HisLink Spin Protein Purification System

Similar documents
HisLink Protein Purification Resin

MagneHis Protein Purification System

HOOK 6X His Protein Spin Purification (Bacteria)

HOOK 6X His Protein Purification (Bacteria)

ReliaPrep RNA Clean-Up and Concentration System

High-Affinity Ni-NTA Resin

His-Spin Protein Miniprep

PROCEDURE FOR USE NICKEL NTA Magnetic Agarose Beads (5%)

High-Affinity Ni-NTA Resin

GST Fusion Protein Purification Kit

ReliaPrep gdna Tissue Miniprep System

Strep-Spin Protein Miniprep Kit Catalog No. P2004, P2005

Strep-Spin Protein Miniprep Kit Catalog No. P2004 & P2005

Bacteria Genomic DNA Purification Kit

ReliaPrep FFPE gdna Miniprep System

Index 1. Product Description 2. Purification Procedure 3. Troubleshooting 4. Ordering Information

AFFINITY HIS-TAG PURIFICATION

Ni-NTA Agarose. User Manual. 320 Harbor Way South San Francisco, CA Phone: 1 (888) MCLAB-88 Fax: 1 (650)

Purification of GST-tagged proteins using PureCube Glutathione Agarose

AFFINITY HIS-TAG PURIFICATION

TECHNICAL BULLETIN. Ni-CAM HC Resin High Capacity Nickel Chelate Affinity Matrix. Product No. N 3158 Storage Temperature 2 8 C

SERVA Ni-NTA Magnetic Beads

5.2 Protein purification

TECHNICAL BULLETIN. HIS-Select HF Nickel Affinity Gel. Catalog Number H0537 Storage Temperature 2 8 C

GST Elution Buffer. (Cat. # ) think proteins! think G-Biosciences

Presto 96 Well gdna Bacteria Kit

PureYield Plasmid Midiprep System

High Pure RNA Isolation Kit for isolation of total RNA from 50 samples Cat. No

AFFINITY HIS-TAG PURIFICATION

MagExtactor -His-tag-

Nickel-NTA Agarose Suspension

INSTRUCTIONS The resins are adapted to work mainly in native conditions like denaturing.

Presto Mini Plasmid Kit

Automated Genomic DNA Isolation from Oragene Saliva Samples using the Tecan Freedom EVO -HSM Workstation

Glutathione Resin. (Cat. # , , , ) think proteins! think G-Biosciences

RayBio Genomic DNA Magnetic Beads Kit

Fast and reliable purification of up to 100 µg of transfection-grade plasmid DNA using a spin-column.

For Research Use Only. Not for use in diagnostic procedures.

ReliaPrep 96 gdna Miniprep HT System INSTRUCTIONS FOR USE OF PRODUCTS A2670 AND A2671.

Jan 25, 05 His Bind Kit (Novagen)

Nickel Chelating Resin Spin Columns

Differex System For Use With the Differex Magnet

ProteIndex Chemical-Tolerant Ni-Penta Agarose. Prepacked Cartridge. 6 FF Prepacked Cartridge, 5 x 1 ml settled resin

MBP Excellose handbook - Purification of MBP fusion proteins -

ReliaPrep mirna Cell and Tissue Miniprep System

Tissue & Cell Genomic DNA Purification Kit. Cat. #:DP021/ DP Size:50/150 reactions Store at RT For research use only

HOOK 6X His Protein Purification (Yeast)

AFFINITY HIS-TAG PURIFICATION

Cobalt Chelating Resin

ProteIndex TM Co-NTA Agarose 6 Fast Flow

Glutathione Resin. (Cat. # , , , ) think proteins! think G-Biosciences

Human whole blood RNA Purification Kit

Cross Linking Immunoprecipitation

ProteoSpin Total Protein Concentration, Detergent Clean-Up and Endotoxin Removal Mini Kit Product Insert Product # 22800

Plasmid Maxiprep Plus Purification Kit

phab Amine and Thiol Reactive Dyes

Presto Mini gdna Bacteria Kit

TaKaRa MiniBEST Plasmid Purification Kit Ver.4.0

DNA Purification Magnetic Beads

EndoFree Maxi Plasmid Kit

Maxwell RSC Buffy Coat DNA Kit

Plasmid Maxiprep Plus Purification Kit. Cat. # : DP01MX-P10/ DP01MX-P20 Size : 10/20 Reactions Store at RT For research use only

E.Z.N.A. Bacterial DNA Kit. D preps D preps D preps

E.Z.N.A. Bacterial DNA Kit. D preps D preps D preps

Maxwell RSC Blood DNA Kit

Total RNA Purification Kit. Cat. #.: TR01 / TR Size : 50 / 150 Reactions Store at RT For research use only

Glutathione Agarose Resin User s Guide

phab Amine and Thiol Reactive Dyes

RayBio Human Hydroxylated-HIF-1alpha (Pro402) and HIF-1alpha ELISA Kit

RayBio Human and Mouse Cleaved-Caspase-7 (Asp198) and Caspase-7 ELISA Kit

Ver AccuPrep His-tagged Protein Purification kit. Safety Warnings and Precautions. Warranty and Liability. Cat. No. K-7200

Plasmid DNA Isolation Column Kit Instruction Manual Catalog No. SA-40012: 50 reactions SA-40011: 100 reactions

AminTRAP HIS Prepacked Column

RNAprep pure Kit (For Cell/Bacteria)

Product # 24700, 24750

Ni-NTA Agarose H A N D B O O K. Ni-NTA Agarose NP ml Ni-NTA Agarose NP ml Ni-NTA Agarose NP ml

E.Z.N.A. M13 DNA Mini Kit

ml recombinant E. coli cultures (at a density of A 600 units per ml)

Product # Specifications. Kit Specifications Column Binding Capacity 25 µg

Total RNA Miniprep Purification Kit. Cat.# :TR01/TR Size : 50/150 Reactions Store at RT

E.Z.N.A. Yeast DNA Kit. D preps D preps

E.Z.N.A. mirna Kit. R preps R preps R preps

Plasmid Midiprep Plus Purification Kit. Cat. # : DP01MD-P10/ DP01MD-P50 Size : 10/50 Reactions Store at RT For research use only

SERVA IMAC Ni-IDA Test Kit Agarose for Affinity Purification of His-Tag Fusion Proteins

Maxwell 16 LEV Plant RNA Kit

foodproof Sample Preparation Kit II

Mag-Bind Ultra-Pure Plasmid DNA 96 Kit. M x 96 preps M x 96 preps

Maxwell 16 DNA Purification Kits INSTRUCTIONS FOR USE OF PRODUCTS AS1010, AS1020 AND AS1030.

E.Z.N.A. Bacterial RNA Kit. R preps R preps

RNAprep Pure Kit (For Cell/Bacteria)

Protocol 1. Purification of 6xHis-tagged proteins from E. coli under native conditions

Easy Tissue & Cell Genomic DNA Purification Kit. Cat. #:DP021E/ DP021E-150 Size:50/150 reactions Store at RT For research use only

Maxwell 16 LEV Blood DNA Kit and Maxwell 16 Buccal Swab LEV DNA Purification Kit

Thermo Scientific GeneJET Whole Blood RNA Purification Mini Kit #K0761

Automated Genomic DNA Isolation from Buffy Coat Samples Using the Tecan Freedom EVO -HSM Workstation

EZ-10 SPIN COLUMN GENOMIC DNA MINIPREPS KIT HANDBOOK

USER GUIDE. HiYield TM Total RNA Extraction Kit

Transcription:

TECHNICAL MANUAL HisLink Spin Protein Purification System Instructions for Use of Product V1320 Revised 8/15 TM281

HisLink Spin Protein Purification System All technical literature is available at: www.promega.com/protocols/ Visit the web site to verify that you are using the most current version of this Technical Manual. E-mail Promega Technical Services if you have questions on use of this system: techserv@promega.com 1. Description...2 2. Product Components and Storage Conditions...4 3. Polyhistidine- or HQ-Tagged Protein Purification Protocols...4 3.A. Preparation of Cell Cultures...5 3.B. Considerations When Adding Lysozyme...5 3.C. Considerations When Using HQ-Tagged Proteins...5 3.D. Preparation of FastBreak Reagent/DNase I Solution...5 3.E. Centrifugation Protocol...6 3.F. Vacuum Protocol...8 4. General Considerations...9 4.A. Elution...9 4.B. Denaturing Conditions...9 4.C. Reuse of the Resin...9 4.D. Adjuncts for Lysis or Purification... 10 5. Troubleshooting... 10 6. Appendix... 12 6.A. Composition of Buffers and Solutions... 12 6.B. Reference... 12 6.C. Related Products... 12 7. Summary of Changes... 13 Promega Corporation 2800 Woods Hollow Road Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 608-274-4330 Fax 608-277-2516 1 www.promega.com TM281 Revised 8/15

1. Description The HisLink Spin Protein Purification System (a,b,c) provides a simple, quick and robust method for purifying polyhistidine- or HQ-tagged expressed proteins from a 700µl sample of E. coli cell culture, using either a centrifugeor vacuum-based method. HQ (HisGln) tags developed by Promega perform in a manner similar to polyhistidine tags and are available as N- or C-terminal fusion tags in the HQ-tagged Flexi Vectors. See Section 6.C for details on these vectors. Protein can be purified directly from culture medium containing bacterial cells expressing a polyhistidine- or HQ-tagged protein. The bacterial cells are lysed using FastBreak Cell Lysis Reagent, followed immediately by addition of HisLink Protein Purification Resin to the culture. Addition of these reagents results in simultaneous bacterial lysis and binding of the polyhistidine- or HQ-tagged proteins. The samples are then transferred to a Spin Column where unbound protein is washed away and the target protein is recovered by elution. This system requires the use of a tabletop centrifuge or vacuum manifold (Figure 1). A schematic diagram of protein purification using the HisLink Spin System is shown in Figure 2. Advantages of the HisLink Spin Protein Purification System include: Simple: No cell culture preparation steps. Quick: No lengthy lysozyme incubations required to lyse cells. Efficient: Binding capacity of 1mg of polyhistidine-tagged protein per spin column. Figure 1. The Vac-Man Laboratory Vacuum Manifold (Cat.# A7231). 2 Promega Corporation 2800 Woods Hollow Road Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 608-274-4330 Fax 608-277-2516 TM281 Revised 8/15 www.promega.com

Lyse cells and bind protein to the resin. Transfer contents to Spin Column in a Collection Tube or Vacuum Adapter. Spin Column Spin Column Vacuum Adapter Collection Tube Add HisLink Binding/Wash Buffer. Repeat wash steps. Centrifuge or apply vacuum for 5 seconds. Centrifuge or apply vacuum for 5 seconds. Place Spin Column into a new 1.5ml microcentrifuge tube. Add 200µl of HisLink Elution Buffer. Centrifuge 1 minute. 5583MA Figure 2. Schematic of polyhistidine- or HQ-tagged protein purification using the HisLink Spin Protein Purification System. Promega Corporation 2800 Woods Hollow Road Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 608-274-4330 Fax 608-277-2516 3 www.promega.com TM281 Revised 8/15

2. Product Components and Storage Conditions PRODUCT SIZE CAT.# HisLink Spin Protein Purification System 25 reactions V1320 Each system contains sufficient reagents for 25 manual purifications from 700µl of bacterial culture. Includes: 5ml FastBreak Cell Lysis Reagent, 10X 1 vial DNase I (lyophilized) 5ml HisLink Protein Purification Resin 50ml HisLink Binding/Wash Buffer 10ml HisLink Elution Buffer 25 Spin Columns 25 Collection Tubes 1 Protocol Storage Conditions: Store the HisLink Spin Protein Purification System reagents at 4 C. Store the Spin Columns, Collection Tubes and FastBreak Cell Lysis Reagent at room temperature (22 25 C). After reconstitution, store the DNase I in aliquots at 20 C. A precipitate may form in the FastBreak Cell Lysis Reagent at low temperatures. If a precipitate forms, warm the reagent to room temperature before use. Do not freeze the HisLink Resin. 3. Polyhistidine- or HQ-Tagged Protein Purification Protocols Materials to Be Supplied by the User (Solution compositions are provided in Section 6.A.) Nuclease-Free Water (Cat.# P1195) rotor wide-bore pipette tips (E&K Scientific Cat.# 3502 - R96S) NaCl or 5M NaCl solution for use with HQ-tagged proteins tabletop centrifuge 1.5ml microcentrifuge tubes optional: vacuum manifold for single tubes if using the vacuum protocol in Section 3.F (i.e., Vac-Man Laboratory Vacuum Manifold, Cat.# A7231) optional: Vacuum Adapters (Cat.# A1331; for use with Vac-Man Vacuum Manifold) 4 Promega Corporation 2800 Woods Hollow Road Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 608-274-4330 Fax 608-277-2516 TM281 Revised 8/15 www.promega.com

3.A. Preparation of Cell Cultures Bacterial cultures can be grown in tubes or flasks. Grow the bacterial cells containing a vector encoding the appropriate polyhistidine- or HQ-tagged fusion protein to an O.D. 600 of 0.4 0.6, then induce protein expression. For IPTG induction, add IPTG to a final concentration of 1mM and incubate at 37 C for 3 hours or at 25 C overnight. Induction time and IPTG concentration may require optimization. Cultures with concentrations of up to 8.0 O.D. 600 units/ml have been successfully used with the HisLink Spin Protein Purification System. Centrifugation or freezing of cells is not required with this system. A maximum of 700µl of bacterial culture can be loaded per Spin Column. 3.B. Considerations When Adding Lysozyme The HisLink Spin Protein Purification System is designed to lyse cells without the addition of lysozyme. Lysozyme, if added, will copurify with the polyhistidine- or HQ-tagged protein unless 500mM NaCl is added to the Binding/Wash Buffer. 3.C. Considerations When Using HQ-Tagged Proteins HQ-tagged protein binding is optimized in the presence of NaCl; a maximum of 200mM NaCl final concentration is recommended. Higher NaCl concentrations during binding can cause clumping of the HisLink Resin. If NaCl is added to the HisLink Binding/Wash Buffer, we recommend its use in both binding and washing steps. Purification of HQ-tagged proteins may be more efficient from a pelleted culture. Compare direct purification from culture to purification from pelleted cells to verify which is more efficient for the target HQ clone. To pellet cells, centrifuge at 8,000rpm for 2 minutes, then resuspend in 700µl of 100mM HEPES and follow the standard protocol (Section 3.D, followed by Section 3.E or 3.F). For optimal HQ-tagged protein binding, add a maximum of 200mM NaCl to the 100mM HEPES. 3.D. Preparation of FastBreak Reagent/DNase I Solution 1. To prepare the FastBreak /DNase I solution, add 80µl of Nuclease-Free Water to the vial of DNase I. 2. Mix completely to dissolve the powder. 3. Remove the DNase solution from the vial and add it to 1ml of Nuclease-Free Water. Mix well. Note: Once resuspended, the DNase I solution can be stored at 20 C for 6 months and is stable for 8 freezethaw cycles. Promega Corporation 2800 Woods Hollow Road Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 608-274-4330 Fax 608-277-2516 5 www.promega.com TM281 Revised 8/15

3.D. Preparation of FastBreak Reagent/DNase I Solution (continued) 4. Prepare the FastBreak Reagent/DNase I solution using the reagent quantities suggested in Table 1. Note: Once prepared, the FastBreak Reagent/DNase I solution can be stored at 20 C for 6 months and is stable for up to 5 freeze-thaw cycles. Table 1. Reagent Volumes for Preparing the FastBreak Reagent/DNase I Solution. # of Reactions DNase I Solution FastBreak Reagent, 10X 1 5.8µl 64.2µl 2 11.6µl 128.4µl 4 23.2µl 256.8µl 8 46.4µl 513.6µl 16 93µl 1,027µl 3.E. Centrifugation Protocol 1. Pipet 700µl of bacterial culture into a 1.5ml microcentrifuge tube. Add 70µl of the FastBreak Reagent/DNase I solution prepared in Section 3.D, Table 1, to the culture. Note: For HQ-tagged proteins, please see Section 3.C. 2. Resuspend the resin and allow it to settle. Once the resin has settled, use a wide-bore pipette tip to transfer 75µl of the HisLink Resin from the settled resin bed to the 1.5ml microcentrifuge tube. To successfully transfer resin, place the wide-bore pipette tip deep into the resin and pipet slowly to assure that a consistent amount of resin is drawn into the pipette. Allow the resin to resettle between each pipetting. Note: We recommend optimizing the amount of HisLink Resin used for low- (<1mg/ml) or high- (>1mg/sample) expressing proteins. For low-expressing proteins, less resin should be used; similarly, for high-expressing proteins, more resin per sample can be used. 3. Incubate the sample and resin for 30 minutes, mixing frequently on a rotating platform or shaker to optimize binding. 6 Promega Corporation 2800 Woods Hollow Road Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 608-274-4330 Fax 608-277-2516 TM281 Revised 8/15 www.promega.com

4. Place a Spin Column onto a Collection Tube (or a new 1.5ml microcentrifuge tube). Use a wide-bore pipette tip to transfer the lysate and resin from the original 1.5ml microcentrifuge tube in Step 3 to the spin column. If resin remains in the 1.5ml microcentrifuge tube, add HisLink Binding/Wash Buffer to the tube, then transfer the buffer and remaining resin to the spin column. 5. Centrifuge the spin column with the collection tube for 5 seconds or until the liquid clears the spin column. 6. To save the flowthrough, remove the spin column from the collection tube and transfer the flowthrough from the collection tube to a new 1.5ml microcentrifuge tube. Otherwise, discard the flowthrough. 7. Place the spin column back onto the collection tube. Add 500µl of HisLink Binding/Wash Buffer to the spin column, then cap the spin column. Centrifuge for 5 seconds or until the Binding/Wash Buffer clears the spin column. Discard the flowthrough. Repeat for a total of two washes. 8. Take the spin column off the collection tube and wipe the base of the spin column with a clean absorbent paper towel to remove any excess HisLink Binding/Wash Buffer. 9. Place the spin column onto a new 1.5ml microcentrifuge tube. Add 200µl of HisLink Elution Buffer. Cap the spin column and tap or flick it several times to resuspend the resin. Wait 3 minutes. Note: HQ-tagged proteins may elute with a lower concentration of imidazole (50 100mM) compared to polyhistidine-tagged proteins. Section 4.A has details on the use of imidazole for elution. 10. Centrifuge the spin column and microcentrifuge tube at 14,000rpm for 1 minute to collect the eluted protein. Promega Corporation 2800 Woods Hollow Road Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 608-274-4330 Fax 608-277-2516 7 www.promega.com TM281 Revised 8/15

3.F. Vacuum Protocol 1. Pipet 700µl of bacterial culture into the Collection Tube or a 1.5ml microcentrifuge tube. Add 70µl of the FastBreak Reagent/DNase I solution prepared in Section 3.D, Table 1, to the bacterial culture. Note: For HQ-tagged proteins, please see Section 3.C. 2. Resuspend the resin and allow it to settle. Once the resin has settled, use a wide-bore pipette tip to transfer 75µl of the HisLink Resin from the settled resin bed to the tube containing the culture. To successfully transfer resin, place the wide-bore pipette tip deep into the resin and pipet slowly to ensure that a consistent amount of resin is drawn into the pipette. Allow the resin to resettle between each pipetting. Note: We recommend optimizing the amount of HisLink Resin used for low- (<1mg/ml) or high- (>1mg/sample) expressing proteins. For low-expressing proteins, less resin should be used; similarly, for high-expressing proteins, more resin per sample should be used. 3. Incubate the sample and resin for 30 minutes, mixing frequently on a rotating platform or shaker to optimize binding. 4. Place a spin column onto a Vacuum Adapter (Cat.# A1331), then attach the adapter to a vacuum port. Use a wide-bore pipette tip to transfer the lysate and resin from Step 3 to the spin column. If resin remains in the 1.5ml microcentrifuge tube, add HisLink Binding/Wash Buffer then transfer the remaining resin to the spin column. Any unused ports on the vacuum manifold must be closed for the manifold to work properly.! 5. Apply a vacuum for 5 seconds or until the lysate clears the spin column. 6. Add 500µl of HisLink Binding/Wash Buffer to the spin column. Apply a vacuum for 5 seconds. Repeat for a total of two washes. 7. Take the spin column off the vacuum adapter and wipe the base of the spin column with a clean absorbent paper towel to remove any excess HisLink Binding/Wash Buffer. 8. Place the spin column onto a new 1.5ml microcentrifuge tube. Add 200µl of HisLink Elution Buffer. Cap the spin column and tap or flick it several times to resuspend the resin. Wait 3 minutes. Note: HQ-tagged proteins may elute with a lower concentration of imidazole (50 100mM) compared to polyhistidine-tagged proteins. 9. Centrifuge the spin column with the 1.5ml microcentrifuge tube at 14,000rpm for 1 minute to collect the eluted protein. 8 Promega Corporation 2800 Woods Hollow Road Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 608-274-4330 Fax 608-277-2516 TM281 Revised 8/15 www.promega.com

4. General Considerations 4.A. Elution Imidazole (50 1,000mM): For certain proteins and purification tags, elution efficiency may need to be optimized. Polyhistidine-tagged proteins can be eluted using 250 1,000mM imidazole. Polyhistidine-tagged proteins containing less than six histidines typically require less imidazole for elution, while such proteins containing more than six histidines may require higher levels of imidazole. The HQ tag contains three histidines and three glutamines (HQHQHQ) and may be eluted with a lower concentration of imidazole (50 100mM). EDTA (>100mM): Strong chelators such as EDTA will strip nickel from the resin and release bound protein. EDTA is generally not as efficient as imidazole for elution, and it has the added complication that Ni(EDTA) will be present in the eluate and must be removed. Acidic ph: Polyhistidine binding to immobilized nickel is most efficient at a ph well above the pka of polyhistidine (~ 6.0). Above ph 7, more than 90% of the imidazole moieties of histidine will be deprotonated and available to bind to nickel (1). Lowering the ph of a binding reaction below the pka of histidine leads to protonation of the polyhistidine tag and release from the resin. Buffers that can be used at this low ph for elution include citrate and acetate (ph 3 5). Trifluoroacetic acid (e.g., 0.1% TFA) can also be used for elution, and because of its volatility, it is directly compatible with mass spectrometry analysis. As with EDTA elution, acidic elution is generally not as efficient as imidazole elution and can result in leaching of nickel, which may become quite significant at ph values below 4. These considerations also apply to HQ-tagged proteins. 4.B. Denaturing Conditions Proteins that are expressed as inclusion bodies or insoluble fractions should be solubilized with chaotropic agents such as guanidine-hcl or urea before purification. Solubilized proteins can be purified by modifying the above protocols to include the appropriate amount of denaturant (up to 6M guanidine-hcl or up to 8M urea) during binding. 4.C. Reuse of the Resin Due to the drying of the particles during the elution step, we do not recommend reuse of the particles. Promega Corporation 2800 Woods Hollow Road Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 608-274-4330 Fax 608-277-2516 9 www.promega.com TM281 Revised 8/15

4.D. Adjuncts for Lysis or Purification We have found that the following materials may be used without adversely affecting the ability of HisLink Protein Purification Resin to bind and elute polyhistidine- or HQ-tagged proteins. Table 2. Reagents Compatible with the HisLink Spin Protein Purification System. Additive Concentration HEPES, Tris or sodium phosphate buffers 100mM Triton X-100 2% Tween 2% glycerol 20% guanidine-hcl 6M urea 8M RQ1 RNase-Free DNase 5µl/1ml original culture 5. Troubleshooting For questions not addressed here, please contact your local Promega Branch Office or Distributor. Contact information available at: www.promega.com. E-mail: techserv@promega.com Symptoms Low amounts of or no protein recovered Possible Causes and Comments Protein expression not induced. Check concentration and stability of inducer (e.g., IPTG). Expressed protein may not be stable. Add protease inhibitors to the lysis step. If the protein is degraded at the time of expression, reduce the induction period. Also try using a lower temperature during induction (16 20 C). Protein may be expressed in low amounts. Try different temperatures during induction. Check by Western blotting if using polyhistidine tag. Confirm that the sequence of the clone is correct. Protein may be misfolded or expressed in inclusion bodies. Check the lysate, pellet or flowthrough for the presence of insoluble protein of interest. 10 Promega Corporation 2800 Woods Hollow Road Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 608-274-4330 Fax 608-277-2516 TM281 Revised 8/15 www.promega.com

5. Troubleshooting (continued) Symptoms Low amounts of or no protein recovered (continued) Co-elution of contaminating proteins Lysate not clearing the Spin Column Wash solution not clearing Possible Causes and Comments Cells not lysing properly. Be sure to use the recommended volume of FastBreak Cell Lysis Reagent, 10X. Particles and lysate are not well mixed. Mix frequently for 30 minutes. Protein may have metal binding domain. Try eluting with a higher concentration of imidazole or with acidic conditions such as citrate. Polyhistidine- or HQ-tagged protein may purify more efficiently from pelleted cells. Centrifuge cells 2 minutes at 8,000rpm, discard supernatant and resuspend pellet in 700µl of 100mM HEPES, then follow protocol in Sections 3.D and 3.E or 3.F. To optimize HQ-tagged protein binding, add a maximum of 200mM NaCl to the 100mM HEPES. There may be an interacting protein in the cell. Add 0.5 1M NaCl (final concentration) to the Binding/Wash Buffer. Add protease inhibitors to the FastBreak Reagent/DNase I solution, Binding/Wash and Elution Buffers to prevent possible protein degradation. Incorrect amount of DNase I may have been added. Check that the DNase I was diluted properly (Section 3.D). DNase I no longer active. Try using a new aliquot of DNase I. Store resuspended DNase I in aliquots at 20 C. Culture O.D. 600 exceeds system recommendations ( 8 O.D. 600). Adjust the cell concentration or add more DNase I. Unused vacuum manifold ports were not closed. Close all unused ports to ensure vacuum efficiency. Poor vacuum efficiency. Check vacuum connection to the manifold to be sure that the hoses are connected properly. Unused manifold ports were not closed. Seal all unused ports to ensure good vacuum efficiency. Resin clumping due to inactive DNase I or high salt content. Pipet to break up clumps, then repeat wash steps. Promega Corporation 2800 Woods Hollow Road Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 608-274-4330 Fax 608-277-2516 11 www.promega.com TM281 Revised 8/15

6. Appendix 6.A. Composition of Buffers and Solutions HisLink Binding/Wash Buffer (ph 7.5) 100mM HEPES 10mM imidazole HisLink Elution Buffer (ph 7.5) 100mM HEPES 500mM imidazole 6.B. Reference 1. Hochuli, E. (1990) Purification of recombinant proteins with metal chelate adsorbent. Genet. Engineer. News 12, 87 98. 6.C. Related Products Product Size Cat. # Vac-Man Laboratory Vacuum Manifold 1 each A7231 HisLink 96 Protein Purification System 1 96 V3680 5 96 V3681 HisLink Protein Purification Resin 50ml V8821 5ml V8823 MagneHis Protein Purification System 65 reactions V8500 325 reactions V8550 MagZ Protein Purification System 30 purifications V8830 MagneGST Protein Purification System 40 reactions V8600 200 reactions V8603 Broad Range Protein Molecular Weight Markers 100 lanes V8491 Gel Drying Kit, 17.5 20 cm capacity 1 kit V7120 12 Promega Corporation 2800 Woods Hollow Road Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 608-274-4330 Fax 608-277-2516 TM281 Revised 8/15 www.promega.com

HQ Tag Flexi Vectors Product Size Cat.# pfn6a (HQ) Flexi Vector 20µg C8511 pfn6k (HQ) Flexi Vector 20µg C8521 pfc7a (HQ) Flexi Vector 20µg C8531 pfc7k (HQ) Flexi Vector 20µg C8541 pfn6a and pfn6k (HQ) Flexi Vectors: These vectors are designed for expressing N-terminal, HisGln (HQ) metal-binding peptide fusion proteins in bacteria and in vitro protein expression systems. The vectors are configured to append the peptide sequence MKHQHQHQAIA to the amino terminus of a protein. The vectors are designed for bacterial or in vitro protein expression via the T7 RNA polymerase promoter and are available with ampicillin [pfn6a (HQ) Flexi Vector] or kanamycin [pfn6k (HQ) Flexi Vector] resistance for selection in E. coli. pfc7a and pfc7k (HQ) Flexi Vectors: These vectors are designed for expressing C-terminal, HisGln (HQ) metal-binding peptide fusion proteins in bacteria and in vitro protein expression systems. The vectors are configured to append the peptide sequence VSHQHQHQ to the carboxy terminus of a protein. The vectors are designed for bacterial or in vitro protein expression via the T7 RNA polymerase promoter and are available with ampicillin [pfc7a (HQ) Flexi Vector] or kanamycin [pfc7k (HQ) Flexi Vector] resistance for selection in E. coli. For further information regarding these HQ Flexi Vectors and the Flexi Cloning Systems, refer to the Flexi Vector System Technical Manual #TM254 or visit: www.promega.com 7. Summary of Changes The following change was made to the 8/15 revision of this document: 1. The document design was updated. Promega Corporation 2800 Woods Hollow Road Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 608-274-4330 Fax 608-277-2516 13 www.promega.com TM281 Revised 8/15

(a) Certain applications of this product may be covered by patents issued to parties other than Promega and applicable in certain countries. Because purchase of this product does not include a license to perform any of these patented applications, users of this product may be required to obtain a patent license depending upon the particular application and country in which the product is used. (b) This product is licensed for use under U.S. Pat. No. 6,174,704. (c) U.S. Pat. Nos. 7,112,552 and 7,354,750. 2006 2015 Promega Corporation. All Rights Reserved. Flexi and Vac-Man are registered trademarks of Promega Corporation. FastBreak, HisLink, HaloTag, MagneGST, MagneHis and MagZ are trademarks of Promega Corporation. Triton is a registered trademark of Union Carbide Chemicals & Plastics Technology Corporation. Tween is a registered trademark of ICI Americas, Inc. Products may be covered by pending or issued patents or may have certain limitations. Please visit our Web site for more information. All prices and specifications are subject to change without prior notice. Product claims are subject to change. Please contact Promega Technical Services or access the Promega online catalog for the most up-to-date information on Promega products. 14 Promega Corporation 2800 Woods Hollow Road Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 608-274-4330 Fax 608-277-2516 TM281 Revised 8/15 www.promega.com