SUPPLEMENTARY INFORMATION

Similar documents
Mechanical Properties of Bulk Metallic Glasses and composites

Fracture toughness characterization of ductile phase containing in-situ

Supplementary Materials for

Size-dependent fracture toughness of bulk-metallic glasses

Chapter 4 EFFECT OF MICROALLOYING ON THE TOUGHNESS OF METALLIC GLASSES

Characteristics of Shear Bands and Fracture Surfaces of Zr 65 Al 7:5 Ni 10 Pd 17:5 Bulk Metallic Glass

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture.

Crack initiation and fracture features of Fe Co B Si Nb bulk metallic glass during compression

Properties in Shear. Figure 7c. Figure 7b. Figure 7a

Characterization of Fracture Toughness G (sub c) of PVC and PES Foams

Chapter 1. Institute of Technology in 1960 [1]. The first metallic glass system, Au 75 Si 25, was found

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

CH 6: Fatigue Failure Resulting from Variable Loading

FEA simulation and geometric calibration of Arcan fixture for butterfly specimen of RP material

Fabrication and investigation of intermetallic compound-glassy phase composites having tensile ductility

CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS

Q. S. Zhang 1, W. Zhang 1; *, X. M. Wang 1, Y. Yokoyama 1, K. Yubuta 1 and A. Inoue 2

MECHANICAL PROPERTIES AND TESTS. Materials Science

Chapter 4 MECHANICAL PROPERTIES OF MATERIAL. By: Ardiyansyah Syahrom

Introduction to Joining Processes

DETERMINATION OF CRITICAL TEARING ENERGY OF TIRE RUBBER

ME -215 ENGINEERING MATERIALS AND PROCESES

Fatigue of metals. Subjects of interest

Mixed-Mode Crack Growth in Ductile Thin Sheet Materials

FME201 Solid & Structural Mechanics I Dr.Hussein Jama Office 414

THERMAL AND ELASTIC PROPERTIES OF CU-ZR-BE BULK-METALLIC-GLASS FORMING ALLOYS

True Stress and True Strain

Critical J-Integral of Thin Aluminium Sheets Employing a Modified Single Edge Plate Specimen

ME 207 Material Science I

Fe-B-Si-Nb Bulk Metallic Glasses with High Strength above 4000 MPa and Distinct Plastic Elongation

Chemistry (intrinsic) and inclusion (extrinsic) effects on the toughness and Weibull modulus of Fe-based bulk metallic glasses

DIRECT MEASUREMENT ON FRACTURE TOUGHNESS OF CARBON FIBER ABSTRACT

Part IA Paper 2: Structures and Materials MATERIALS Examples Paper 3 Stiffness-limited Design; Plastic Deformation and Properties

Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composites containing ductile dendrites

Fundamental Course in Mechanical Processing of Materials. Exercises

Effect of Notch Diameter on the Fracture Toughness of Al7075 T6 Alloy- An Experimental Approach

New Cu-based Bulk Metallic Glasses with High Strength of 2000 MPa

Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia 2)

REVISED PAGES IMPORTANT TERMS AND CONCEPTS REFERENCES QUESTIONS AND PROBLEMS. 166 Chapter 6 / Mechanical Properties of Metals

Tensile Testing. Objectives

Title containing nano-crystalline. Author(s) Matsumoto, Naoki; Matsumoto, Ryosuk. Citation Journal of Non-Crystalline Solids (

Types of Fatigue. Crack Initiation and Propagation. Variability in Fatigue Data. Outline

Difference in compressive and tensile fracture mechanisms of Zr 59 Cu 20 Al 10 Ni 8 Ti 3 bulk metallic glass

Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties.

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Effect of Ti on Charpy Fracture Energy and Other Mechanical Properties of ASTM A 710 Grade B Cu-Precipitation-Strengthened Steel

Chapter 2. Metallic Glass Honeycombs. Introduction

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2

The Mechanical Properties of Polymers

Deformation, plastic instability

MAE 322 Machine Design Lecture 5 Fatigue. Dr. Hodge Jenkins Mercer University

Assessment of ductile fracture resistance of structural steel using a simple numerical approach

Effect of Nb content on the microstructure and mechanical properties of Zr Cu Ni Al Nb glass forming alloys

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior

Engineering Materials

Influence of key test parameters on SPT results

THE CHANGE OF THE LOCAL CRACK DRIVING FORCE IN AN UNDER-MATCH WELDED JOINT

AN EXPERIMENTAL METHOD TO DETERMINE THE COMPLETE STRESS-DEFORMATION RELATION FOR A STRUCTURAL ADHESIVE LAYER LOADED IN SHEAR

PLASTIC DEFORMATION AND THE ONSET OF TENSILE INSTABILITY

MSE 3143 Ceramic Materials

A Potential Node Release Technique for Estimating Ductile Crack Growth in Metallic Materials

How do we find ultimate properties?

Chapter 6: Mechanical Properties

NPL Manual. Modelling Creep in Toughened Epoxy Adhesives

21 Fracture and Fatigue Revision

Chapter 6: Mechanical Properties

1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine Spring 2004 PROPERTIES OF HEAT TREATED STEEL

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress?

Finite Element Analysis of Additively Manufactured Products

This is the author s version of a work that was submitted/accepted for publication in the following source:

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature.

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams

The Weibull Stress Parameters Calibration upon the Toughness Scaling Model between Cracks Having Different Constraint

4 Image Analysis of plastic deformation in the fracture of paper

Chapter 6: Mechanical Properties: Part One

Chapter Outline: Failure

Subject Index. STP 1207-EB/Dec. 1994

Correlation between fracture surface morphology and toughness in Zrbased

Strain Rate Effects in the Mechanical Properties of Polymer Foams

Investigations of fracture process in concrete using X-ray micro-ct

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties

Fracture Toughness of a 6061Al Matrix Composite Reinforced with Fine SiC Particles

P A (1.1) load or stress. elongation or strain

INFLUENCE OF NOTCH TIP RADIUS AND FIBRE ORIENTATION ON THE FATIGUE STRENGTH OF A SHORT GLASS FIBRE REINFORCED POLYAMIDE 6

Deformation Twinning in Bulk Aluminum with Coarse Grains

Outline. Examples on: Fracture Mechanics Fatigue Wear rate Electrochemical cell Materials selection

Concepts of stress and strain

Assume that the growth of fatigue cracks in the plate is governed by a Paris type of law, i.e. da

EFFECT OF MEAN STRESS ON SHORT CRACK GROWTH IN FATIGUED 316L STAINLESS STEEL

Correlation between Engineering Stress-Strain and True Stress-Strain Curve

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS

ME 212 EXPERIMENT SHEET #2 TENSILE TESTING OF MATERIALS

Prediction of fatigue crack propagation in aluminum alloy with local yield strength gradient at the crack path

Competing failure mechanisms in mixed-mode fracture of an adhesively bonded polymer-matrix composite

Fracture Mechanics experimental tests (ASTM standards and data) 2/2

Fracture Analysis of Ductile Materials by Mean of Recent Fracture Theory (MN r p σ θ )

RESILIENT INFRASTRUCTURE June 1 4, 2016

CHAPTER8. Failure Analysis and Prevention

Transcription:

SUPPLEMENTARY INFORMATION SUPPLEMENTARY DISCUSSION A Damage Tolerant Glass Marios D. Demetriou 1, Maximilien E. Launey 2, Glenn Garrett 1, Joseph P. Schramm 1, Douglas C. Hofmann 1, William L. Johnson 1, and Robert O. Ritchie 2,3 MATERIALS AND METHODS Materials Processing Pd rich metal/metalloid alloys were prepared by inductively melting pure elements in quartz tubes under inert atmosphere. Alloy ingots were fluxed with B2O3 at ~1200 K for ~1000 s. Glass formation was achieved by melting fluxed ingots in quartz tubes with 0.5 mm thick walls and rapidly water quenching. The quartz tube water quenching method was found to be more efficient in terms of glass formation than copper mold casting. When water quenched from the molten state in a 0.5 mm thick wall quartz tube, alloy Pd79Ag3.5P6Si9.5Ge2 is found capable of forming glassy rods 6 mm in diameter. Mechanical Characterization Amorphous tensile test specimens were produced by water quenching round tensile bar shaped quartz tubes containing the molten alloy. Tensile tests of glassy Pd79Ag3.5P6Si9.5Ge2 were performed at room temperature. The specimen gauge sections were 1.5 mm in diameter and 20 mm in length. Tests were performed at a strain rate of 5 10 4 s 1 on a screw driven Instron testing machine (Instron, Norwood, MA), and strain was recorded using an Epsilon extensometer. Rectangular beams for flexure measurements were prepared by grounding 3 mm diameter amorphous rods. The beam specimens had thickness, B, of 2.1 mm, width, W, of 2.1 mm and length, L, 20 mm. Fracture toughness resistance curve (R curve) measurements were performed on single edge notched beam, SE(B), specimens loaded 1 Keck Engineering Laboratories, California Institute of Technology, Pasadena, CA 91125, USA 2 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 3 Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA To whom correspondence should be addressed. Email: marios@caltech.edu Present address: Cordis Corporation, a Johnson & Johnson Company, 6500 Paseo Padre Parkway, Fremont, CA 94555, USA nature materials www.nature.com/naturematerials 1

supplementary information in three point bending with a support span of 15 mm. The notches were first introduced using a low speed diamond saw, and then sharpened using a razor micronotching technique. Micro notches, with a root radius of 5 10 μm were obtained by repeatedly sliding a razor blade over the saw cut notch using a custom made rig, while continually irrigating with a 1 μm diamond slurry. Micro notches resembling sharp cracks with initial crack length, a, of ~ 1.0 mm, were generated in general accordance with ASTM standards S1. Prior to testing, specimens were polished to a 1 μm diamond suspension surface finish on both faces. Nonlinear elastic fracture mechanics methods were used to evaluate the fracture toughness, which involve resistance curve characterization in terms of the J integral. Of particular importance here are the specific validity criteria in terms of the size of the test sample and the length of the pre crack (see ASTM Standard E 1820 S1 ). This is because the crack tip fields are invariably described by asymptotic solutions defined in terms of one prevailing mode of deformation (e.g., linear elasticity, nonlinear elasticity, etc.), and regions that do not conform to this deformation mode (e.g., the plastic zone in a linearelastic K field) must be small enough to ignore, thereby placing restrictions on the minimum specimen size relative to the crack size. For a linear elastic KIc measurement, the crack tip plastic zone size must be typically an order of magnitude smaller than (i) the in plane dimensions of crack length a and remaining uncracked ligament b (smallscale yielding condition), and (ii) the out of plane thickness dimension B (a condition of plane strain); i.e., a, b, B 2.5 (Kc/ y) 2, where σy is the yield strength. For example, for a Kc value of 200 MPa.m 1/2 and y value of 1500 MPa, this leads to specimen size requirements such as a, b, B 45 mm. For nonlinear elastic J measurements, similar validity criteria exist although the size requirements are much less restrictive; specifically b, B 10 (Jc/ y). For example, for a Jc value of 450 kj/m 2 and y value of 1500 MPa, this leads to b, B 3 mm. To further relax the size constraints such that even smaller bend bars can be tested (i.e., to overcome the size constraints for meeting the small scale yielding conditions) while still properly accounting for the extension of the crack, we here implemented a crack tip opening displacement (CTOD) approach. This is a nonlinear elastic fracture mechanics methodology where measurements of CTOD, t, can be related to the J integral by S2 : J = dn o t where o is defined as the flow stress (the average of the yield and ultimate stresses), and dn is a constant tabulated from the strain hardening exponent, n, of the material S2. Upon yielding, it is well established that metallic glasses locally (i.e., within an operating shear band) strain soften. Consequently, when subject to pure tension, where the glass typically fails along a single shear band by unconstrained slipping, no global (S1) 2 nature MATERIALS www.nature.com/naturematerials

supplementary information strain hardening is generally detectable. However, when subject to a quasi stable loading geometry like bending, where the glass is under tension on one side of the neutral axis and under compression on the other, generation and proliferation of multiple shear bands is possible (depending on the toughness of the glass), occurring predominantly on the compression side. The intersection and multiplication of shear bands generally gives rise to compatibility stresses between deformed and undeformed regions, which typically induce a small apparent global hardening effect detectable in the true stress stain response. For the toughness measurements, this limited degree of strain hardening occurring at the continuum scale is essentially sufficient to ensure CTOD dominance at the crack tip. Here, the hardening exponent n associated with subjection the Pd79Ag3.5P6Si9.5Ge2 glass in bending was determined using a three point bending test on an unnotched 2.1 mm 2.1 mm specimen. The test was performed over a support span of 15 mm on a servo hydraulic testing machine (MTS, Eden Prairie, MN) at a displacement rate of 10 μm/s (Supplementary Figures 1 & 2). As such, quantitative stress strain information is generated that specifically reflects the loading conditions of the fracture toughness test. In the fracture toughness test, t a R curves were measured on three micro notched specimens in situ in a Hitachi S 4300SE/N ESEM (Hitachi America, Pleasanton, CA) using a Gatan Microtest three point bending stage (Gatan, Abington, UK). The crosshead displacement was measured with a linear variable displacement transducer, while the load was recorded using a 2000 N load cell. The CTOD and crack extension were monitored at regular intervals in secondary electron mode in vacuo (10 4 Pa) at a 20 kv excitation voltage. The crack tip opening displacement, t, was measured graphically as the opening distance between the intercept of two 45 lines drawn back from the tip with the deformed profile (Fig. S1), as derived by Shih S2 from the Hutchinson Rice Rosengren (HRR) singularity S2 5. At each interval i, t is defined as: t = i o, (S2) where i is the actual crack tip opening displacement and o is the initial crack tip opening displacement before loading. J values were then calculated using Eq. (S1) for each crack increment and converted to equivalent K values through the J K equivalence relationship for nominally mode I fracture in plane stress: KJ = (JE) 1/2, with E = 88 GPa the Young s modulus of the Pd79Ag3.5P6Si9.5Ge2 glass. (S3) nature materials www.nature.com/naturematerials 3

supplementary information Figure S1: Procedure for defining the crack tip opening displacement. (a) Sharp crack and (b) deformed crack profile illustrating the 45 procedure for CTOD. It s important to note that Eq. (S1) is valid for both plane strain and plane stress conditions, and as long as the HRR fields dominate. In the large scale yielding regime (as in the present case), the size of the region dominated by the singularity fields is dependent on specimen geometry S3 ; in this regime, Shih S2 shows that the relationship between J and t, as expressed in Eq. (S1), holds under large scale plasticity for a hardening material when the uncracked ligament is subjected primarily to bending. To verify this CTOD approach on a glassy material with a well known toughness, we compared the estimated KJ against the value obtained using direct J integral measurements. However, unlike the glass presented here, most monolithic metallic glasses in bulk dimensions do not exhibit rising R curves (i.e., they fail catastrophically soon after yielding by unstable crack extension), thus the full extent of the method cannot be assessed. Instead, the method was implemented on a ductile phasereinforced metallic glass (Zr39.6Ti33.9Nb7.6Cu6.4Be12.5) S6, where the extended R curve is well documented S7. As shown in Supplementary Figure 3, good agreement was obtained between the two methods, but most importantly, the CTOD method is shown to provide a conservative estimate of the toughness (i.e., it slightly underestimates the toughness). Toughness correlation A scaling law is proposed in this work by which the plastic zone radius of a metallic glass is correlated to the plastic shearing enabled within a shear band prior to nucleating a cavity that will initiate a crack. Specifically, the plastic zone radius, rp = Kc/ y 2, is correlated to the number of activated shear events enabled prior to the activation of a cavitation event, denoted here by f: 4 nature MATERIALS www.nature.com/naturematerials

supplementary information 2 K T c g B log ~ log f 1 2 T G y In the above expression, Tg is the glass transition temperature, T is a reference temperature (here taken to be the test temperature, i.e., T = 300 K), G the shear modulus, and B the bulk modulus. Data for ten metallic glass alloys are utilized, listed in Table S1 below. A plot of the scaling law, Eq. (S4), for the ten systems is presented in Fig. 4c of the main article. (S4) Glass-Forming Alloy G [GPa] B [GPa] T g [K] y K c References [MPa] [MPa.m 1/2 ] Mg65Cu25Tb10 19.6 44.71 415 660 2 S8,S9 La55Al25Ni5Cu10Co5 15.6 44.2 430 700 5 S8,S10,S11 Fe58Co6.5Mo14C15B6Er0.5 74.0 177.0 790 3700 26.5 S12,S13 Fe66Cr3Mo10C10B3P8 66.5 172.0 721 3100 39.3 S12,S14 Fe70Ni5Mo5C5B2.5P12.5 57.3 150.1 696 2670 49.8 S15 Zr55Cu30Ni5Al10 34.7 117.9 684 1650 43.3 S16-18 Zr41.2Ti13.8Cu12.5Ni10Be22.5 34.1 114.1 618 1850 55 S8,S19 Cu60Zr20Hf10Ti10 36.9 128.2 754 1950 67.6 S20 Pt57.5Cu14.7Ni5.3P22.5 33.3 198.7 508 1400 81.5 S21 Pd79Ag3.5P6Si9.5Ge2 31.1 171.6 613 1490 203 Present Table S1: Data for ten metallic glass systems used in the correlation given by Eq. (S4). Supplementary References S1. ASTM E1820 08, Annual Book of ASTM Standards, Vol. 03.01: Metals Mechanical Testing; Elevated and Low temperature Tests; Metallography (ASTM International, West Conshohocken, Pennsylvania, USA, 2008). S2. Shih, C. F. Relationships between the J Integral and the Crack Opening Displacement for Stationary and Extending Cracks. J. Mech. Phys. Solids 29, 305 326 (1981). S3. Shih, C. F. & German, M. D. Requirements for a One Parameter Characterization of Crack Tip Fields by the HRR Singularity. Int. J. Fract. 17, 27 43 (1981). S4. Hutchinson, J. W. Plastic Stress and Strain Fields at a Crack Tip. J. Mech. Phys. Solids 16, 337 342 (1968). S5. Rice, J. R. & Rosengren, G. F. Plane Strain Deformation near a Crack Tip in a Power Law Hardening Material. J. Mech. Phys. Solids 16, 1 12 (1968). S6. Hofmann, D. C. et al. Designing Metallic Glass Matrix Composites with High Toughness and Tensile Ductility. Nature 451, 1085 U3 (2008). S7. Launey, M. E. et al. Fracture Toughness and Crack Resistance Curve Behavior in Metallic Glass Matrix Composites. Appl. Phys. Lett. 94, 241910 (2009). nature materials www.nature.com/naturematerials 5

supplementary information S8. Xi, X. K. et al. Fracture of Brittle Metallic Glasses: Brittleness or Plasticity. Phys. Rev. Lett. 94, 125510 (2005) S9. Xi, X. K. et al. Highly Processable Mg65Cu25Tb10 Metallic Glass. J. Non Cryst. Sol. 344, 189 192 (2004). S10. Johnson, W. L. & Samwer, K. A Universal Criterion for Plastic Yielding of Metallic Glasses with a (T/Tg) 2/3 Temperature Dependence. Phys Rev. Lett. 95, 195501 (2005). S11. Nagendra, N. et al. Effect of Crystallinity on the Impact Toughness of a La based Bulk Metallic Glass. Acta Mater. 48, 2603 2615 (2000). S12. Nouri, A. S. et al. Chemistry (Intrinsic) and Inclusion (Extrinsic) Effects on the Toughness and Weibull Modulus of Fe based Bulk Metallic Glasses. Phil. Mag. Lett. 88, 853 861 (2008). S13. Gu, X. J. & Poon, S. J. Mechanical Properties of Iron Based bulk Metallic Glasses. J. Mater. Res. 22, 344 351 (2007). S14. Gu, X. J. et al. Mechanical Properties, Glass Transition Temperature, and Bond Enthalpy Trends of High Metalloid Fe Based Bulk Metallic Glasses. Appl. Phys. Lett. 92, 161910 (2008). S15. Demetriou, M. D. et al. Glassy Steel Optimized for Glass Forming Ability and Toughness. Appl. Phys. Lett. 92, 161910 (2008). S16. Kawashima, A. et al. Fracture toughness of Zr55Cu30Al10Ni5 Bulk Metallic Glass by 3 Point Bend Testing. Mater. Trans. 46, 1725 1732 (2005). S17. Luo, J. et al. Effects of Yttrium and Erbium Additions on Glass Forming Ability and Mechanical Properties of Bulk Glassy Zr Al Ni Cu Alloys. Mater. Trans. 47, 450 453 (2006). S18. Vaillant, M. L. et al. Changes in the Mechanical Properties of a Zr55Cu30Al10Ni5 Bulk Metallic Glass due to Heat Treatments Below 540 C. Scripta Mater. 47, 19 23 (2002). S19. Gilbert, C. J. et al. Fracture Toughness and Fatigue Crack Propagation in a Zr Ti Ni Cu Be Bulk Metallic Glass. Appl. Phys. Lett. 71, 476 478 (1997). S20. Wesseling, P. et al. Preliminary Assessment of Flow, Notch Toughness, and High Temperature Behavior of Cu60Zr20Hf10Ti10 Bulk Metallic Glass. Scripta Mater. 51, 151 154 (2004). S21. Schroers, J. & Johnson, W. L. Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004). 6 nature MATERIALS www.nature.com/naturematerials

supplementary information a b c d e d c b 1 mm 500 µm c d e 100 µm f 250 µm 200 µm 250 µm Supplementary Figure 1: Secondary electron micrographs taken after a three-point bending test on an unnotched Pd79Ag3.5P6Si9.5Ge2 glassy specimen. (a, b) A dense network of shear bands is observed in the tension side of the specimen along with an open crack that propagated in a stable fashion towards the center of the beam. The sample did not fracture catastrophically after undergoing the entire bending strain applicable by the fixture; (c, d) Shear offsets in the tension side are shown, that appear to be as long as 200 µm (see arrow in d). (e) Plastic-flow stabilization at the crack tip promoting stable crack growth, and (f) plastic flow in the compression side. nature materials www.nature.com/naturematerials 7

supplementary information 3000 2500 2000 Engineering n = 0.129 +/- 0.013 True Stress [MPa] 1500 1000 Pd79Ag3.5P6Si9.5Ge2 500 0 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 Strain [mm/mm] Supplementary Figure 2: Engineering and true stress-strain curve for an unnotched Pd79Ag3.5P6Si9.5Ge2 glassy specimen tested in a three-point bending configuration. The serration at ~11% strain (engineering curve) marks the development of the crack seen in Supplementary Figure 1, and the decreasing loading response following the serration reflects the loss of rigidity due to crack extension. The sample did not fracture catastrophically after undergoing 14% bending strain (see Supplementary Figure 1). A slight hardening response is evident in the true stress-strain curve, which can be attributed to multiplication and intersection of shear bands giving rise to local compatibility stresses. The strain-hardening n exponent, n, was measured using the relationship: σt = CεT, where σt and εt are, respectively, the true stress and strain, and C is a constant. 8 nature MATERIALS www.nature.com/naturematerials

supplementary information 200 Fracture Toughness, K [MPa.m 0.5 ] 180 160 140 120 100 80 60 40 20 back-calculated from J back-calculated from CTOD Zr 39.6 Ti 33.9 Nb 7.6 Cu 6.4 Be 12.5 (DH3) 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Crack extension, a [mm] Supplementary Figure 3: Comparison of R-curves derived using direct J-integral and CTOD methods for ductile-phase-reinforced metallic glass Zr39.3Ti33.9Nb7.6Cu6.4Be12.5. Good agreement between the two measurements techniques is shown. The CTOD approach utilized in the present work can be seen to provide a somewhat conservative estimate of the fracture toughness. nature materials www.nature.com/naturematerials 9