Soft white winter wheat grown in

Similar documents
Evaluating Soil Nutrients and ph by Depth

Estimating Nitrogen Mineralization in Organic Potato Production

Recommendations in this nutrient management

Irrigated Spring Wheat

Groundwater and Nitrogen Management in Willamette Valley Mint Production

Soil Fertility Management

A Guide to Collecting Soil Samples for Farms and Gardens

Forage production is of primary

Fertilizer Management

Monitoring Soil Nutrients in Dryland Systems Using Management Units

Recommendations in this fertilizer guide

Use of the Late-Spring Soil Nitrate Test

DRYLAND WINTER WHEAT: EASTERN WASHINGTON NUTRIENT MANAGEMENT GUIDE

Soil and fertilizer management in vegetable production

Best Management Practices for Nitrogen Use in SOUTHWESTERN AND WEST-CENTRAL MINNESOTA

The Nutrient Value of Manure: What s it Really Worth? Brad Joern Department of Agronomy

Developing a Forage Management Strategy to Maximize Fall and Winter Grazing

UF/IFAS Standardized Fertilization Recommendations for Agronomic Crops 1

ORGANIC VEGETABLE NUTRIENT MANAGEMENT

extension.missouri.edu Archive version -- See Using Your Soil Test Results

Livestock and Poultry Environmental Learning Center Webcast Series October 17, 2008

A GRAZING AND HAYING SYSTEM WITH WINTER ANNUAL GRASSES. Steve Orloff and Dan Drake 1 ABSTRACT

Pop-up and/or Starter Fertilizers for Corn

Cover Crop Contributions to Nitrogen Fertility

Fertilizing Small Grains in Arizona

MU Guide PUBLISHED BY MU EXTENSION, UNIVERSITY OF MISSOURI-COLUMBIA

SF723 (Revised) Barley

G Fertilizing Winter Wheat I: Nitrogen, Potassium, and Micronutrients

Manure Management Plan Nutrient Balance Worksheet User Guide Completing Nutrient Balance Worksheets for Manure Management Plans

Balancing the Nitrogen Budget

Nutrient Management in Tile Drained Fields

SEED CARROT ABOVE-GROUND BIOMASS AND NUTRIENT ACCUMULATION FOR THE 2001/2002 GROWING SEASON

2018 Winter Barley Planting Date and Nitrogen Amendment Trial

Nitrogen Management for Winter Wheat: Principles and Recommendations

SOIL TEST N FOR PREDICTING ONION N REQUIREMENTS - AN IDAHO PERSPECTIVE. Brad Brown, University of Idaho Parma Research and Extension Center

NITROGEN VALUE OF POTATO AND ONION SLUDGE FOR CORN PRODUCTION

Worksheet for Calculating Biosolids Application Rates in Agriculture

Effect of Fertilizers on Yield and Quality of Potatoes in the. Willamette Valley AGRICULTURAL EXPERIMENT STATION

Calculating Dairy Manure Nutrient Application Rates T. Downing

Getting the Most out of Your Nitrogen Fertilization in Corn Brent Bean 1 and Mark McFarland 2

Maximizing Forage Yields in Corn Silage Systems with Winter Grains

Planting Guide for Forage in North Carolina

FERTILIZING WITH YARD TRIMMINGS Craig Cogger, Andy Bary and Dan M. Sullivan

INFLUENCE OF FERTILIZER RATE AND TIMING ON YIELD, TEST WEIGHT, AND PROTEIN CONTENT OF THREE IRRIGATED HARD RED SPRING WHEAT VARIETIES

Cotton Cultural Practices and Fertility Management 1

Soil Fertility Update

2009 Cover Crop Termination Study

MANAGING FERTILITY FOR PROTEIN IN SMALL GRAINS

For Agronomic Crops. Fertilizer Recommendations. In Minnesota. George Rehm and Michael Schmitt . AG-MI MN 2500 AGMI (U.

Incorporating Annual Forages into Crop-Forage-Livestock Systems

University of California Cooperative Extension KERN FIELD CROPS. Kern County 1031 S. Mt. Vernon Avenue Bakersfield, CA

Pete Fandel Illinois Central College llinois Council on Best Management Practices

For nmental. Written By: Agustin o, Professor. Developed in. and justice for all. Department of. funded by activities. )

2014 Early Fall Cover Cropping Trial

Cover crop selection and management

Clain Jones

Application of Nitrogen for Grass Seed Production -- Does It Still Pay?

Managing fertilization and irrigation for water quality protection

Residue for Cover Crops in RUSLE2

Soil quality assessment and nitrogen managment. Dan M. Sullivan Crop & Soil Science, OSU

SULFUR AND NITROGEN FOR PROTEIN BUILDING

Using Crimson Clover to Supply Nitrogen to a Silage Corn Crop

Information contained herein is available to all persons regardless of race, color, sex, or national origin.

2016 Winter Barley Planting Date and Nitrogen Amendment Trial

QUANTIFYING AMMONIA VOLATILIZATION FROM SURFACE-APPLIED FERTILIZERS IN CENTRAL OREGON KENTUCKY BLUEGRASS SEED PRODUCTION

Starter Fertilizer for Corn in Vermont

Beef Cattle News Izard County Cooperative Extension Services 79 Municipal Drive Melbourne AR 72556

Abstract. Introduction

Nitrogen mangement for organic potatoes. Dan M. Sullivan Soil Scientist Oregon State University Corvallis, OR

FACT SHEET. Manure Analysis And Interpretations

Soil Test Interpretations and Fertilizer Recommendations

2016 Winter Barley Seeding Rate, Cover Crop and Variety Trial

WILDLIFE MANAGEMENT Publication Series

Soft white winter wheat is the most important nonirrigated

Calculating the Fertilizer Value of Manure from Livestock Operations

Archival copy. For current information, see the OSU Extension Catalog:

Impact of Changing From Nitrogen- to Phosphorus- Based Manure Nutrient Management Plans

Permanent Pastures For Delaware

Climate, Soils, and Seed Production. Thomas G Chastain CSS 460/560 Seed Production

Pasture Management- Fertility. Brie Menjoulet Agronomy Specialist Hermitage, MO

Nitrogen Dynamics Feeding the Crops that Feed Us

WILDLIFE MANAGEMENT Publication Series

Green Feed, Sod a.ci Pasture

AGRONOMY 375 Exam II Key March 30, 2007

Nitrogen Fertilizer Movement in Wheat Production, Yuma

Agronomy Facts 53 The Early Season Chlorophyll Meter Test for Corn

Sunflower Seeding Rate x Nitrogen Rate Trial Report

A December 18, 2007 article (printed below) from South Dakota State University on the Plant Management Network web site addresses this issue.

Interpreting Nitrate Concentration in Tile Drainage Water

Soil Sampling and Nutrient Recommendations. Kent Martin SW Agronomy Agent Update 12/1/2009

Enterprise Budget Watermelon North Central Region EM 8799, April 2002 Preplant Operations Land and Irrigation Planting, Irrigation, and Pest Control

Nitrogen management for diverse organic vegetable farms. Nick Andrews OSU Small Farms Extension Dan Sullivan OSU Soil Scientist

The Agronomics of Land Application. Jim Friedericks Outreach and Education

Forage and Livestock Management Considerations

R.G. Hoeft, G.W. Randall, J. Vetsch, E.D. Nafziger F.G. Fernández, and K. Greer 1

Red Clover Variety Trials Greg Durham, Forage Research Technician, UGA Athens Dr. Dennis Hancock, Forage Extension Specialist, UGA Athens

Organic Fertilizer Calculator

Editor: Robert Waggener

2014 Winter Canola Soil Preparation x Fertility Timing Trial

Forage and Livestock Management Considerations

Transcription:

EM 92 November 21 Using the Nitrogen Mineralization Soil Test to Predict Spring Fertilizer N Rate for Soft White Winter Wheat Grown in Western Oregon Nicole P. Anderson, John M. Hart, Neil W. Christensen, Mark E. Mellbye, and Michael D. Flowers Soft white winter wheat grown in western Oregon requires a spring application of nitrogen (N) fertilizer for optimum production. Determining the amount of N to apply has been a challenge for growers because wheat is produced in numerous rotations that provide varying amounts of N to the wheat crop. Inadequate N results in reduced yield. However, excess N causes lodging, higher-than-desired grain protein, and added expense. Wheat obtains N from two sources: soil and fertilizer. Soil N is provided in available mineral form (nitrate-n or ammonium-n) and as mineralizable N (nitrogen that will become available during the growing season). Soil nitrate-n and ammonium-n supply only 5% to 15% of the total N requirement. Mineralizable soil N supplies 5% to 4% of the total N requirement. The remainder (4% to 7%) comes from N fertilizer. Both available and mineralizable N can be measured to predict the spring fertilizer N rate for winter wheat by using the N-min soil test developed at Oregon State University (figure 1). Research conducted between 1993 and 24 identified the relationship between the N-min soil test and available N (figure 2). Soil N supply, lb/a 15 12 9 6 sweet corn grass for seed oats clover Figure 1. Through more than 1 years of research, Neil Christensen, professor emeritus of soil science, developed the N-min test for wheat, a method for accurately predicting the spring fertilizer N requirement. Photo by Mark Mellbye, Oregon State University. 1 2 4 Figure 2. Relationship between preceding crop, soil N supply for winter wheat, and N-min test value. Image by John M. Hart, Oregon State University. Nicole P. Anderson, field crops Extension agent; John M. Hart, Extension soil scientist; Neil W. Christensen, professor emeritus of soil science; Mark E. Mellbye, field crops Extension agent; Michael D. Flowers, Extension cereals specialist (all of Oregon State University). For more information, contact N.P. Anderson or M.D. Flowers, OSU Department of Crop and Soil Science. 1

The N-min test accurately predicted the spring fertilizer N requirement in more than 35 research sites and grower fields. The research was conducted across a range of soil types and crop rotations and in fields using both conventional tillage and direct seeding to establish stands. The test works equally well in all tillage situations. Additionally, the test accurately predicts spring N rate for a range of soils including sandy soils such as Newburg, silt loam soils such as Woodburn, and hill soils such as Steiwer. Some preceding crops supply a predictable amount of N for wheat. In rotations with tall fescue or perennial ryegrass, a consistently high N-min test value and low recommended spring N rate can be expected. Oats provide little N for a wheat crop; therefore, a low N-min test value and a high recommended spring N rate can be expected. In contrast, the recommended spring N amount for wheat following some other crops is less predictable without use of the N-min test. For example, clover and other legumes do not consistently supply the same amount of N. This is another reason for using the N-min test. Current research, through summer 21, has calibrated the N-min test for use only in western Oregon winter wheat. Do not use the N-min soil test for any other crops, including irrigated winter wheat and spring wheat. Using the N-min Test Taking a Sample First, collect a composite soil sample from the - to 12-inch depth with a soil sampling tube. The sample should include a minimum of 2 soil cores representing the area to be fertilized. The best time to take soil samples is during the last 2 weeks of January. January is the best time to sample for three reasons: 1. The relationship between the N-min test and wheat N uptake at this time is well correlated. 2. The amount of mineralizable N measured by the N-min test was stable or the variability for the test was lowest in mid-january (figures 3 and 4). Soil samples collected earlier or later than mid-january had a much higher variance than samples collected in the latter half of January. Compared with samples collected in 5 4 2 1 Tall fescue Corn Clover 8-Sep 18-Oct 27-Nov 6-Jan 15-Feb Date Figure 3. Relationship between time and N-min test value during the 1995 growing season from planting to time of spring N application for wheat planted after tall fescue, corn, or clover. Image by John M. Hart, Oregon State University. 6 Peas Peas 5 Tall fescue 4 2 1 13-Dec 23-Dec 2-Jan 12-Jan 22-Jan 1-Feb 11-Feb 21-Feb 3-Mar 13-Mar Date Figure 4. N-min data showing instability until the recommended sampling date during the winter of 29 1. Image by Nicole P. Anderson and John M. Hart, Oregon State University. 2

mid-january, the variance more than doubled for samples collected in early January or mid- February and was five times greater for samples collected in mid-december. 3. The N-min test requires a longer analytical time than traditional soil tests. Sampling in January allows enough time for analysis of the soil sample (about 2 weeks) and calculation of fertilizer needs before application of N fertilizer at Feekes growth stage 5 (generally the end of February). Application of some spring N by Feekes growth stage 5 is critical because rapid N uptake begins at the next development stage. For more information about wheat N use, see Oregon State University Extension publication EM 8963-E, Soft White Winter Wheat (Western Oregon). Failure to collect samples in this manner will result in inaccurate N-min soil test values. Sample Handling Mineralizable N content varies with storage and handling. To ensure useful results, handle samples carefully and according to standard practices. Place the samples in a cooler with ice or an artificial cooling material immediately after collection. If you are collecting samples from multiple fields, cool each sample before moving to the next field. Laboratories usually prefer cooling and rapid shipment. Follow one of the steps below to ensure reliable soil test data: Rapidly air-dry samples at ambient temperature immediately after sampling, and ship them to the laboratory within 24 hours. If you cannot dry samples, keep the samples in an iced cooler overnight, and ship them on ice within 24 hours. If the previous two options are not possible, freeze the samples, and ship them frozen to the laboratory. Request three analyses from the laboratory: (1) ammonium-n (NH 4 -N), (2) nitrate-n (NO 3 -N), and (3) mineralizable N. Be sure the laboratory you choose can provide all analyses. Not all laboratories offer a test for mineralizable N by anaerobic incubation. Request that analyses be expressed in parts per million (ppm) or milligrams per kilogram (mg/kg), not as pounds per acre (lb/a). Finding the Spring N Rate With the three N analyses in hand, use table 1 to select a spring N fertilizer application rate. The table recommends spring N rates of 8 to 2 lb N/a. Even when the N-min test is high, a minimum amount of fertilizer N is needed for optimum wheat production. OSU research has shown that 8 lb N/a is the minimum amount to apply (shaded portion of table 1). To find a spring N rate by using table 1, be certain the soil test results are in parts per million (ppm) or milligrams per kilogram (mg/kg). Begin with the N-min soil test results. These values are in the lefthand column of table 1. Follow the N-min column down until you find the N-min soil test value closest to yours. Next, add your soil test NH 4 -N and NO 3 -N values. Then locate the column heading that contains the sum of these values. Move down that NH 4 + NO 3 column until you reach the row for your N-min value. The number where the row and column intersect is the recommended spring N rate in pounds of N/acre. In table 1, N-min test values increase by increments of 4 ppm, and spring N rates increase by increments of 2 lb/a. If your N-min soil test value is between those in table 1, adjust the recommended spring N application rate by 5 lb/a for each 1 ppm N-min. Table 1. Recommended spring N fertilizer rates based on the N-min soil test and extractable soil NH 4 -N plus NO 3 -N. N-min soil test (ppm or mg/kg) Soil test NH 4 + NO 3 (ppm or mg/kg) Less than 1 1 to 15 16 to 2 N fertilizer rate (lb N/a) More than 2 12 2 18 165 145 16 18 16 145 125 2 16 14 125 15 24 14 12 15 85 28 12 1 85 8 32 1 8 8 8 36+ 8 8 8 8 3

Example N-min test value = 2 ppm NH 4 -N + NO 3 -N = 18 ppm (6 ppm NH 4 -N + 12 ppm NO 3 -N) In this example, the N-min soil test value (lefthand column of table 1) is 2 ppm. The sum of NH 4 -N plus NO 3 -N values is 18 ppm. Move down the column labeled N-min soil test until you reach 2. Now find the column labeled 16 to 2. The intersection of the N-min row and the NH 4 + NO 3 column is 125. The recommended spring N fertilizer rate is 125 lb N/a. Laboratory Procedure Three analyses are necessary to use the test: (1) ammonium-n (NH 4 -N), (2) nitrate-n (NO 3 -N), and (3) mineralizable N. The analytical procedure for mineralizable N determination is very different from that used for other soil nutrient analyses as it involves incubating the sample for 7 days. In contrast, NH 4 -N and NO 3 -N are determined after extraction from a mixture of 2 grams of soil with 75 ml of 2M KCl that has been shaken for 1 hour. Provide all analyses in parts per million (ppm) or milligrams per kilogram (mg/kg), not as pounds per acre (lb/a). N-min Soil Test Procedure Anaerobic Incubation Reagents Make 2 M KCl (potassium chloride) by dissolving 15 grams of KCl in about 5 ml of distilled water and then diluting the mixture to 1 liter in a volumetric flask. Procedure 1. Using sample splitter, obtain a soil sample of at least 2 grams. Weigh 2 grams of sample into a 125-mL extraction bottle. 2. Add 25 ml of distilled water, and stir well with a glass rod to ensure that the soil is completely wet. Add another 25 ml of distilled water to rinse the glass rod and side of the jar. 3. Seal the bottle so no air exchange will occur during incubation. Traditionally, the seal is made by placing a sheet of Parafilm and a layer of plastic wrap over the mouth of the bottle and tightly securing the lid. Some laboratories use a Mason jar and new lid for each sample to obtain the necessary seal. 4. Place the sample in an incubator at 4 C (±.5 C) for 7 days (168 hours). 5. Remove the sample from the incubator, and carefully add 5 ml of 2 M KCl. Replace the plastic covers, and tighten the lid securely. 6. Shake briskly to disperse the soil, and place the sample on a mechanical shaker for 1 hour. Filter through Whatman No. 42 (or equivalent) filter paper into acid-rinsed filter vials. 7. Determine the NH 4 -N content of the extract solution from the incubated sample with an automated colorimetric analyzer. 8. Determine the initial NH 4 -N (reference) content in the soil by following steps 1, 2, 4, and 6. Calculation ppm mineralizable NH 4 -N = (ppm NH 4 -N in incubated extract ppm NH 4 -N in reference extract) 5 Comments This procedure is a modification of the anaerobic incubation described by Keeney (1982). Sample size has been increased from 5 to 2 grams. A 125-mL screw-top extracting bottle is used to accommodate the larger sample size and solution volume. Compared with many other soil testing procedures, the biological nature of this procedure creates more variability in results. Therefore, all attempts to reduce variation are critical. Suggestions for reducing variability are thorough sample mixing, complete sealing of bottles during incubation, avoidance of floating particles during incubation, and strict temperature control. Excluding oxygen from the headspace by introducing an N 2 atmosphere immediately before sealing the incubation vessel is not recommended. 4

Refining N Fertilizer Rates Reviewing grain protein data is an important aspect of managing N in wheat crops and is recommended to evaluate use of the N-min test on western Oregon winter wheat fields. Maximum economic yield is associated with grain protein concentration between 8.5% and 1.5%. Grain protein less than 8.% suggests that N was inadequate. Grain protein greater than 1.5% suggests that N was excessive or that a factor other than N limited yield. For More Information Christensen, N.W., and M.E. Mellbye. 26. Validation and recalibration of a soil test for mineralizable nitrogen. Communications in Soil Science and Plant Analysis 37(15 2):2199 2211. Hart, J.M., M.D. Flowers, R.J. Roseburg, N.W. Christensen, and M.E. Mellbye. 29. Nutrient Management Guide for Soft White Winter Wheat (Western Oregon). EM 8963-E. Corvallis, OR: Oregon State University Extension Service. Horneck, D.A., J.M. Hart, K. Topper, and P. Koepsell. 1989. Methods of Soil Analysis Used in the Soil Testing Laboratory at Oregon State University. SM 89:4. Corvallis, OR: Oregon State University Agricultural Experiment Station. Keeney, D.R., and D.W. Nelson. 1982. Nitrogen-inorganic forms. p. 643 698 in Methods of Soil Analysis, Part 2, Agronomy Monograph 9, 2nd ed., A.L. Page (ed.). Madison, WI: ASA and SSSA. Visit the OSU Extension website for more information on soil and nutrient management: http://extension.oregonstate.edu Acknowledgments We thank the following reviewers for their thoughtful advice and assistance during preparation of this publication. Rick Blem, Rick s Independent Crop Consulting Service, Inc. Barry Caldwell, Crop Production Services David McCready, Wilco-Winfield LLC Tom Miller, Fitzmaurice Fertilizer, Inc. Dean Moberg, Natural Resources Conservation Service Yan Ping Qian, OSU Central Analytical Laboratory Craig Simson, AgSource Laboratories Steve Salisbury, Wilbur-Ellis This publication replaces the previous publication: Hart, J.M., N.W. Christensen, M.E. Mellbye, and M.D. Flowers. Using the Nitrogen Mineralization Soil Test to Predict Spring Fertilizer N Rate. FS 334-E. Corvallis, OR: Oregon State University Extension Service, January 26. Trade-name products and services are mentioned as illustrations only. This does not mean that the Oregon State University Extension Service either endorses these products and services or intends to discriminate against products and services not mentioned. 21 Oregon State University. This publication was produced and distributed in furtherance of the Acts of Congress of May 8 and June, 1914. Extension work is a cooperative program of Oregon State University, the U.S. Department of Agriculture, and Oregon counties. Oregon State University Extension Service offers educational programs, activities, and materials without discrimination based on age, color, disability, gender identity or expression, marital status, national origin, race, religion, sex, sexual orientation, or veteran s status. Oregon State University Extension Service is an Equal Opportunity Employer. Published November 21. 5