Chapter Outline. Joining Processes. Welding Processes. Oxyacetylene Welding. Fusion Welding Processes. Page 1. Welded Joints

Similar documents
Joining Processes R. Jerz

Kasetsart University. INDT0204: Welding. Types of Welding

Chapter 31. Solid-State Welding Processes

Solid-State Welding Processes

Solid-State Welding Processes. Solid State Bonding 12/2/2009. Cold Welding

Manufacturing Process-I Prof. Dr. D.K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Materials & Processes in Manufacturing

Hail University College of Engineering Department of Mechanical Engineering. Joining Processes and Equipment. Fusion-Welding.

CHAPTER 28. Solid-State Welding Processes. Kalpakjian Schmid Manufacturing Engineering and Technology 2001 Prentice-Hall Page 28-1

WELDING TECHNOLOGY AND WELDING INSPECTION

Lecture 23. Chapter 30 Fusion Welding Processes. Introduction. Two pieces are joined together by the application of heat

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

Introduction to Welding Technology

Apart from technical factors, welding processes can also be classified on the fundamental approaches used for deposition of materials for developing

Fundamentals of Joining

Gas Flame and Arc Processes

MANUFACTURING TECHNOLOGY - I UNIT-1 TWO MARKS

Lecture 3-2: Hull production Steel processing methods

Introduction. Online course on Analysis and Modelling of Welding. G. Phanikumar Dept. of MME, IIT Madras

Metallurgical Processes

Brazing & Soldering. Brazing, Soldering, Adhesive-Bonding and Mechanical-Fastening. Brazing 12/2/2009

Module 3 Selection of Manufacturing Processes. IIT Bombay

Module 4 Design for Assembly

Copyright 1999 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES Welding NARRATION (VO):

WELDING Topic and Contents Hours Marks

Structure of Metals 1

Roll Bonding or Roll Welding

Manufacturing Process II. Welding Processes-1

Materials for Automobiles. Lec 13 Welding 12 Oct 2011

SHRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An ISO 9001:2008 Certified Institution) Siruganoor, Tiruchirappalli


ME E5 - Welding Metallurgy

NAME 345 Welding Technology Lecture 09 SAW, ESW & Resistance Welding

Course: WELDING AND FABRICATION. Qualification: 7 th Pass (or) Formal education who can read and write in telugu. Duration: 3 months

Module 4 Design for Assembly

Production Engineering II. Chapter Three. Welding & Bonding Technology. AAiT

Chapter 1 & 2 Metal casting process

Casting, Forming & Welding

Welding Processes Classification Based On The Technological Criteria

A Practical Design Guide for Welded Connections Part 1 Basic Concepts and Weld Symbols

Students will be able to effectively operate the equipment for various welding processes. (SLO)

Joining. 10. Tool Design for Joining. Joining. Joining. Physical Joining. Physical Joining

CLASSIFIATION OF WELDING PROCESSES

Upon completion of this module

Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

Technical Data & Welding Guidelines for Ferralium 255SD50 Super Duplex Stainless Steel

PREVIEW COPY. Welding Principles. Table of Contents. Fundamentals of Welding...3. Oxyfuel Welding Equipment...35

Design for welding: Design recommendations

Comparison of CO 2 and Arc Welding using Butt Joint

ANSI/AWS D An American National Standard. Structural Welding Code Sheet Steel

ISO 4063 : NOMENCLATURE OF WELDING AND ALLIED PROCESSES

UNIT I METAL CASTING PROCESSES

Industrial Technology: Welding Technology Crosswalk to AZ Language Arts Standards

Lesson 1 Introduction to Welding Technology. Contents

Course ID Course Name Course Outcome Technical Mathematics in Air Conditioning and Refrigeration

Chapter 32 Resistance Welding and Solid State Welding. Materials Processing. Classification of Processes. MET Manufacturing Processes

Manufacturing Process II. Welding Processes-2

3/26/2015. Processes of Arc Welding. Kate Gilland

Resistance Welding. Resistance Welding (RW)

WELDING (442) Welding (442) Flux Cored Arc Welding (FCAW)

COURSE CODE : 3023 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

Welding. What is Welding?

WELDING METALLURGY. Sindo Kou Professor and Chair Department of Materials Science and Engineering University of Wisconsin SECOND EDITION

VARIOUS EFFECTS OF WELDING PARAMETERS ON TIG WELDING OF 2024-T3 CLAD ALUMINUM ALLOY PLATE

The principle Of Tungsten Inert Gas (TIG) Welding Process

EML 2322L -- MAE Design and Manufacturing Laboratory. Welding

Common Oxy Fuel Industry Terms

Brazing & Braze Welding With Oxyacetylene

Comparison of BS and BS EN for steel materials

COMPARISON OF WELDING/BONDING METHODS

NAME 345 Welding Technology Lecture 03 (Welding Joint Design)

Introduction to Welding

WELDING. There are different methods of arc welding in practice as listed below:

Production Engineering SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL PRODUCTION ENGINEERING PRODUCTION ENGINEERING

Mechanical joints. Welded joints. Methods of joining materials

Training Provider: Illinois Welding School. ATIM Occupation: Welder. Name of Training Program: Program #101/ Production Welding Specialists

Unit 154: Welding Technologies

6 Month Intensive Welding & Fabrication Course Course Overview

Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding Keyword: 16.1 Selection of pulse parameters

WELDING TECHNOLOGY TYPES UNIT I GAS WELDING DEFINITION

11. Surfacing. and Shape Welding

Steel. Relia Quality Wear Resistant Plates PROPERTIES

Agenda. Hitsaustekniikka Kon Gas Metal Arc Welding Conventional control (solid wire) - Fundaments

Howell Public Schools Scope and Sequence Pre-Manufacturing. Michigan Standards High School Content Expectations (HSCEs) Code & Language

Part 7: 1992 Specification for materials and workmanship Cold-formed

REFERENCE SYLLABUS. for WELDING EXAMINER & WELDING EXAMINER IN TRAINING CERTIFICATES OF COMPETENCY EXAMINATIONS

Design of Machine Elements I Prof. G. Chakraborty Department of Mechanical Engineering Indian Institute of Technology Kharagpur

Beveling procedures and beveling machines beveling, a quick overview 1

KCWONG. Shielded Metal Arc Welding (SMAW) Gas Metal Arc Welding (GMAW/MIG) Flux-cored Arc Welding (FCAW) Gas Tungsten Arc Welding (GTAW/TIG) KCWONG

Saggistica Aracne 266

SARDAR RAJA COLLEGE OF ENGINEERING, ALANGULAM

Hot-Dip Galvanized Fabrication Considerations

CHAPTER 3 SCOPE AND OBJECTIVES

Relia. Industeel. Relia : Quality Wear Resistant Plates PROPERTIES STANDARDS TECHNICAL CHARACTERISTICS

Industrial Welder Level 2

Lecture - 01 Introduction: Manufacturing and Joining

Good welding practice Stainless Steels

Transcription:

Joining Processes Chapter Outline R. Jerz 1 4/16/2006 R. Jerz 2 4/16/2006 Welding Processes Welded Joints Gas, electricity, or other heat source? Is electrode consumed? Is a filler material used? Is flux used? Anything else? Video Introduction to welding R. Jerz 3 4/16/2006 R. Jerz 4 4/16/2006 Fusion Welding Processes Video Fusion welding processes Oxyacetylene Welding Acetylene gas most common (6,000 F) Welding Cutting Straightening Can be with or without filler R. Jerz 5 4/16/2006 R. Jerz 6 4/16/2006 Page 1 1

Oxyacetylene Torch Weld Joint Structure Figure 30.2 (a) General view of and (b) cross-section of a torch used in oxyacetylene welding. The acetylene valve is opened first; the gas is lit with a spark lighter or a pilot light; then the oxygen valve is opened and the flame adjusted. (c) Basic equipment used in oxyfuel-gas welding. To ensure correct connections, all threads on acetylene fittings are left-handed, whereas those for oxygen are right-handed. Oxygen regulators are usually painted green, and acetylene regulators red. R. Jerz 7 4/16/2006 Figure 30.17 Characteristics of a typical fusion-weld zone in oxyfuelgas and arc welding. Figure 30.18 Grain structure in (a) deep weld and (b) shallow weld. Note that the grains in the solidified weld metal are perpendicular to their interface with the base metal (see also Fig. 10.3). (c) Weld bead on a cold-rolled nickel strip produced by a laser beam. (d) Microhardness (HV) profile across a weld bead. R. Jerz 8 4/16/2006 Arc Welding Processes Gas-Tungsten Arc Welding Nonconsumable electrode Gas tungsten-arc (TIG) Plasma arc (PAW) Consumable electrode Shielded metal arc (SMAW) Gas metal arc (GMAW or MIG) Flux-cored arc welding (FCAW) Submerged arc welding (SAW) Video TIG welding Figure 30.4 (a) The gas tungsten-arc welding process, formerly known as TIG (for tungsten inert gas) welding. (b) Equipment for gas tungsten-arc welding operations. R. Jerz 9 4/16/2006 R. Jerz 10 4/16/2006 Plasma-Arc Welding Process Video plasma arc welding 60,000 degrees F Shielded-Metal Arc Welding Video shielded metal arc welding Figure 30.7 Schematic illustration of the shielded metal-arc welding process. About 50% of all large-scale industrial welding operations use this process. R. Jerz 11 4/16/2006 R. Jerz 12 4/16/2006 Page 2 2

Shielded-Metal Arc Welding Gas Metal-Arc Welding Figure 30.8 A deep weld showing the buildup sequence of eight individual weld beads. Videos gas metal arc welding R. Jerz 13 4/16/2006 R. Jerz 14 4/16/2006 Fluxed-Cored Arc-Welding Video flux core welding Submerged-Arc Welding Video submerged-are welding Figure 30.11 Schematic illustration of the flux-cored arc welding process. This operation is similar to gas metal-arc welding, shown in Fig. 30.10. R. Jerz 15 4/16/2006 Figure 30.9 Schematic illustration of the submerged arc welding process and equipment. The unfused flux is recovered and reused. R. Jerz 16 4/16/2006 Other Welding Processes Weld Design Electron beam - video Laser beam - video Figure 30.29 Some design guidelines for welds. Source: After J.G. Bralla. R. Jerz 17 4/16/2006 R. Jerz 18 4/16/2006 Page 3 3

Welded Joints Metallurgy concerns Solidification process Heat-affected zone - weakest part of joint Defects in Fusion Welds Figure 30.19 Examples of various discontinuities in fusion welds. Figure 30.20 Examples of various defects in fusion welds. R. Jerz 19 4/16/2006 R. Jerz 20 4/16/2006 Cracks in Welded Joints Distortion of Parts After Welding Figure 30.21 Types of cracks developed in welded joints. The cracks are caused by thermal stresses, similar to the development of hot tears in castings (see also Fig. 10.12). R. Jerz 21 4/16/2006 Figure 30.23 Distortion of parts after welding. (a) Butt joints and (b) fillet welds. Distortion is caused by differential thermal expansion and contraction of different regions of the welded assembly. R. Jerz 22 4/16/2006 Weld Testing Solid-state Processes Mechanical methods Ultrasonic Friction Electrical Resistance Figure 30.26 (a) Specimen for longitudinal tension-shear testing; (b) specimen for transfer tension-shear testing; (c) wraparound bend test method; (d) three-point bending of welded specimens (see also Fig. 2.11). R. Jerz 23 4/16/2006 R. Jerz 24 4/16/2006 Page 4 4

Ultrasonic Welding Video - ultrasonic Ultrasonic Welding Vibrating tool at high frequency Lap joints of thin materials Figure 31.2 (a) Components of an ultrasonic welding machine for making lap welds. The lateral vibrations of the tool tip cause plastic deformation and bonding at the interface of the workpieces. (b) Ultrasonic seam welding using a roller as the sonotrode. R. Jerz 25 4/16/2006 R. Jerz 26 4/16/2006 Rub two parts together Video Friction welding Resistance (Spot) Welding (RW) Figure 31.6 (a) Sequence of events in resistance spot welding. (b) Cross-section of a spot weld, showing the weld nugget and the indentation of the electrode on the sheet surfaces. This is one of the most commonly used processes in sheet-metal fabrication and in automotivebody assembly. R. Jerz 27 4/16/2006 R. Jerz 28 4/16/2006 Video Resistance Welding Spot, projection, and seam Heating H=I 2 RT, where I=current R=electrical resistance T=time Spot Welding Equipment Figure 31.7 (a) Schematic illustration of an air-operated, rocker-arm, spot welding machine. (b) and (c) Two electrode designs for easy access into components to be welded. R. Jerz 29 4/16/2006 R. Jerz 30 4/16/2006 Page 5 5

Resistance Projection Welding Spot Weld Testing Figure 31.13 (a) Schematic illustration of resistance projection welding. (b) A welded bracket. (c) and (d) Projection welding of nuts or threaded bosses and studs. (e) Resistance-projection-welded grills. R. Jerz 31 4/16/2006 Figure 31.10 Test methods for spot welds: (a) tension-shear test, (b) cross-tension test, (c) twist test, (d) peel test. (see also Fig. 32.9). R. Jerz 32 4/16/2006 Brazing & Soldering Joint Designs used in Brazing Video Filler material Temperature below melting point of metals Differences from welding brazing alloy strength of brazing alloy capillary action Soldering - lower temperature than brazing R. Jerz 33 4/16/2006 Figure 32.3 Joint designs commonly used in brazing operations. The clearance between the two parts being brazed in an important factor in joint strength. If the clearance is too small, the molten braze metal will not penetrate the interface fully. If it is too large, there will be insufficient capillary action for the molten metal to fill the interface. R. Jerz 34 4/16/2006 Should be clean Joints Should have close tolerance Advantages of Brazing Join a variety of metals Quick Low temperature Automation is possible R. Jerz 35 4/16/2006 R. Jerz 36 4/16/2006 Page 6 6

Adhesives Adhesives Epoxies - most are 2 components Cyanoacrylates - super glues Anaerobics one component, cure when oxygen is removed Acrylics catalyst primer and adhesive Urethanes low temperatures Silicones - flexible joints Hot melts R. Jerz 37 4/16/2006 R. Jerz 38 4/16/2006 Advantages & Disadvantages Combination of materials Low temperature Joining of thin materials Joining of heat sensitive materials Inexpensive Less assembly time Unstable at higher temperature Destructive testing required Surface preparation Cure time R. Jerz 39 4/16/2006 Design for Assembly (DFM) Many ideas Function Cost Time DFM Video R. Jerz 40 4/16/2006 DFM - Concepts DFM Examples Reduce the number of parts Reduce number of fasteners Use modular designs Reduce need to handle several components at the same time Limit number of directions Use high quality components Design fasteners that can be easily automatically feed R. Jerz 41 4/16/2006 R. Jerz 42 4/16/2006 Page 7 7