Characterization of Streptomyces Isolates with UV, FTIR Spectroscopy and HPLC Analyses

Similar documents
Indian Journal of Pharmaceutical and Biological Research (IJPBR)

3.0. Materials and methods

Journal of Chemical and Pharmaceutical Research

Molecular characterization and phylogenetic analysis of protease producing Streptomyces sp. isolated from mangrove sediments

ENVIRONMENTAL PARAMETERS OF GROWTH

College of Basic Education Researchers Journal Vol. (12), No.(3), (2013)

Aurachin SS, a new antibiotic from Streptomyces sp. NA04227

ENVIRONMENTAL PARAMETERS OF GROWTH

Screening of actinomycetes for antifungal metabolites production from kodachadri soils

Research Article. Characterization of antimicrobial compounds from Streptomyces isolates

The impact of different carbon and nitrogen sources on antibiotic production by Streptomyces hygroscopicus CH-7

NANOFORMULATION OF ANTIFUNGAL DRUG (FLUCONAZOLE) AND THEIR EVALUATION FOR IMPROVED ANTIFUNGAL ACTIVITY

CHAPTER III SCREENING, ISOLATION AND DETERMINATION OF ANTIMICROBIAL SPECTRA OF ACTINOMYCETES

Antimicrobial Compound from Streptomyces Isolate Characterized Using HPLC

ANTIMICROBIAL ACTIVITY OF ACTINOMYCETES STRAIN ISOLATED FROM SOILS OF UNUSUAL ECOLOGICAL NICHES

ANTIMICROBIAL ACTIVITY OF STREPTOMYCES SPP. ISOLATED FROM MARINE SIDEMENTS OF IRAN AGAINST TESTED MICROORGANISMS

DIDANOSINE ORAL POWDER Final text for addition to The International Pharmacopoeia

INTERNATIONAL PHARMACOPOEIA MONOGRAPH ON ARTEMETHER AND LUMEFANTRINE CAPSULES REVISED DRAFT FOR DISCUSSION

JKMU. Antimicrobial Activity of Combined Extracts of Trachyspermum, Thymus and Pistachio against Some Pathogenic Bacteria ARTICLE INFO.

Chemical constituents of the mangrove-associated fungus Capnodium

Gregory Petrossian 1, Dahai Zhang 2 Ph.D., Neal Goebel 2 M.S., and Mark Zabriskie 2* Ph.D.

Isolation of Actinomycetes from different soils for analysing the antagonistic activity against pathogens

MATERIALS AND METHODS

CHAPTER 4 DISCUSSION. Many types of suitable media can be used to support the fungal growth and there is no

Key words: Paracetamol, antibacterial activity, chemical preservative, zone of inhibition.

Antibacterial Activity of Actinomycetes Isolated From Agriculture Soils in Hillah /Iraq

Screening and characterization of putative antibiotic compound using PCR

Research Article. Antimicrobial activity of pigments produced by fungi from Western Ghats

Isolation and Characterization of Actinomycetes from Soil and Screening their Antibacterial Activities against different Microbial Isolates

INTRODUCTION water-soluble Figure 1.

TD-P Revision 3.0 Creation Date: 6/9/2016 Revision Date: 8/16/2018

Table of Contents 1. CHAPTER I INTRODUCTION 1 [A] GLUCOSE ISOMERASE 1

Actinomycetes diversity in five fresh water systems of Pudukkottai, Tamilnadu and their antimicrobial activity

Determination of MIC & MBC

Determination of MIC & MBC

Journal of Chemical and Pharmaceutical Research, 2017, 9(5): Research Article

Isolation,Identification, and Characterization of of Rubber Degradation by a Mixed Microbial Culture Mr Munzer ullah (PhD student China University of

International Journal of Pharmacy and Pharmaceutical Sciences

ISSN: X Research Article MINIATURIZED FERMENTATION IN EPPENDORF TUBES FOR THE DETECTION OF ANTAGONISTIC ACTINOMYCETES

DACLATASVIR TABLETS (DACLATASVIRI COMPRESSI) Proposal for The International Pharmacopoeia. (May 2018)

Some Industrially Important Microbes and Their Products

á62ñ MICROBIOLOGICAL EXAMINATION OF NONSTERILE PRODUCTS: TESTS FOR SPECIFIED MICROORGANISMS

Final text for addition to The International Pharmacopoeia

Microbial assay measures the activity of antibiotics (Extent of ability to inhibit

ANTIBIOTIC POTENTIAL OF SOIL ACTINOMYCETES UNDER INFLUENCE OF PHYSICAL AND NUTRITIONAL PARAMETERS

Isolation and Morphological Characterization of Antibiotic Producing Actinomycetes

Isolation and screening of pyocyanin producing Pseudomonas spp. from soil

Production and characterization of biosurfactant from Pseudomonas spp

Enrichment, Isolation and Identification of Hydrocarbon Degrading Bacteria

MICROBIOLOGICAL EXAMINATION OF NON-STERILE PRODUCTS: TEST FOR SPECIFIED MICRO-ORGANISMS Test for specified micro-organisms

Isolation and Characterization of Antibiotic-producing Actinomycetes from hot spring sediment of Thailand

Secondary metabolite production by Streptomycetes in situ and in vivo

STUDIES ON THE EFFECTS OF END PRODUCT INHIBITION OVER LACTIC ACID BACTERIA UNDER HIGH CELL DENSITY CULTIVATION PROCESS

Available Online at International Journal of Pharmaceutical & Biological Archives 2011; 2(5): ORIGINAL RESEARCH ARTICLE

Pelagia Research Library. Effect of metal ions and drugs on antibacterial activities of Nigella sativa (L.) seeds

Isolation and Characterization of Two Antibiotic-Producing Bacteria

Lab Exercise: Examining Water Quality: Most Probable Number & Colilert Test Kit Lab

Applying the mutation of Bacillus subtilis and the optimization of feather fermentation medium to improve Keratinase activity

Bioprospecting for microorganisms in the sea surface microlayer

Introduction. Results

Isolation, partial purification and characterization of α-amylase from Bacillus subtilis

HPLC Fingerprinting of Biologically Active Extracts from Streptomyces sp

IN THIS SECTION MICROBIOLOGY TESTING EXPERT SOLUTIONS FOR PRODUCT DEVELOPMENT. Bacterial Endotoxin (LAL) Testing

Document No. FTTS-FA-001. Specified Requirements of Antibacterial Textiles for General Use

Real-time detection of microbial intrusion in potable water using advanced devices

Maejo International Journal of Science and Technology

Аquaphotomics in biotechnology - new tools and opportunities

Optimization of Different Parameters for Antimicrobial Compound Production by Soil Microorganisms

Bacterial inactivation claims in the context of sterility. Adonis Stassinopoulos, Ph.D V.P. Global Scientific Affairs and Research Cerus Corporation

Research Article

GROWTH AND SURVIVAL OF PATHOGENIC E. COLI DURING CURDLING OF MILK

Synthesis, Characterization and Antimicrobial Activity of Some Oxazole and Thiazole Derivatives

4.4 MICROBIOLOGICAL METHOD FOR THE ESTIMATION OF. The microbiological assay was performed by using the test

Introduction, by Tortora, Funke and Case, 11th Ed. TENTATIVE LECTURE OUTLINE DATE TOPIC CHAPTER

Volume 2, issue 1 (2013),36-48

Isolation of Host Specific Bacteriophages against Salmonella and Methicillin Resistant Staphylococcus aureus (MRSA) From Hospital Waste Water

Microbiology for Oral and Topical Products - The basics Scott Colbourne Business Manager NSW ALS Food & Pharmaceutical

extremely different from terrestrial conditions, it is supposed that microorganisms in

Draft proposal for The International Pharmacopoeia

SCREENING OF SELECTED PLANTS GROWING IN IRAN FOR ANTIMICROBIAL ACTIVITY *

Production of Antibiotics from Soil-Isolated Actinomycetes and Evaluation of their Antimicrobial Activities

Inoculate: Media. Physical State of Media: Liquid. The Five I s: Basic Techniques to Culture Microbes Tools of the Microbiology Laboratory

Sebastian Hernandez and Justo M. Mata Compania Espanola de Penicilina y Antibioticos, S. A., Madrid, Spain

Isolation and Characterization of Protease Producing Bacteria from Soil Samples of District Kohat, Pakistan

Bacterial Transformation: Unlocking the Mysteries of Genetic Material

Industrial microbiology

Test Method of Specified Requirements of Antibacterial Textiles for Medical Use FTTS-FA-002

IDENTIFICATION AND CHARACTERIZATION OF ANTIBIOTIC-PRODUCING ACTINOMYCETES ISOLATES

BIODEGRADATION OF CRUDE OIL BY GRAVIMETRIC ANALYSIS

Antagonistic Actinomycete XN-1 from Phyllosphere Microorganisms of Cucumber to Control Corynespora cassiicola

Biotechnology : Unlocking the Mysterious of Life Seungwook Kim Chem. & Bio. Eng.

Antimicrobial activity (in vitro) of polysaccharide gel from durian fruit-hulls

Production of Extracellular Protease and Determination of Optimise Condition by Bacillus Licheniformis BBRC

JMSCR Vol 05 Issue 07 Page July 2017

MidInfrared Sensors for Pathogen Detection

Isolation of Endophytic Fungi from Cortex, Leaf, and Pericarp of Mangosteen (Garcinia mangostana L.) and Testing of the Antimicrobial Activity

6. Appendices. A. Reagent and media preparation. B. Definitions. C. Properties of organic solvents. D. Cut-off values of different solvents

LAB 1: Eau that smell

Isolation of Chemical Compounds Fraction 8 in Ethyl Acetate Phase from Metanol Extract in Binahong Leaves (Anredera cordifolia (Ten) Steenis)

Transcription:

BioImpacts, 2011, 1(1), 47-52 http://bi.tbzmed.ac.ir/ Characterization of Streptomyces Isolates with UV, FTIR Spectroscopy and HPLC Analyses Hadi Maleki 1 *, Omid Mashinchian 2 1 Research Centre for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran 2 Biology Department, Faculty of Science, University of Tabriz, Tabriz, Iran A R T I C L E I N F O Article Type: Research Article Article History: Received: 11 January 2011 Revised: 21 January 2011 Accepted: 12 February 2011 epublished: 9 June 2011 Keywords: UV Spectroscopy FTIR Spectroscopy Streptomyces Antimicrobial Activity A B S T R A C T Introduction: Streptomyces, gram-positive and aerobic bacteria, are distinguished genus of Actinomycetes. This economically important genus is well studied owing to its capacity in producing more than 70% of antibiotics. In fact, need for novel, safe and more efficient antibiotics is a key challenge to the pharmaceutical industry today, moreover, increase in opportunistic infections in the immune compromised host has influenced this demand. Nowadays, evaluating morphological and biochemical differences as well as studying streptomyces genetic diversity via molecular indicators seem to be the most common method for screening this genus. Methods: In this research we evaluate the potential of antibiotic production and characterize the UV and FTIR spectroscopy and HPLC (High performance liquid chromatography) analysis pattern of streptomyces from various locations in northwest of Iran. Regarding this, 30 soil samples were collected randomly from different zones of northwest region of Iran. Then, following the extraction of secondary metabolite, the UV and FTIR spectroscopy analysis was carried out for characterization of the various extracts. Results: Considering the coordinate analysis of UV and FTIR spectroscopy pattern, the isolate G614C1 with substantial antimicrobial activity exhibited absorption at 3411 cm-1 which is indicator of hydroxyl groups, absorption at 2856 and 2915 cm-1 indicating hydrocarbon chassis, and absorption at 1649 cm-1 indicating a double bond of polygenic compound. Conclusion: These results highlight the importance of streptomyces isolates in antibiotic production. HPLC confirmed the production when compared with standards. Introduction Streptomyces as the most important genus of Actinomycetes are the most abundant soil microorganisms under a wide variety of conditions. Actinomycetes strains are characterized by the production of important extracellular bioactive compounds and majority of those strains belong to species within the genus Streptomyces which produce two thirds of the clinically important antibiotics. This genus was confirmed to be a promising bacteria against several pathogens and are well known for their potential to produce a large number of inhibitory metabolites used in industry and pharmacy (Baltz 1998; Berdy 1995). Recently many of studies on the isolation, characterization and genotyping of soil streptomycetes have been conducted (Saadoun et al. 1997; Saadoun et al. 1998; Saadoun et al. 1999a; Saadoun and Al-Momani 1996). Further studies showed various streptomycetes isolates inhibiting the growth of several multi-resistant Gram-positive pathogens (Saadoun et al. 1999b; Saadoun and Gharaibeh 2002; Saadoun and Gharaibeh 2003). Experiments on the nature of the inhibitory metabolite produced by S. violaceusniger showed a maximum absorption in the UV region at 210-260 nm (Saadoun et al. 1999b). In a different study, the various extract of Streptomyces isolates exhibit inhibitory effects against Candida albicans, therefore the properties of the extract determined by UV-spectra absorbance peaks (Saadoun and Al-Momani 2000). Similarly, a study by Ilić et al. (Ili et al. 2005) on 20 different Streptomyces isolates from the soils of Southeastern Serbia indicated that the UV spectra of the culture extracts for the active isolates showed absorbance peaks ranging between 221 *Corresponding author: Hadi Maleki (MSc), Tel.: + 98 411 3367914, Fax: +98 411 3367929, E-mail: hadi.maleki@gmail.com Copyright 2011 by Tabriz University of Medical Sciences

Maleki and Mashinchian and 240 nm. The UV spectra of the active compounds in methanol showed peaks at 217 and 221 nm. Therefore this study was undertaken to demonstrate the potential of streptomyces, collected from different habitats in Northwest region of Iran. The further evaluation of the promising isolates was carried out using the UV & FTIR spectroscopy. Materials and Methods Isolation of bacterial strain Collected soil samples, from 10-15 cm depth, were kept in 4 C until incubation, while noting sampling region s explicit features such as ph and altitude (Ishii et al. 1983). In order to prepare the soil suspension, 5 g of soil was transferred into a sterile bottle then; 45 ml of distilled water was included and was shaken for 30 min. Five sets of ten-fold serial dilution was prepared from original supernatant, then 100 µl of third concentration was applied for inoculation of Starch Casein Agar (SCA) and the plates incubated for 7 days in 28 C. Morphological features of clones such as color of colonies and secreted pigment were used for preliminary categorization of bacterial population. The incongruent colonies were kept at -80 C and tagged as a discrete isolate based on their sampling location and order of colony isolated from same soil sample (e.g., the code G614 C1 stand for the first colony that was isolated from Urmia in West Azerbaijan province) (Kreuze et al. 1999; Oskay et al. 2004). Target organisms A series of indicative bacteria have been used in this experiment including: E. coli, K. pneumoniae, S. flexneri, L. monocytogenes, B.cereus, Y. enterocolitica and S. aureus. UV-Spectra of Streptomyces extracts Streptomycetes isolates were cultured in 250 ml flasks containing 50 ml liquid medium (containing, beef extract 3.0 g; peptone 5.0 g; glucose 2.0 g; ph 7.5). Flasks were inoculated with 1 ml of Streptomyces spores suspension (10 7 CFU/ml) and incubated at 28 C for 7 days with shaking at 100 rpm. Control flasks were not inoculated with the Streptomyces spores and were treated as above. After reaching the bacteria to the special concentration, the content of each flask was centrifuged at 2000 g for 10 min. Approximately 20 ml of each of the centrifuged fermented broth was extracted with 15 ml of n-butanol after which absorption spectra in UV region (200-450 nm) were determined using a Jenway or Unicam UVvisible spectrophotometer. The organic solvent for extraction of the culture broth and UV spectrophotometer used in different studies are mentioned in Table 1. Table 1. The UV spectroscopy data for the ethyl acetate extract of selective isolates. Strain S. aureus Ultraviolet (UV) and Fourier transform infrared (FTIR) spectral analysis UV-spectra of various Streptomycetes isolates obtained from this study were subjected to comparison of general pattern, maximum absorbance peaks and range of wave length. Each active extract was determined in the UV region (200-400nm) by using a Perkin-Elmer Lambda 30 UV/VIS spectrophotometer (AH and Aysel 2003). Then FTIR spectrum of each active extract was detected using Shimadzu IR-470 plus. The spectra were also scanned in the 400 to 4000 cm -1 range and plotted as intensity versus wave number(augustine et al. 2005). High performance liquid chromatography (HPLC) chromatography Qualitative analysis was performed by silica gel thinlayer chromatography with a solvent mixture of petroleum ether: acetone (19:1, v/v) as mobile phase and the development was observed under ultraviolet lamp. Separation of carotenoids was also carried out by HPLC on a C 18, 3µm column with acetonitrile: methanol: propanol (40:50:10). The flow rate was 0.8 ml/min (Dharmaraj et al. 2009). Results E. coli Y. enterocolitica G614 C1 17 15 13 17 K36 C5 0 28 17 29 M00 C1 25 0 17 22 G151 C1 27 18 0 12 K47 C1 14 11 0 16 G1111 1 14 0 21 22 B. cereus This study demonstrates the potential of streptomyces in production of antibiotic and further evaluates the antimicrobial activity of the various isolates through the UV & FTIR spectroscopy. Various 35 soil samples of northwest region of Iran were isolated and identified to be the disparate colonies. Among them 12 isolates distinguished due to their antibacterial activity against E. coli, K. pneumonie, S. flexneri, L. monocytogenes, B.cereus, Y. enterocolitica, and S. aurous. Surprisingly, some of the Streptomyces isolates including G614 C1, K36 C5, M00 C1, G151 C1, K47C1 and G1111 revealed a significant antibacterial activity against indicator microorganisms. The following percentage of streptomyces isolates exhibited inhibitory effect against the indicator bacteria including: Y. enterocolitica (58%), 48 BioImpacts, 2011, 1(1), 47-52 Copyright 2011 by Tabriz University of Medical Sciences

UV & FTIR Spectroscopy of Streptomyces L. monocytogenes (42%), K. pneumoniae (37%), B. cereus, S. aureus, and E. coli (33%), S. flexneri (17%and 24%) table 1. According to the result (Fig. 1, 2 and Table 2) absorbance peak ranges (215-270nm), as well as the characteristics of absorption peaks signifies a highly polygene nature of the extract. Table 2. Maximum absorbance peak for the putative isolates in the UV spectroscopy Strain G614 C1 251 K36 C5 249 M00 C1 243 λmax (nm) G151 C1 247 K47 C1 250 G1111 1 245 Fig.1. Zone of inhibition exhibited by the various extract of the different Streptomyces isolates. Furthermore the pointed spectral data are consistent with Saadoun et al. The bioactive compound exhibited a maximum UV absorption at 217 221 nm in ethyl acetate extract. Therefore these strains produced a broadspectrum of anti-microbial compound or several compounds with different activities (Fig. 2). Maximum absorbance peaks observed at 240 nm and again the characteristics of absorption peaks showed a high polygene nature. The spectral data are consistent with those obtained by Swaadoun et al. (1999). Slavic et al. (2005) reported that the maximum absorbance peaks of UV spectral data ranged between 215 and 270 nm of streptomyces isolates from the soil samples of Southeastern Serbia. Accordingly, the FTIR spectrum of ethyl acetate extracts of G614 C1exhibited absorption at 3411 cm -1, which indicates hydroxyl groups, the absorption at 2856 and 2915 cm -1 indicating hydrocarbon chassis and the absorption at 1649 cm -1 indicating a double bond of polygenic compound (Fig.3). More or less similar trend was observed by Augustine et al. (2005), when they tested the FTIR spectrum of ethyl acetate extract of S. albidoflavus PU23 that exhibited absorption bands at 3296 and 1031.8 cm -1, which indicated hydroxyl groups and absorption at 1639 cm-1 indicating double bonding. Despite the fact that, HPLC results of antimicrobial agents at conditions of pressure 71.96% with a flow rate of 1.5 where the mobile phase 0.1% phosphoric acid and ph 4, gave a peak at 7.567 retention time (Fig.4). Fig. 2. Result of UV spectroscopy for the ethyl acetate extracts of G614 C1 (A) and K47 C1 (B). Copyright 2011 by Tabriz University of Medical Sciences BioImpacts, 2011, 1(1), 47-52 49

Maleki and Mashinchian Fig. 3. FTIR spectrum of the secondary metabolite isolated from G614 C1. Fig. 4. HPLC chromatography of ethyl acetate extraction of G614C1. 50 BioImpacts, 2011, 1(1), 47-52 Copyright 2011 by Tabriz University of Medical Sciences

UV & FTIR Spectroscopy of Streptomyces Discussion Considering UV & FTIR spectroscopy and according to the result (Figs.1, 2 and Table 2) of absorbance peak ranges (215-270nm), as well as the characteristics of absorption peaks which signifies a highly polygene nature of the extract it is besides similarities in the general UV spectra and maximum absorbance peaks. The result presented in this investigation could explain the ability of the Streptomyces sp. to produce antibiotics. Furthermore the pointed spectral data are consistent with Saadoun et al (Saadoun et al. 1999c). Slavica et al. (2005) reported that the maximum absorbance peaks of UV spectral data ranged between 215 and 270 nm of streptomyces isolates from the soil samples of Southeastern Serbia which is identical to data presented by this study (Slavica et al. 2005). Accordingly there is a demanding need for new and more effective antibacterial for use in more economical uses through industries. Considering the results on antibiotic production potential of G614C1 isolate it might be cited that streptomyces potential in antibacterial production could meet this demand. HPLC results confirmed the production of colorless carotene and phytoene. The results of the present finding correlate with previous findings of light-induced carotenogenesis in Streptomyces coelicolor. Conclusion Streptomyces, gram-positive and aerobic bacteria, are distinguished genus of Actinomycetes that are economically important genus because of their potential in producing more than 70% of antibiotics. Since production of novel and more efficient antibiotics needs detection of high yielding bacteria, in the current study, we evaluated 30 soil samples (collected randomly from different zones of northwest region of Iran) towards their antibiotic production potential using UV and FTIR spectroscopy and HPLC methods. Based upon UV, FTIR and HPLC analyses, the isolate G614C1 and K47C1 displayed promising results, inhibiting some important pathogenic bacteria. Ethical Issue None to be declared. Conflict of interests Authors declare no conflict of interests. Acknowledgment Authors would like to thank the Research Centre for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences (Tabriz, Iran) for financial support and the Agriculture Biotechnology Research Institute of Iran (Tabriz, Iran) for the administrative and some technical support. References AH N and Aysel U. 2003. Investigation of the Antimicrobial Activity of Some Streptomyces Isolates. Turk J Biol, 27, 79-84. Augustine SK, Bhavsar SP and Kapadnis BP. 2005. A Non- Polyene Antifungal Antibiotic From Streptomyces Albidoflavus PU 23. Journal of Biosciences, 30(2), 201-211. Baltz RH. 1998. Genetic Manipulation of Antibioticproducing Streptomyces. Trends in Microbiology, 6(2), 76-83. Berdy J. 1995. Are Actinomycetes Exhausted As a Source of Secondary Metabolites? RUSSIAN BIOTECHNOLOGY C/C OF BIOTEKHNOLOGIIA, 7, 3-23. Dharmaraj S, Ashokkumar B and Dhevendaran K. 2009. Fermentative Production of Carotenoids From Marine Actinomycetes. Iranian Journal of Microbiology, 1(4). Ili SB, Konstantinovi SS and Todorovi ZB. 2005. UV/VIS Analysis and Antimicrobial Activity of Streptomyces Isolates. Facta universitatis-series: Medicine and Biology, 12(1), 44-46. Ishii K, Kondo S and Nishimura Y. 1983. Decilorubicin, a New Anthracycline Antibiotic. Journal of Antibiotics, 36(4), 451-453. Kreuze JF, Suomalainen S, Paulin L and Valkonen JPT. 1999. Phylogenetic Analysis of 16S RRNA Genes and PCR Analysis of the Nec1 Gene From Streptomyces Spp. Causing Common Scab, Pitted Scab, and Netted Scab in Finland. Phytopathology, 89(6), 462-469. Oskay M, Tamer AU and Azeri C. 2004. Antibacterial Activity of Some Actinomycetes Isolated From Farming Soils of Turkey. African Journal of Biotechnology, 3(9), 441-446. Saadoun I and Al-Momani F. 1996. Bacterial and Streptomyces Flora of Some Jordan Valley Soils. Actinomycetes, 7, 95-99. Saadoun I and Al-Momani F. 2000. Activity of North Jordan Soil Streptomycete Isolates Against Candida Albicans. World Journal of Microbiology and Biotechnology, 16(2), 139-142. Saadoun I, Al-Momani F, Malkawi HI and Mohammad MJ. 1999a. Isolation, Identification and Analysis of Antibacterial Activity of Soil Streptomycetes Isolates From North Jordan. Microbios, 100(395), 41. Saadoun I and Gharaibeh R. 2002. The Streptomyces Flora of Jordan and Its' Potential As a Source of Antibiotics Active Against Antibiotic-Resistant Gram-Negative Bacteria. World Journal of Microbiology and Biotechnology, 18(5), 465-470. Copyright 2011 by Tabriz University of Medical Sciences BioImpacts, 2011, 1(1), 47-52 51

Maleki and Mashinchian Saadoun I and Gharaibeh R. 2003. The Streptomyces Flora of Badia Region of Jordan and Its Potential As a Source of Antibiotics Active Against Antibiotic-Resistant Bacteria. Journal of arid environments, 53(3), 365-371. Saadoun I, Hameed KM and Moussauui A. 1999b. Characterization and Analysis of Antibiotic Activity of Some Aquatic Actinomycetes. Microbios, 99(394), 173. Saadoun I, Mohammad MJ, Malkawi HI, Al-Momami F and Meqdam M. 1998. Diversity of Soil Streptomycetes in Northern Jordan. Actinomycetes, 9, 52-60. Saadoun I, Schrader KK and Blevins WT. 1997. Identification of 2-Methylisoborneol (MIB) and Geosmin As Volatile Metabolites of Streptomyces Violaceusniger. Actinomycetes, 8, 37-41. Slavica BI, Sandra SK and Zoran BT. 2005. UV/VIS Analysis and Antimicrobial Activity of Streptomyces Isolates. Medicine and Biology, 12, 44-46. 52 BioImpacts, 2011, 1(1), 47-52 Copyright 2011 by Tabriz University of Medical Sciences