Total Dissolved Solids

Similar documents
Evaluation copy. Total Dissolved Solids. Computer INTRODUCTION

Evaluation copy. Chloride and Salinity. Computer INTRODUCTION

Water Quality Temperature

FINAL REPORT A Mini Grant for Redesigning Lab Experiments for "Chemistry in Society" (ACHM 105) - A General Education Course Kutty Pariyadath

EXPERIMENT 3 SOLIDS DETERMINATION

Copper Odyssey. Chemical Reactions of Copper

Forensics with TI-Nspire Technology

GRAVIMETRIC DETERMINATION OF SULFATE IN AN UNKNOWN SOLUTION

Standard Methods for the Examination of Water and Wastewater

ENGI Environmental Laboratory. Lab #2. Solids Determination. Faculty of Engineering & Applied Science

Salinity in Seawater

An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+

Acid Rain and Its Effect on Surface Water. Evaluation copy. Figure 1: Typical rain ph in United States.

Total Dissolved Solids Dried at 180ºC. Total Volatile Dissolved Solids at 550 C

Oxygen Demand, Chemical

Water Quality. CE 370 Lecture 1. Global Distribution of Earth s s Water

SOP-C-130 Determination of Total Solids and Percent Solids

Gravimetric Analysis: Determination of % Sulfur in Fertilizer

How to Collect Your Water Sample and Interpret the Results for the Livestock Analytical Package

Water Chemistry. Water 101

Module 2, Add on Lesson Turbidity Sensor. Student. 90 minutes

TESTING THE WATERS HOW GOOD IS THAT BOTTLED WATER AND HOW EFFECTIVE IS YOUR WATER FILTER

Lab #7H Photosynthesis and Respiration

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document

Chapter 8. Gravimetric Analysis

Water Desalination and Its Techniques

Dirty Water. Adapted from: Dirty Water in Living in Water. National Aquarium in Baltimore, Grade Level: all. Duration: 1-2 class periods

Hard water. Hard and Soft Water. Hard water. Hard water 4/2/2012

EUTROPHICATION. Student Lab Workbook

Acid Rain. Evaluation copy. Figure 1: Typical rain ph in United States.

Measuring Turbidity with Filters

3.0 DETECTION LIMIT 3.1. See Procedure ALQAP Procedure for the Determination of Uncertainty

Analysis of Calcium Carbonate Tablets

DETERMINATION of the EMPIRICAL FORMULA

Porosity of Compost Water retention capacity of Compost Organic matter content of Compost Buffering capacity of Compost

HEATING AND COOLING OF LAND AND WATER STANDARDS 3.1.7A 3.2.7B, 3.2.7C 3.5.7C, 3.5.7D 3.7.7A, 3.7.7B

COOPERATIVE EXTENSION Bringing the University to You

Chemical Testing of Drinking Water

Laboratory Fee Schedule

IDENTIFYING UNKNOWN SUBSTANCES

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14

How Salty Is Our Water?

Rev Experiment 10

Oceanopgraphy: 3014 lab 6 Experiments:

How to Collect Your Water Sample and Interpret the Results for the Poultry Analytical Package

Comparison of Water Quality Parameters

Approved for NPDES (Editorial Revision 1978) Silica, Dissolved (Colorimetric)

Group IV and V Qualitative Analysis

Hardness Removal from Groundwater by Synthetic Resin from Waste Plastics

Experiment 13: Determination of Molecular Weight by Freezing Point Depression

Watershed: an area or ridge of land that separates waters flowing to different rivers, basins, or seas. It is the interdependent web of living

Interpretive Guide & Summary Statistics

Total Solids (TS) - material remaining after evaporation of sample liquid

When it Rains it Pours

Eutrophication: Too Much of a Good Thing?

CONSERVATION OF MATTER AND CHEMICAL PROPERTIES

CHEMICAL MONITORING & MANAGEMENT LESSON 6: WATER QUALITY 1 SAMPLE RESOURCES

Earth s Pools of Water What is the residence time of these pools?

edna PROTOCOL SAMPLE COLLECTION Caren Goldberg and Katherine Strickler, Washington State University Revised November 2015

EXPERIMENT. The Reaction of Magnesium with Hydrochloric Acid; The Molar Volume of Hydrogen

Selective Removal Of Sodium And Chloride? Mono-Valent Selective Ion Exchange Membrane For Desalination And Reuse Enhancement.

TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION

Eutrophication Using Up Oxygen In Water

Recrystallization with a Single Solvent

ENVR 1401 LAB EXERCISE Lab 11 Wastewater Treatment

LABORATORY 3 SOIL ANALYSIS

edna PROTOCOL SAMPLE COLLECTION Caren Goldberg and Katherine Strickler, Washington State University Revised January 2017

The total amount in grams of solid material dissolved in 1 kg of seawater.

Soil Particle Density Protocol

Experiment. Molar Mass of an Unknown Sulfate Salt by Gravimetric Techniques 1

Year 7 Chemistry HW Questions

The Crystal Forest Favorite Holiday Demonstrations

) and it s ideal van t Hoff factor is 4. Note that polyatomic ions do not break up into their constituent elements.

OCN 201 Chemical Oceanography Class Notes, Fall 2014 The origin of sea salt Chris Measures, Department of Oceanography

Interpretation of Chemistry Data from Seepage, Observation Well, and Reservoir Water Samples collected at Horsetooth Dam during July 2004

Standard Test Procedures Manual

Measuring, sampling, and analyzing white waters

Stream Ecology Lab Module 4/5 Determining Discharge and Sediment Yield in a Small Stream

Environmental Express. Joe Boyd. Solids and BOD Analyses: Pitfalls and Troubleshooting

Quality of Rainwater From Rainwater Harvesting Systems in Sanaa. Nagib Ghaleb N. Mohammed, Civil Engineering Department, University of Bahrain

CHEM 1215 LAB NOTES EXPT #2: PHYSICAL AND CHEMICAL CHANGES 1

Total Suspended Solids by Gravimetric Determination

EXPERIMENT 3: Identification of a Substance by Physical Properties

solvent diffusion dissolving soluble

H N 2. Decolorizing carbon O. O Acetanilide

3. Add 0.4 ml of. 7. Use a TenSette

Odyssey Conductivity & Temperature Logger.

Kapil Arora, Carl Pederson, Dr. Matt Helmers, and Dr. Ramesh Kanwar. DATE SUBMITTED: October 23, INDUSTRY SUMMARY

Water Resources on PEI: an overview and brief discussion of challenges

Water: No Dirt, No Germs

ADVANCED AP PLACEMENT CHEMISTRY. Activity Series. Introduction. Objective. Chemicals and Equipment

Oxygen. Oxygen is one of the fundamental resources required by life forms on Earth. Aquatic ecosystems have a wide assortment of life forms.

aeration: to expose to circulating air; adds oxygen to the water and allows gases trapped in the water to escape; the first step in water treatment.

Hydrology and Water Quality. Water. Water 9/13/2016. Molecular Water a great solvent. Molecular Water

Summary. River. 5 th 8 th. about the. Chemical. anteceden. Grade Level: 5 th. 12 th. Objectives: instructions to. determine the. Chicago River Field

Cadmium Testing and On Site Calibration for Water Testing Detection Range: ppm

+ - Conductivity. Conductivity Primer. Basic principles

Method (0.1 to 8.0 mg/l Cu) TNTplus 860

STANDARDS FOR MIXING WATER IN CONCRETE

RECYCLED WATER AT SYDNEY OLYMPIC PARK. Andrzej Listowski SYDNEY OLYMPIC PARK AUTHORITY

Transcription:

Total Dissolved Solids LabQuest 12 INTRODUCTION Solids are found in streams in two forms, suspended and dissolved. Suspended solids include silt, stirred-up bottom sediment, decaying plant matter, or sewage-treatment effluent. Suspended solids will not pass through a filter, whereas dissolved solids will. Dissolved solids in freshwater samples include soluble salts that yield ions such as sodium (Na + ), calcium (Ca 2+ ), magnesium (Mg 2+ ), bicarbonate (HCO3 ), sulfate (SO4 2 ), or chloride (Cl ). Total dissolved solids, or TDS, can be determined by evaporating a pre-filtered sample to dryness, and then finding the mass of the dry residue per liter of sample. A second method uses a Vernier Conductivity Probe to determine the ability of the dissolved salts and their resulting ions in an unfiltered sample to conduct an electrical current. The conductivity is then converted to TDS. Either of these methods yields a TDS value in units of mg/l. The TDS concentration in a body of water is affected by many different factors. A high concentration of dissolved ions is not, by itself, an indication that a stream is polluted or unhealthy. It is normal for streams to dissolve and accumulate fairly high concentrations of ions from the minerals in the rocks and soils over which they flow. If these deposits contain salts (sodium chloride or potassium chloride) or limestone (calcium carbonate), then significant concentrations of Na +, K +, Cl will result, as well as hard-water ions, such as Ca 2+ and HCO3 from limestone. TDS is sometimes used as a watchdog environmental test. Any change in the ionic composition between testing sites in a stream can quickly be detected using a Conductivity Probe. TDS values will change when ions are introduced to water from salts, acids, bases, hard-water minerals, or soluble gases that ionize in solution. However, the tests described here will not tell you the specific ion Sources of Total Dissolved Solids Hard-Water Ions - Ca 2+ - Mg 2+ - HCO3 Fertilizer in agricultural runoff - NH4 + - NO3 - PO4 3 - SO4 2 Urban runoff - Na + - Cl Salinity from tidal mixing, minerals, or returned irrigation water - Na + - K + - Cl Acidic rainfall - H + - NO3 - SO3 2, SO4 2 responsible for the increase or decrease in TDS. They simply give a general indication of the level of dissolved solids in the stream or lake. Further tests described in this book can then help to determine the specific ion or ions that contributed to changes in the initial TDS reading. There are many possible manmade sources of ions that may contribute to elevated TDS readings. Fertilizers from fields and lawns can add a variety of ions to a stream. Increases in TDS can also result from runoff from roads that have been salted in the winter. Organic matter from wastewater treatment plants may contribute higher levels of nitrate or phosphate ions. Treated wastewater may also have higher TDS readings than surrounding streams if urban drinking water has been highly chlorinated. Irrigation water that is returned to a stream will often have higher concentrations of sodium or chloride ions. Acidic rainwater, with dissolved gases like CO2, NO2, or SO2, often yields elevated H + ion concentrations. Water Quality with Vernier 12-1

LabQuest 12 If TDS levels are high, especially due to dissolved salts, many forms of aquatic life are affected. The salts act to dehydrate the skin of animals. High concentrations of dissolved solids can add a laxative effect to water or cause the water to have an unpleasant mineral taste. It is also possible for dissolved ions to affect the ph of a body of water, which in turn may influence the health of aquatic species. If high TDS readings are due to hard-water ions, then soaps may be less effective, or significant boiler plating may occur in heating pipes. Expected Levels TDS values in lakes and streams are typically found to be in the range of 50 to 250 mg/l. In areas of especially hard water or high salinity, TDS values may be as high as 500 mg/l. Drinking water will tend to be 25 to 500 mg/l TDS. United States Drinking Water Standards 1 include a recommendation that TDS in drinking water should not exceed 500 mg/l TDS. Fresh distilled water, by comparison, will usually have a conductivity of 0.5 to 1.5 mg/l TDS. Table 1: TDS in Selected Rivers Site Season TDS Season TDS Rio Grande River, El Paso, TX Spring 510 Fall 610 Mississippi River, Memphis, TN Spring 133 Fall 220 Sacramento River, Keswick, CA Spring 71 Fall 60 Ohio River, Benwood, WV Spring 300 Fall 143 Hudson River, Poughkeepsie, NY Spring 90 Fall 119 Summary of Methods Method 1: TDS Using a Conductivity Probe A Vernier Conductivity Probe is used on site, or placed into samples collected at sites, to measure TDS concentration of the solution. It offers the advantage that it can be performed without filtration, providing instantaneous feedback about total dissolved solids concentration in a stream. Method 2: TDS By Evaporation Using this method, samples are first filtered to remove suspended solids. A precise amount of sample is added to a carefully cleaned, dried, and weighed beaker. The water is then evaporated in a drying oven. The difference in mass between the two weighings is the mass of the total dissolved solids. Calculations are then performed to convert the change in mass to mg/l of TDS. This procedure does not require a sensor, but does require an analytical balance (0.001 or 0.0001 g resolution). 1 Established by 1986 Amendments to the Safe Drinking Water Act. 12-2 Water Quality with Vernier

Total Dissolved Solids Method 1: TDS USING A CONDUCTIVITY PROBE Materials Checklist LabQuest LabQuest App Vernier Conductivity Probe tissues or paper towels wash bottle with distilled water 500 mg/l TDS standard solution 50 mg/l TDS standard solution (optional) small paper or plastic cup (optional) Collection and Storage of Samples 1. This test can be conducted on site or in the lab. A 100 ml water sample is required. 2. It is important to obtain the water sample from below the surface of the water as far away from shore as is safe. If suitable areas of the stream appear to be unreachable, samplers consisting of a rod and container can be constructed for collection. Refer to page Intro-4 of the Introduction of this book for more details. 3. If the testing cannot be conducted within a few hours, place the samples in an ice chest or a refrigerator. Testing Procedure 1. Set the switch on the Conductivity Probe box to 0 2000 µs/cm (2000 µs/cm = 1000 mg/l TDS). 2. Connect the Conductivity Probe to LabQuest and choose New from the File menu. If you have an older sensor that does not auto-id, manually set up the sensor. 3. Set up the data-collection mode. a. On the Meter screen, tap Mode. Change the data-collection mode to Selected Events. b. Select Average over 10 seconds and select OK. 4. You are now ready to prepare the Conductivity Probe for calibration. If your instructor directs you to use the stored calibration, proceed directly to Step 5. If your instructor directs you to manually enter the calibration values, choose Calibrate from the Sensors menu and tap Equation. Enter the values for the Slope and the Intercept. Select Apply to make the changes take effect and select OK. Proceed to Step 5. If your instructor directs you to perform a new calibration for the Conductivity Probe, follow this procedure. First Calibration Point a. Choose Calibrate from the Sensors menu and select Calibrate Now. b. Enter 0 as the mg/l TDS value for Reading 1. c. Perform the first calibration point with the probe in the air (e.g., out of any solution). d. Wait for the readings stabilize and tap Keep. Water Quality with Vernier 12-3

LabQuest 12 Second Calibration Point e. Place the Conductivity Probe into the 500 mg/l TDS standard solution. The hole near the tip of the probe should be covered completely. f. Enter 500 as the mg/l TDS value for Reading 2. g. Wait for the readings to stabilize and tap Keep. h. Select OK. 5. Collect TDS concentration data. a. Start data collection. b. Place the tip of the electrode into a cup with sample water from the body of water you are testing. The hole near the tip of the probe should be covered completely. c. Tap Keep to collect the first data pair. Important: Hold the probe tip still for the 10 second data-collection period. d. Repeat data collection by again tapping Keep. Leave the probe tip submerged for the full 10 seconds, then stop data collection. e. Tap Table to view the data. Record the averaged TDS values for readings 1 and 2 on the Data & Calculations sheet (round to the nearest 0.1 mg/l TDS) 2. 2 If your readings are less than 100 mg/l, you may choose to recalibrate the probe for a lower range setting of 0 100 mg/l for more accurate results. To do this, change the setting on the probe box to 0 200 µs/cm and repeat Steps 2 5. Use the stored 100 mg/l TDS calibration, or calibrate with a 50 mg/l TDS standard provided by your instructor. 12-4 Water Quality with Vernier

Total Dissolved Solids DATA & CALCULATIONS Method 1: TDS Using a Conductivity Probe Stream or lake: Time of day: Site name: Site number: Date: Column Reading A TDS 1 2 Average Column Procedure: A. Record the TDS value (in mg/l) Field Observations (e.g., weather, geography, vegetation along stream) Test Completed: Date: Water Quality with Vernier 12-5

LabQuest 12 Method 2: TDS BY EVAPORATION Materials Checklist sampling bottles drying oven one 600 ml beaker for filtration container 100 ml graduated cylinder large funnel (>10 cm diameter) two 250 ml beakers filter paper to fit large funnel milligram balance (0.001 g) tongs or gloves to hold beaker Collection and Storage of Samples 1. This test can be conducted on site or in the lab. Collect a 500 ml water sample per site so that you can run two 200 ml trials. Note: If your stream or lake could have low levels of TDS, then collect a larger sample volume (see Step 6 of the Testing Procedure). 2. It is important to obtain the water sample from below the surface of the water as far away from shore as is safe. If suitable areas of the stream appear to be unreachable, samplers consisting of a rod and container can be constructed for collection. Refer to page Intro-2 of the Introduction of this book for more details. 3. If samples cannot be tested immediately upon returning to the lab, they should be refrigerated until the time of analysis to avoid microbiological decomposition of solids. Samples should not be tested after seven days. Testing Procedure Day 1 1. Filter any solid particles or suspended solids from your sample. a. Set up a funnel and funnel support on a ring stand. Place a 600 ml beaker or other large container below the funnel. b. Place a folded piece of filter paper in the funnel and moisten it with distilled water so that it adheres to the funnel sides. c. Slowly add your 500 ml sample to the funnel, being sure not to let the level of liquid in the funnel go above the top of the filter paper. Continue adding your sample to the funnel until you have more than 400 ml of filtrate in the beaker below the funnel. 2. Prepare two 250 ml beakers for drying and sample evaporation. a. Carefully clean two 250 ml beakers and place them in a 100 105 C drying oven for one hour to dry. b. Remove the beakers from the oven. Allow them to cool. c. Using a pencil, number your beakers 1 and 2. Do not use label tape. d. From this point on, always handle the beakers with tongs or gloves to prevent oils on your hands from affecting their mass. Weigh each beaker on a milligram balance to the nearest 0.001 g. Record the data on the Data & Calculations sheet. e. If you complete Step 2 before collecting samples, leave the beakers in a clean, dry, dustfree space until you return to the lab. 12-6 Water Quality with Vernier

Total Dissolved Solids 3. Transfer the samples to the beakers. a. Using a 100 ml graduated cylinder, carefully measure 200.0 ml of filtered sample water into each beaker. b. Place the remaining sample water into a refrigerator for possible future use. 4. Using tongs or gloves, place the beakers into the oven and allow the water to evaporate overnight at 104 C. Day 2 5. Measure the mass of the beakers and solids. a. Using tongs or gloves, remove the beakers from the oven and place them in a dessicator, if available, to cool. A dessicator will keep the samples from absorbing any water from the air that would increase their mass. If no dessicator is available, the beakers can be cooled on a table top. Proceed to the next step as soon as possible to minimize any absorption of water. b. Use an analytical balance to measure the mass of each beaker with the solids now left behind. Record the values on the Data & Calculations sheet (round to the nearest 0.001 g). c. Obtain the mass of the solids by subtracting the mass of the empty beaker from the mass of the beaker with Cool sample in a the solids. If the mass of the solids is at dessicator, if available. least 0.025 g, proceed to Step 7. If the mass of the solids is less than 0.025 g, proceed to Step 6. 6. If the mass of the solids is less than 0.025 g, add another 200.0 ml of sample to each beaker and repeat Steps 4 and 5. Make a note on the Data & Calculations sheet that your total volume is now 400.0 ml instead of 200.0 ml. 7. Record the mass of each beaker plus the solids on the Data & Calculations sheet. 8. Soak the beakers in hot soapy water. Water Quality with Vernier 12-7

LabQuest 12 DATA & CALCULATIONS Method 2: TDS by Evaporation Stream or lake: Site name: Site number: Date: Time of day: Column A B C D E F Beaker Number Mass of empty beaker (g) Mass of beaker plus solids (g) Mass of solids (g) Mass of solids (mg) Total volume (L) TDS Example 95.245 g 95.277 g 0.032 g 32 mg 0.200 L 160 mg/l 1 2 Average TDS Column Procedure: A. Mass of empty beaker B. Mass of beaker with dried solids C. Mass of solids (g) = B A D. Mass of solids (mg) = C 1000 E. Total volume (L) = ml water / 1000 F. TDS = D / E Field Observations (e.g., weather, geography, vegetation along stream) Test Completed: Date: 12-8 Water Quality with Vernier