CHAPTER 3. Crystal Structures and Crystal Geometry 3-1

Similar documents
Chapter-3 MSE-201-R. Prof. Dr. Altan Türkeli

Energy and Packing. typical neighbor bond energy. typical neighbor bond energy. Dense, regular-packed structures tend to have lower energy.

Introduction to Engineering Materials ENGR2000 Chapter 3: The Structure of Crystalline Solids. Dr. Coates

Energy and Packing. Materials and Packing

CRYSTAL STRUCTURE TERMS

Chapter1: Crystal Structure 1

بسم هللا الرحمن الرحیم. Materials Science. Chapter 3 Structures of Metals & Ceramics

MME 2001 MATERIALS SCIENCE

Chapter 3: Atomic and Ionic Arrangements. Chapter 3: Atomic and Ionic Arrangements Cengage Learning Engineering. All Rights Reserved.

Packing of atoms in solids

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

General Objective. To develop the knowledge of crystal structure and their properties.

STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE

9/29/2014 8:52 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE

Ex: NaCl. Ironically Bonded Solid

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 3 Atomic and Ionic Arrangements

MSE420/514: Session 1. Crystallography & Crystal Structure. (Review) Amaneh Tasooji

Materials Science and Engineering

Structure of silica glasses (Chapter 12)

UNIT V -CRYSTAL STRUCTURE

ENGINEERING MATERIALS LECTURE #4

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

Chapter 1. Crystal Structure

Density Computations

Metallic crystal structures The atomic bonding is metallic and thus non-directional in nature

Example: Compute the wavelength of a 1 [kg] block moving at 1000 [m/s].

Chapter One: The Structure of Metals

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline How do atoms arrange themselves to form solids?

Chapter 3 Structure of Crystalline Solids

Two marks questions and answers. 1. what is a Crystal? (or) What are crystalline materials? Give examples

Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices

Crystal structure of the material :- the manner in which atoms, ions, or molecules are spatially.

Basic Solid State Chemistry, 2 nd ed. West, A. R.

Problems. 104 CHAPTER 3 Atomic and Ionic Arrangements

Carbon nanostructures. (

Solid State Device Fundamentals

Materials and their structures

Materials Science ME 274. Dr Yehia M. Youssef. Materials Science. Copyright YM Youssef, 4-Oct-10


Physics of Materials: Symmetry and Bravais Lattice To understand Crystal Plane/Face. Dr. Anurag Srivastava

ASE324: Aerospace Materials Laboratory

Solids. The difference between crystalline and non-crystalline materials is in the extent of ordering

CRYSTAL LATTICE. Defining lattice: Mathematical construct; ideally infinite arrangement of points in space.

Materials Science. Why?

How do atoms assemble into solid structures? How does the density of a material depend on its structure?

Single vs Polycrystals

Chapter 12 The Solid State The Structure of Metals and Alloys

CHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES. Sarah Lambart

Review of Metallic Structure

The structures of pure metals are crystalline (crystal lattice) with regular arrangement of metal atoms that are identical perfect spheres.

CHAPTER 2. Structural Issues of Semiconductors

Condensed Matter Physics Prof. G.Rangarajan Department of Physics Indian Institute of Technology, Madras

METALLIC CRYSTALS. tend to be densely packed. have several reasons for dense packing: have the simplest crystal structures.

3D 14 BRAVAIS LATTICES AND THE SEVEN CRYSTAL SYSTEM

Chapter 3: Structures of Metals & Ceramics

Engineering Materials Department of Physics K L University

Crystallography. Duration: three weeks (8 to 9 hours) One problem set. Outline: 1- Bravais Lattice and Primitive

CHAPTER. The Structure of Crystalline Solids

Solid State Device Fundamentals

CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES

Lectures on: Introduction to and fundamentals of discrete dislocations and dislocation dynamics. Theoretical concepts and computational methods

Chapter 7: Dislocations and strengthening mechanisms

EP 364 SOLID STATE PHYSICS. Prof. Dr. Beşire Gönül. Course Coordinator

Point coordinates. Point coordinates for unit cell center are. Point coordinates for unit cell corner are 111

Figure.1. The conventional unit cells (thick black outline) of the 14 Bravais lattices. [crystallographic symmetry] 1

Chapter 8: Molecules and Materials

ENERGY AND PACKING. Chapter 3 CRYSTAL STRUCTURE & PROPERTIES MATERIALS AND PACKING METALLIC CRYSTALS ISSUES TO ADDRESS...

Student Name: ID Number:

Materials Science. Imperfections in Solids CHAPTER 5: IMPERFECTIONS IN SOLIDS. Types of Imperfections

Symmetry in crystalline solids.

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith

Chrystal Structures Lab Experiment 1. Professor Greene Mech Submitted: 4 February, 2009 Max Nielsen Trevor Nickerson Ben Allen Kushal Sherpa

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( =

Point coordinates. x z

atoms = 1.66 x g/amu

Crystal Structure. Andrew R. Barron Carissa Smith. 1 Introduction. 2 Crystallography

Order in materials. Making Solid Stuff. Primary Bonds Summary. How do they arrange themselves? Results from atomic bonding. What are they?

CRYSTAL STRUCTURE, MECHANICAL BEHAVIOUR & FAILURE OF MATERIALS

LAB II CRYSTAL STRUCTURE AND CRYSTAL GROWTH PART 1: CRYSTAL GROWTH. I. Introduction

Impurities in Solids. Crystal Electro- Element R% Structure negativity Valence

N = N A ρ Pb A Pb. = ln N Q v kt. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal.

3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (112 ) (c) (102 ) (d) (13 1) Solution

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

A New Technique to Determine the Coordination Number of BCC, FCC and HCP Structures of Metallic Crystal Lattices using Graphs

Topic 2-1: Lattice and Basis Kittel Pages: 2-9

GEOLOGY 585: OPTICAL MINERALOGY & PETROLOGY

Now, let s examine how atoms are affected as liquids transform into solids.

E45 Midterm 01 Fall 2007! By the 0.2% offset method (shown on plot), YS = 500 MPa

1.10 Close packed structures cubic and hexagonal close packing

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10.

FIRST MIDTERM EXAM Chemistry March 2011 Professor Buhro

Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1)

Primitive cells, Wigner-Seitz cells, and 2D lattices. 4P70, Solid State Physics Chris Wiebe

Unit-I. Engineering Physics-I.

Solids can be distinguished from liquids and gases due to their characteristic properties. Some of these are as follows:

CHAPTER 4 INTRODUCTION TO DISLOCATIONS. 4.1 A single crystal of copper yields under a shear stress of about 0.62 MPa. The shear modulus of

Stacking Oranges. Packing atoms together Long Range Order. What controls the nearest number of atoms? Hard Sphere Model. Hard Sphere Model.

Transcription:

CHAPTER 3 Crystal Structures and Crystal Geometry 3-1

The Space Lattice and Unit Cells 3-2 Atoms, arranged in repetitive 3-Dimensional pattern, in long range order (LRO) give rise to crystal structure. Properties of solids depends upon crystal structure and bonding force. An imaginary network of lines, with atoms at intersection of lines, representing the arrangement of atoms is called space lattice. Unit cell is that block of atoms which repeats itself to form space lattice. Materials arranged in short range order are called amorphous materials Unit Cell Space Lattice

Crystal Systems and Bravais Lattice Only seven different types of unit cells are necessary to create all point lattices. According to Bravais (1811-1863) fourteen standard unit cells can describe all possible lattice networks. The four basic types of unit cells are Simple Body Centered Face Centered Base Centered 3-3

Cubic Unit Cell Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display a = b = c α = β = γ = 90 0 Types of Unit Cells Simple Body Centered Face centered Figure 3.2 Tetragonal a =b c α = β = γ = 90 0 Simple Body Centered 3-4 After W.G. Moffatt, G.W. Pearsall, & J. Wulff, The Structure and Properties of Materials, vol. I: Structure, Wiley, 1964, p.47.)

Orthorhombic Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display Types of Unit Cells (Cont..) a b c α = β = γ = 90 0 Simple Base Centered Rhombohedral Face Centered a =b = c α = β = γ 90 0 Body Centered Figure 3.2 Simple 3-5 After W.G. Moffatt, G.W. Pearsall, & J. Wulff, The Structure and Properties of Materials, vol. I: Structure, Wiley, 1964, p.47.)

Types of Unit Cells (Cont..) Hexagonal a b c α = β = γ = 90 0 Simple Monoclinic Triclinic a b c α = β = γ = 90 0 a b c α = β = γ = 90 0 Simple Figure 3.2 Base Centered Simple 3-6 After W.G. Moffatt, G.W. Pearsall, & J. Wulff, The Structure and Properties of Materials, vol. I: Structure, Wiley, 1964, p.47.)

Principal Metallic Crystal Structures 90% of the metals have either Body Centered Cubic (BCC), Face Centered Cubic (FCC) or Hexagonal Close Packed (HCP) crystal structure. HCP is denser version of simple hexagonal crystal structure. BCC Structure FCC Structure HCP Structure Figure 3.3 3-7

Body Centered Cubic (BCC) Crystal Structure Represented as one atom at each corner of cube and one at the center of cube. Each atom has 8 nearest neighbors. Therefore, coordination number is 8. Examples :- Chromium (a=0.289 nm) Iron (a=0.287 nm) Sodium (a=0.429 nm) 3-8 Figure 3.4 a&b

BCC Crystal Structure (Cont..) Each unit cell has eight 1/8 atom at corners and 1 full atom at the center. Therefore each unit cell has (8x1/8 ) + 1 = 2 atoms 3-9 Atoms contact each other at cube diagonal Therefore, lattice constant a = 4 R 3 Figure 3.5

Atomic Packing Factor of BCC Structure Atomic Packing Factor = Volume of atoms in unit cell Volume of unit cell 4ΠR 3 V atoms = 2. = 8.373R 3 3 V unit cell = a 3 = 4 R 3 3 = 12.32 R 3 Therefore APF = 8.723 R 3 12.32 R 3 = 0.68 3-10

Face Centered Cubic (FCC) Crystal Structure FCC structure is represented as one atom each at the corner of cube and at the center of each cube face. Coordination number for FCC structure is 12 Atomic Packing Factor is 0.74 Examples :- Aluminum (a = 0.405) Gold (a = 0.408) Figure 3.6 a&b 3-11

FCC Crystal Structure (Cont..) Each unit cell has eight 1/8 atom at corners and six ½ atoms at the center of six faces. Therefore each unit cell has (8 x 1/8)+ (6 x ½) = 4 atoms 3-12 Atoms contact each other across cubic face diagonal Therefore, lattice 4 R constant a = 2 Figure 3.7

Hexagonal Close-Packed Structure The HCP structure is represented as an atom at each of 12 corners of a hexagonal prism, 2 atoms at top and bottom face and 3 atoms in between top and bottom face. Atoms attain higher APF by attaining HCP structure than simple hexagonal structure. The coordination number is 12, APF = 0.74. Figure 3.8 a&b 3-13 After F.M. Miller, Chemistry: Structure and Dynamics, McGraw-Hill, 1984, p.296

HCP Crystal Structure (Cont..) Each atom has six 1/6 atoms at each of top and bottom layer, two half atoms at top and bottom layer and 3 full atoms at the middle layer. Therefore each HCP unit cell has (2 x 6 x 1/6) + (2 x ½) + 3 = 6 atoms Examples:- Zinc (a = 0.2665 nm, c/a = 1.85) Cobalt (a = 0.2507 nm, c.a = 1.62) Ideal c/a ratio is 1.633. Figure 3.8 c 3-14 After F.M. Miller, Chemistry: Structure and Dynamics, McGraw-Hill, 1984, p.296

Atom Positions in Cubic Unit Cells Cartesian coordinate system is use to locate atoms. In a cubic unit cell y axis is the direction to the right. x axis is the direction coming out of the paper. z axis is the direction towards top. Negative directions are to the opposite of positive directions. Atom positions are located using unit distances along the axes. Figure 3.10 b 3-15

Directions in Cubic Unit Cells In cubic crystals, Direction Indices are vector components of directions resolved along each axes, resolved to smallest integers. Direction indices are position coordinates of unit cell where the direction vector emerges from cell surface, converted to integers. Figure 3.11 3-16

3-17 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display Procedure to Find Direction Indices Produce the direction vector till it emerges from surface of cubic cell Determine the coordinates of point of emergence and origin Subtract coordinates of point of Emergence by that of origin Are all are integers? YES Are any of the direction vectors negative? YES Represent the indices in a square bracket without comas with a over negative index (Eg: [121]) NO NO x z (1,1/2,1) (0,0,0) (1,1/2,1) - (0,0,0) = (1,1/2,1) 2 x (1,1/2,1) = (2,1,2) The direction indices are [212] Convert them to y smallest possible integer by multiplying by an integer. Represent the indices in a square bracket without comas (Eg: [212] )

Direction Indices - Example Determine direction indices of the given vector. Origin coordinates are (3/4, 0, 1/4). Emergence coordinates are (1/4, 1/2, 1/2). Subtracting origin coordinates from emergence coordinates, (3/4, 0, 1/4) - (1/4, 1/2, 1/2) = (-1/2, 1/2, 1/4) Multiply by 4 to convert all fractions to integers 4 x (-1/2, 1/2, 1/4) = (-2, 2, 1) Therefore, the direction indices are [ 2 2 1 ] Figure EP3.6 3-18

Miller Indices Miller Indices are are used to refer to specific lattice planes of atoms. They are reciprocals of the fractional intercepts (with fractions cleared) that the plane makes with the crystallographic x,y and z axes of three nonparallel edges of the cubic unit cell. z Miller Indices =(111) y x 3-19

Miller Indices - Procedure Choose a plane that does not pass through origin Determine the x,y and z intercepts of the plane Find the reciprocals of the intercepts Fractions? Place a bar over the Negative indices Clear fractions by multiplying by an integer to determine smallest set of whole numbers Enclose in parenthesis (hkl)where h,k,l are miller indicesof cubic crystal plane forx,y and z axes. Eg: (111) 3-20

Miller Indices - Examples (100) x x z y Intercepts of the plane at x,y & z axes are 1, and Taking reciprocals we get (1,0,0). Miller indices are (100). ******************* Intercepts are 1/3, 2/3 & 1. taking reciprocals we get (3, 3/2, 1). Multiplying by 2 to clear fractions, we get (6,3,2). Miller indices are (632). 3-21 Figure 3.14

Miller Indices - Examples Plot the plane (101) Taking reciprocals of the indices we get (1 1). The intercepts of the plane are x=1, y= (parallel to y) and z=1. ****************************** Plot the plane (2 2 1) Taking reciprocals of the indices we get (1/2 1/2 1). The intercepts of the plane are x=1/2, y= 1/2 and z=1. Figure EP3.7 a Figure EP3.7 c 3-22

Miller Indices - Example Plot the plane (110) The reciprocals are (1,-1, ) The intercepts are x=1, y=-1 and z= (parallel to z axis) To show this plane a single unit cell, the origin is moved along the positive direction of y axis by 1 unit. (110) z y x 3-23

Miller Indices Important Relationship Direction indices of a direction perpendicular to a crystal plane are same as miller indices of the plane. z Example:- [110] (110) y x Figure EP3.7b 3-24 Interplanar spacing between parallel closest planes with same miller indices is given by a d = hkl 2 2 2 + + h k l

Planes and Directions in Hexagonal Unit Cells Four indices are used (hkil) called as Miller-Bravais indices. Four axes are used (a 1, a 2, a 3 and c). Reciprocal of the intercepts that a crystal plane makes with the a 1, a 2, a 3 and c axes give the h,k,i and l indices respectively. Figure 3.16 3-25

Hexagonal Unit Cell - Examples Basal Planes:- Intercepts a1 = a2 = a3 = c = 1 (hkli) = (0001) Prism Planes :- For plane ABCD, Intercepts a1 = 1 a2 = a3 = -1 c = (hkli) = (1010) Figure 3.12 a&b 3-26

Directions in HCP Unit Cells Indicated by 4 indices [uvtw]. u,v,t and w are lattice vectors in a 1, a 2, a 3 and c directions respectively. Example:- For a 1, a 2, a 3 directions, the direction indices are [ 2 1 1 0], [1 2 1 0] and [ 1 1 2 0] respectively. Figure 3.18 d&e 3-27

Comparison of FCC and HCP crystals Both FCC and HCP are close packed and have APF 0.74. FCC crystal is close packed in (111) plane while HCP is close packed in (0001) plane. Figure 3.19 a&b 3-28 After W.G. Moffatt, G.W. Pearsall, & J. Wulff, The Structure and Properties of Materials, vol. I: Structure, Wiley, 1964, p.51.)

Structural Difference between HCP and FCC Consider a layer of atoms (Plane A ) Plane A a void b void Another layer (plane B ) of atoms is placed in a Void of plane A Third layer of Atoms placed in b Voids of plane B. (Identical to plane A.) HCP crystal. Plane A Plane B Plane A Plane A Plane B a void b void Third layer of Atoms placed in a voids of plane B. Resulting In 3 rd Plane C. FCC crystal. Plane A Plane B Plane C 3-29 Figure 3.20

Volume density of metal = Volume Density ρ v = Mass/Unit cell Volume/Unit cell 3-30 Example:- Copper (FCC) has atomic mass of 63.54 g/mol and atomic radius of 0.1278 nm. a= 4 R = 4 0.1278nm = 0.361 nm 2 2 Volume of unit cell = V= a 3 = (0.361nm) 3 = 4.7 x 10-29 m 3 FCC unit cell has 4 atoms. Mass of unit cell = m = ρ v = m V 4.22 10 = 4.7 10 (4atoms)(63.54g / mol ) 10 23 4.7 10 atmos / mol 28 29 Mg Mg = 8.98 3 3 m m Mg g 6 g = 8.98 cm 3 = 4.22 x 10-28 Mg

Planar Atomic Density Planar atomic density= ρ p = Equivalent number of atoms whose centers are intersected by selected area Selected area Example:- In Iron (BCC, a=0.287), The (100) plane intersects center of 5 atoms (Four ¼ and 1 full atom). Equivalent number of atoms = (4 x ¼ ) + 1 = 2 atoms 2 Area of 110 plane = 2 a a = 2 a ρ p = ( ) 2 2 2 0.287 Figure 3.22 a&b = 17.2atoms 1.72 10 = 2 2 nm mm 13 3-31

Linear Atomic Density Linear atomic density = ρ l = Number of atomic diameters intersected by selected length of line in direction of interest Selected length of line Example:- For a FCC copper crystal (a=0.361), the [110] direction intersects 2 half diameters and 1 full diameter. Therefore, it intersects ½ + ½ + 1 = 2 atomic diameters. Length of line = 2 0.361nm ρ l = 6 2 atoms 3.92atoms 3.92 10 atoms = = 2 0.361nm nm mm 3-32 Figure 3.23

Polymorphism or Allotropy Metals exist in more than one crystalline form. This is caller polymorphism or allotropy. Temperature and pressure leads to change in crystalline forms. Example:- Iron exists in both BCC and FCC form depending on the temperature. Liquid Iron -273 0 C 912 0 C 1394 0 C 1539 0 C α Iron BCC γ Iron FCC δ Iron BCC 3-33

Amorphous Materials Random spatial positions of atoms Polymers: Secondary bonds do not allow formation of parallel and tightly packed chains during solidification. Polymers can be semicrystalline. Glass is a ceramic made up of SiO 4 4- tetrahedron subunits limited mobility. Rapid cooling of metals (10 8 K/s) can give rise to amorphous structure (metallic glass). Metallic glass has superior metallic properties.