuron Utilizing Bacteria from Wheat Cultivated Soil

Influence of Agriculturally Beneficial Microbial Formulations in Survival on Seeds of Cowpea and Finger Millet

Chapter 3 SCREENING AND SELECTION OF STRAIN FOR ALKALINE PROTEASE PRODUCTION BY SUBMERGED FERMENTATION

IN-VITRO STUDIES ON OIL DEGRADING BACTERIA ISOLATED FROM OIL CONTAMINATED SOIL OF VANIYAMBADI AND AMBUR AREAS OF VELLORE DISTRICT

Several Aspects of Microbial Technology for Food Pasteurization and Sterilization

Comparitive Study on Quality Parameters and Viability of Carrier and Liquid Biofertilizers

4 th Asian PGPR Conference, May 3-6, 2015; Hanoi, Vietnam

Assessment of Pb accumulation in roots of fast-growing trees inoculated with endophytic bacteria: Hydroponic culture

Bacterial Viability and Biological Seed Treatment of Canola

Exercise 13 DETERMINATION OF MICROBIAL NUMBERS

Evaluating the Efficiency of Microbes in Mung Bean by different Tests for Improving Crop Yields

STUDIES ON ISOLATION, CHARACTERIZATION AND GROWTH OF CHLORPYRIFOS DEGRADING BACTERIA FROM FARM SOIL

Group Name: Plant Microbe Interactions

ROLE OF AGRICULTURALLY IMPORTANT MICROORGANISMS IN STSUTAINABLE AGRICULTURE

SOIL HEALTH TECH BULLETIN I

Screening and Characterization of Diazotrophic Bacterial isolates for Plant Growth Promoting Properties

Divine Nature. Page No : 01

Int.J.Curr.Microbiol.App.Sci (2017) 6(3):

Solubilization of Rock Phosphate by Penicillium bilaiae Soil Phosphorus Management in Organic Crop Production

COUNT METHOD 5.0 OBJECTIVES 5.1 INTRODUCTION 5.2 PRINCIPLE. Structure

Phosphate solubilizing bacteria promote growth and enhance nutrient uptake by wheat

Characterization of Bacterial Isolates...

Volume 2, issue 1 (2013),36-48

Plate-Dilution Frequency Technique for Assay of

Isolation, partial purification and characterization of α-amylase from Bacillus subtilis

SOIL INCORPORATION OF COVERCROP BIOMASS: EFFECTS ON SOIL MICROORGANISMS AND NITROGEN LEVELS

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 3.114, ISSN: , Volume 5, Issue 9, October 2017

An Efficient Method for Qualitative Screening of Phosphate-Solubilizing Bacteria

Submitted May 16, May 23, 2014 BY:

A Strategy to Improve Efficiency of Hydrocarbon Degrading Microbial Flora through Biostimulation Approach

Effect of Bio-Phos (Chaetomium globosum) on Castor (Ricinus communis L.) Yield at Different Levels of Phosphorus under Irrigated Conditions

EFFECT OF DIFFERENT AMOUNT OF MINERAL NITROGEN AND BIOLOGICAL FERTILIZER ON YIELD AND YIELD COMPONENTS OF CORN

Response of Integrated Nutrient Management on Nutrient Uptake, Economics and Nutrient Status of Soil in Bold Seeded Summer Groundnut

Effect of Microbial Inoculation and Sulphur on Soybean Growth and Yield

Isolation and Selection of Beneficial Microorganism Used for Peanut Growing in Sandy Soil of Binhdinh Province, Vietnam

FAO/IAEA research and training in soil fertility at the IAEA's Seibersdorf Laboratories

Polymicrobial inoculant for optimizing fertilizer use and promoting root growth.

Effect of Long Term Incorporation of Organic and Inorganic Fertilizers on Phosphate Solubilizing Bacteria and Alkaline Phosphatase Activity

MICROBIAL PLATE COUNT USING IMAGE PROCESSING

GROWTH AND SURVIVAL OF PATHOGENIC E. COLI DURING CURDLING OF MILK

Cultural and Physiological Studies on Wild Mushroom Specimens of Schizophyllum commune and Lentinula edodes

Impact of Fertigation and Target Yield Levels on Soil Microbial Biomass and Cane Yield of Ratoon Sugarcane

Bioremediation of pharmaceutical industrial effluent by organisms screened from effluent discharged soil

Some Industrially Important Microbes and Their Products

1a. Can CLas be cultured? 1b. What happens when rhamnolipids are applied to a culture of CLas? 1c. Development of methods to detect rhamnolipids

INVITRO COMPATIBILITY EVALUATION FOR THE BIOCONVERSION OF DOMESTIC SOLID WASTES BY MIXED CULTURES OF MICRO-ORGANISMS

inoculation in presence of reduced dose of NPK (75%) fertilizers indicating the beneficial effects of bio inoculants. Key words: Mulberry, Potash,

Efficacy of Bio NP Liquid Biofertilizer in Chilli Nursery

Relationship between Management Practices such as Irrigation, Tillage, Cropping, Fertilizer and Soil Microbial Diversity

1 INTRODUCTION. A number of package of practices has been introduced to augment the

Role of PGPR in sustainable agriculture: Global climate Change and Water sustainability

Selection of Storage Methods for Maintenance of Different Stock Cultures

Enrichment, Isolation and Identification of Hydrocarbon Degrading Bacteria

Research Article PRODUCTION OF A THERMOSTABLE EXTRACELLULAR PROTEASE FROM THERMOPHILIC BACILLUS SPECIES

Accepted 9 December, 2011

Carrier for microbial inoculants

Acknowledgement - 7th World Congress of Chemical Engineering Abstract Title (max 150 char): Abstract Text (max 2500 char): Topic

Submitted May 16, May 23, 2014 BY:

Characterization of the Lactobacillus isolated from different curd samples

System for Counting Bacteria

Nitrates are essential for plant growth

Improving supply and phosphorus use efficiency in organic farming systems

EFFECT OF TWO APPLICATIONS OF SUBSTRATE ON NITRIFICATION AND ph OF SOILS

Effect of selected insecticides on soil microbial load in rice ecosystem

STEWARDSHIP OF THE MICROBIAL ECOSYSTEM OF AGRICULTURAL SOIL. Dr. Bridgitta Steyn Pr.Sci.Nat. 21 August 2018

OPTIMIZATION OF BIOLOGICAL TREATMENT OF DAIRY EFFLUENT USING RESPONSE SURFACE METHODOLOGY

Microbial Diversity in Oil Contaminated Areas of Indian Thar Desert

Isolation of oil- degrading microorganisms from soil contaminated with petroleum hydrocarbons

BIMM 121 Letter Grade by Practicum. Student Information Sheet

IMMOBILIZATION OF CATALASE BY CROSS-LINKING OF PERMEABILIZED YEAST CELLS IN A PROTEIN SUPPORT

Isolation and screening of protease producing bacteria from different market soils

Isolation and characterization of a solvent tolerant alkaliphilic marine bacteria

Effect of Organic Rice to Weed Management Practices on Yield Parameters and Microbial Population Grown under Lowland Condition

Isolation of Oil-degrading bacteria from spill samples and studying their biodegradation potentiality on different types of oils

Microbial production of protease by Bacillus Cereus using cassava waste water

Effects of Biofertilizers Effects of Compost, Vermicompost and Sulfur Compost on Yield of Saffron

B. PRASAD, R. PRASAD, A. SINGH AND S. PRASAD

Screening of Photosynthetic Bacteria, Rhodospirllum centenum for Stimulation of Rice Seed Germination

Transcription:

Available online at wwwpelagiaresearchlibrarycom Asian Journal of Plant Science and Research, 2015, 5(4):38-42 ISSN : 2249-7412 CODEN (USA): AJPSKY Characterization of plant growth promoting rhizobacteria from legume rhizosphere Seema Rawat 1 * and Asifa Mushtaq 2 1 Department of Botany and Microbiology, H N B Garhwal (Central) University, Srinagar, Uttarakhand, India 2 Department of Biotechnology, Dolphin (PG) Institute of Biomedical & Natural Sciences, Dehradun, Uttarakhand, India ABSTRACT Legumes have been used in agricultural production since the earliest of civilizations They have served as the primary source of nitrogen for many cropping systems, as well as providing food for humans and domestic animals In many developing agricultural regions of the world, legumes are still used extensively for these purposes However, in the last several decades, the widespread availability of synthetic nitrogen fertilizer has resulted in a major decrease in the cultivation of legumes Thus it is important both in terms of crop productivity and soil health that biofetilizers should be used The present study aimed at characterization of growth promotion potential of rhizobacteria of legume crop The rhizobacterial population (log 10 cfu) varied significantly from 544 to 736 The rhizobacterial population was found to vary in species richness from 0d to 90d of cropping was documented to be dominant population of zero day (40%) while was the dominant population (33%) on 30 th day of cropping On 60 th day of cropping became a predominant population (50%) while on 90 th day of cropping and Corynebacterium were the dominant population (30%) These isolates exhibit a significant plant growth promotion attributes viz, siderophore production, phosphorus solubilization, protease and rhamnolipid production Key words: Legumes, Rhizobacteria, Biofertilizers,, Corynebacterium, Siderophore, Rhamnolipid, Phosphorus solubilzation INTRODUCTION The intensive use of fertilizers to increase crop production had adverse effects on the soil health Greater productivity and competitiveness are anticipated to come from increased efficiency through the acquisition and management of new of biotechnologies and crop production strategies [1] Improvement in agriculture sustainability requires optimal use and management of soil fertility and soil physical properties, both of which rely on soil biological processes and soil biodiversity In this context, the long-lasting challenges in soil microbiology are development of effective methods to know the types of microorganisms present in soils, and to determine functions which the microbes perform in situ It is imperative to understand the relationship of soil and plant with the diversity of associated bacteria, defining the roles of plant growth promotory bacteria (PGPR) to evolve strategies for their better exploitation PGPR live in mutualistic interactions with the plant They benefit from rhizodeposition-derived nutrients and in some cases from other root derived factors like micro-oxic conditions, growth factor, attractants or even inducers of enzyme activity In return, these populations may exhibit properties favouring plant growth and productivity Beneficial rhizobacteria can increase plant vigor and soil fertility [2] The application of plant growth promoting rhizobacteria (PGPR) as biofertilizers, phytostimulators and biocontrol agents would be an attractive alternative to decrease use of chemical fertilizers which lead to environmental pollution [3] 38

Seema Rawat and Asifa Mushtaq Asian J Plant Sci Res, 2015, 5(4):38-42 MATERIALS AND METHODS 21 Collection of samples Samples were collected from the field at different time periods viz, 0d, 30d, 60d, 90d and 120d 22 Physical characteristics of soil The temperature and ph of soil sample was recorded 23 Recovery of rhizospheric microflora Rhizospheic soil was separated from roots of legume with the help of brush in a petridish 10g soil was placed in 100ml sterile phosphate buffered saline (PBS) and was placed in shaker for 1h 01 ml of appropriately diluted sample was spreaded on nutrient agar All fractions were plated in triplicates Plates were incubated in a BOD incubator at 28±1 0 C for 24h 24 Characterization of isolates 241 Morphological characterization Morphological characteristics viz, colony morphology (colour, chromogenesis, shape, margin, elevation and surface) and cell morphology (shape, gram reaction and arrangement) of recovered isolates were studied 242 Biochemical characterization The various biochemical characteristics viz, Oxidase test, IMViC test, TSI test, Uresae test, Catalase test and nitrate reduction test were carried out according to [4] 243 Functional characterization The functional diversity amongst recovered isolates was studied by qualitative screening of their ability to solubilize phosphorus, protease, rhamnolipid and siderophore production (a) Phosphorus solubilization The ability of isolates to solubilize phosphorus was estimated according to [5] Isolates exhibiting clearing zone on Pikovaskya's agar after 96-120h of incubation were considered as positive (b) Rhamnolipid production- It was estimated according to [6] All isolates were inoculated on rhamnolipid production medium Isolates exhibiting blue colour were considered as positive (c) Siderophore production- It was assayed according to [7] Isolates were spot inoculated on Chromeazurol 'S' agar Isolates exhibiting an orange halo zone after 48-72h of incubation were considered positive Their zone diameter was measured (d)protease production- It was assayed on skim milk agar Isolates exhibiting a clear halo zone after 24h of incubation were considered as positive Their zone diameter was measured RESULTS Temperature of soil sample of maize varied significantly from 38±045 0 C (0d) to 24±032 0 C (90d) ph varied slightly from 71 (0d) to 67(90d) 31 Diversity of rhizobacteria 311 Structural diversity The rhizobacterial population (log 10 cfu) varied significantly from 544 to 736 (Fig 1) The rhizobacterial population was found to vary in species richness from 0d to 90d of cropping (Fig 2) was documented to be dominant population of zero day (40%) followed by (), () and Corynebacterium () was the dominant population (33%) on 30 th day of cropping followed by (), Serratia () and (17%) On 60 th day of cropping became a predominant population (50%) followed by () and Alacligenes () On 90 th day of cropping and Corynebacterium were the dominant population (30%) followed by and Serratia () 39

Seema Rawat and Asifa Mushtaq Asian J Plant Sci Res, 2015, 5(4):38-42 8 Population Count (log10cfu) 7 6 5 4 3 2 1 0 0d 30d 60d 90d Time of Sampling (Days) Fig 1: Population structure of legume rhizobacteria 0 day 40% Corynebacterium 30 day 17% 33% Serratia 40

Seema Rawat and Asifa Mushtaq Asian J Plant Sci Res, 2015, 5(4):38-42 60 day 50% 90 day 30% 30% Pseudomoans Corynebacterium Serratia Fig2: Distribution of legume rhizobacteria at different time intervals in field 312 Functional characterization of recovered rhizobacteria The distributional of functional diversity amongst the recovered rhizobacteria is depicted in Fig 3 Maximum siderophore producers were recovered from 30d, 60d and 90d samples Maximum P solubilizers were recovered from 60d sample while maximum protease producers were recovered from 60d sample Maximum rhamnolipid producers were recovered from 60d and 90d samples Positive Isolates (%) 90 80 70 60 50 40 30 20 10 0 0d 30d RS 60d RS 90d RS Name of Samples Rhamnolipid P Solubilization Protease Siderophore Fig 3: Functional diversity of recovered rhizobacteria from legume 41

Seema Rawat and Asifa Mushtaq Asian J Plant Sci Res, 2015, 5(4):38-42 DISCUSSION The race for producing more crop yield by adopting intensive agronomic practices and applying more fertilizers is thought to have had adverse effects on the diversity of bacteria in the agriculture fields The beneficial microorganisms in bulk soil and rhizosphere in natural agroecosystems contributing to soil health and plant productivity can be exploited as bioinoculants to increase more crop productivity This requires a deeper understanding of relationship between rhizosphere and bacteria The present work was aimed at characterizing the rhozobacteria of legume crop so that the promising isolates can be exploited as biofertilizers The population profile of rhizobacteria was observed to change with the age of crops Rhizobacterial population (log 10 cfu) varied from 544 to 736 The distribution of rhizobacteria varied with the age of crops The species richness varied with the age of cropping was documented to be dominant population of zero day while was the dominant population on 30 th day On 60 th day of cropping became a predominant population while on 90 th day of cropping and Corynebacterium were the dominant population The distribution and dominance pattern of rhizobacteria is usually influenced by the crop The aging of crop probably change the root exudates and this influence the richness as well as dominance pattern of rhizobacteria The functional diversity was also observed to be influenced with the age of crop as siderophore producers were maximum on 30d, 60d and 90d of cropping Sideophore are low molecular weight iron chelating compounds which plays an important role in plant growth promotion [8, 9] Maximum P solubilizers and protease producers were from 60d of crop The amount of phosphorus available to plants is very low because of its extreme insolubility Thus rhizobacteria plays an important role in plant growth promotion by solubilizing phosphate by secreting some acids or by some other means [10, 11, 12, 13] Maximum rhamnolipid producers were from 60d and 90d crops Rhamnolipids are a class of glycolipid produced by microorganism They have a glycosyl head group, ie rhamnose moiety, and a 3- (hydroxyalkanoyloxy)alkanoic acid (HAA) fatty acid tail Rhamnolipid helps in uptake of hydrophobic substrates, exhibit antimicrobial properties, helps in biofilm formation and swarming motility [6] Thus this study yielded some of the promising isolates which needs to be tested for their in vitro plant growth promotion potential REFERENCES [1] BN Johri, A Sharma and JS Virdi, Adv Biochem Engin/Biotechnol, 2003, 84: 49 89 [2] SG Dastager, CK Deepa and A Pandey, World J Microbiol Biotechnol, 2011, 27: 259-265 [3] B Ali, AN Sabri and S Hasnain, World J Microbiol Biotechnol, 2010, 26:1379-1384 [4] JG Cappucinno N Sherman, N Microbiology: a laboratory manual The Benjamin/Cummings Publishing Co, USA, 1992, 3 rd ed pp: 150 [5] RI Pikovskaya Microbiologica, 1948, 17: 362-370 [6] Sharma and BN Johri In: Proceedings of national symposium on developments in microbial biochemistry and its impact on biotechnology (Eds: BS Rao, PM Mohan and C Subramanyam) Osmania University, Hyderabad, 2002, pp 166-184 [7] Schwyne and JB Neilands Anal Biochem, 1987, 160: 40-47 [8] JW Kloepper, J Leong, M Teintze and MN Schroth Current Microbiol, 1980, 4: 317-320 [9] H Marschner and V Rohmeld Plant Soil, 1994, 165:261-274 [10] JR de Freitas, MR Banerjee and JJ Germida Biol Fertil Soils, 1997, 24: 358-364 [11] H Rodriguez and R Fraga Biotech Adv, 1999, 17: 319-339 [12] CS Nautiyal, S Bhadauria, P Kumar, H Lal, R Mondal and R Verma R FEMS Microbiol Lett, 2000, 182: 291-296 [13] YP Chen, PD Rekha, AB Arun, FT She, WA Lai and CC Young Appl Soil Ecol, 2006, 34: 33 41 42