Learn Chemistry. Starter for Ten 9. Redox. Registered Charity Number

Similar documents
Boiling point in C. Colour in aqueous solution. Fluorine 188 colourless. Chlorine 35 pale green. Bromine X orange.

Oxidation and Reduction

Electricity and Chemistry

METALS AND THEIR COMPOUNDS

Electrochemistry Written Response

[ Cl ] - [[Mg 2+ ] ] Experiment 7: Oxidation-Reduction Reactions. transfer e -

Topic 2.7 EXTRACTION OF METALS. Extraction of Iron Extraction of Aluminium Extraction of Titanium Recycling

Suggest one reason why spoons are electroplated. ... Why is hydrogen produced at the negative electrode and not sodium?

JSUNIL TUTORIAL, SAMASTIPUR

6 METALS & NON METALS

NCEA Level 1 Chemistry (90933) 2012 page 1 of 5. Q Evidence Achievement Achievement with Merit Achievement with Excellence NØ N1 N2 A3 A4 M5 M6 E7 E8

1. Which of the given statements about the reaction below are incorrect?

ADVANCED AP PLACEMENT CHEMISTRY. Activity Series. Introduction. Objective. Chemicals and Equipment

look down at cross on paper paper cross on paper

Chapter: The d and f Block Elements

Edexcel GCSE Chemistry. Topic 4: Extracting metals and equilibria. Obtaining and using metals. Notes.

(a) To find out which is the more reactive metal, zinc or tin, the following experiment could be carried out. piece of zinc shiny surface

ICSE-Science 2 (Chemistry) 2004

Partner: Cathy 22 March Separation and Qualitative Determination of Cations and Anions

Chapter 12 Reactivity of Metals 12.1 Different Reactivities of Metals Recall an experiment performed in F.3

CO forms CO 2. forms. (a) The coke reacts with the oxygen in the air to form carbon dioxide. C + O 2

Unit 5 Review Electrolytic, Electrochemical Cells, Corrosion, & Cathodic Protection

85 Q.51 Which of the following carbonates would give the metal when heated with carbon? (1) MgCO 3 (2) PbCO 3 (3) K 2 CO 3 (4) CuCO 3

5-4 Chemical changes Trilogy

One of the main ores of zinc is zinc blende, ZnS. There are two stages in the extraction of zinc from this ore.


TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION

MR. D HR UV AS HE R I.C.S.E. BOA RD PAP ER ICSE

TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY. Unit 2 Metals

Combination Reactions 2H 2 + O 2 2H 2 O. 2Na + I 2 2NaI. Ca + Cl 2 CaCl 2. C + O 2 CO 2 or 2C + O 2 2CO 3H 2 + N 2 2NH 3

METALS AND NON-METALS

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF CHEMISTRY CLASS X- PRACTICAL WORKSHEET

Chapter 5. Oxidation Reduction Chemistry

Some Basic Concepts of Chemistry

METALS

SAMPLE PAGES PAGES. Extraction of metals from metal oxides. mixture of iron sand and coal are heated as they move down kiln, by force of gravity

Applications of electrochemistry

Chemistry Themed MATERIALS Part 2 Reactivity of Metals and Redox

2015 O LEVEL CHEMISTRY 5073/02

Properties A Metal B Non- metal Electronic configuration?? Nature of oxides?? Oxidizing or reducing action?? Conduction of heat and electricity??

Introduction to Metallurgy

Extracting and using metals. ores. native. Only the most unreactive metals such as gold and platinum are found as native metals.

2.4 Period 3. Na Mg Al Si P S Cl Ar

MINISTRY OF EDUCATION AND HUMAN RESOURCES, TERTIARY EDUCATION AND SCIENTIFIC RESEARCH MAURITIUS EXAMINATIONS SYNDICATE. CHEMISTRY OCTOBER hour

There s also got to be a wire, but that s kind of taken for granted.

SOLUBILITY STUDY GUIDE- Multiple Choice Section

Iron filings (Fe) 56g IRON + SULPHUR IRON SULPHIDE

Which of these is the formula for disulfur heptoxide? A. S 2 O 7 B. S 7 O 2 C. SO 2 D. N 2 O

Chapter 20 CHEMISTRY. Metallurgy and the Chemistry of Metals. Dr. Ibrahim Suleiman

Test sticks and test papers for semi-quantitative determinations

1. What volume of water is required to make a 4.65 M solution from 5.2 g of NaBr (MM = g/mol)?

MAHESH TUTORIALS I.C.S.E.

*20GSD5201* Double Award Science: Chemistry. Unit C2 Higher Tier TUESDAY 9 JUNE 2015, AFTERNOON [GSD52] *GSD52* *G5802* TIME 1 hour 15 minutes.

Formula & Equation Writing

New GCSE 4462/02 SCIENCE A HIGHER TIER CHEMISTRY 1

1. Marie mixed 5 g of carbon with 5 g of lead oxide. She heated the mixture strongly for 15 minutes in a fume cupboard.

A.M. MONDAY, 18 January minutes

Zinc 17. Part 2 Practical work

5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC 9: METALS 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 9: METALS

Today! Demonstrations of Redox Chemistry! Electrochemistry! electrons moving about! equilibrium with a control knob! The disappearing Aluminum Rod!

Warm Up (Sept 12) How will an atom change if you change the number of: a) Protons?

(iii)... Ethene gas and ethane gas.

GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY

A.M. MONDAY, 18 January minutes

Metals. Teacher Notes. Registered Charity Number

Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons.

PO 4 NH 4 H + + SO 3

GCE. Edexcel GCE Chemistry (6246/02) January Edexcel GCE. Mark Scheme (Results) Chemistry (6246/02)

Draw a ring around the correct word in the box to complete the sentence.

To study the chemical reaction of an iron nail with aqueous copper sulphate solution; and to study the burning of magnesium ribbon in air.

Metals and Non-metals

Nomenclature. A systematic method of writing chemical formulas and naming compounds

Q1. The data in the table below show the melting points of oxides of some Period 3 elements. O 10 O P (Extra space) (2)......

Compounds & Reactions Week 1. Writing Formulas & Balancing Equations. Write the chemical formula for each molecular (covalent) compound.

Metals And Their Properties- Physical and Chemical

AP Chemistry A. Allan Chapter 18 - The Representative Elements: Groups 1A through 4A

calcium oxide removes acidic oxides basic oxides acidic oxides basic oxides Iron obtained from the blast furnace is contaminated with

Basic Survival Chemistry

F321: Atoms, Bonds and Groups Group 2

Chemistry/Additional Science

Chemistry CH1HP. (Jan13CH1Hp01) General Certificate of Secondary Education Higher Tier January Unit Chemistry C1. Unit Chemistry C1 TOTAL

not to be republished NCERT ANALYSIS always does not mean breaking of substance into its ultimate SYSTEMATIC QUALITATIVE ANALYSIS UNIT-7

GCSE Chemistry 1. Revision Guide

Table of Contents. Preface...

Worksheet 5 - Naming Ionic Compounds Part 1 (Binary compounds with Group 1, 2 or 13 metals) Naming

Covered with a thin layer of oxide at ordinary temperatures.

EXPERIMENT 15C. Qualitative Analysis Scheme of Main Group and Transition Metal Cations without Hazardous Waste

Solutions Unit Exam Name Date Period

(06) WMP/Jun10/CHEM5

INORGANIC CHEMISTRY LANTHANIDES

GCE A level 1095/01 CHEMISTRY CH5

ATOM STRUCTURE AND BONDING OF METALS

Year 7 Chemistry HW Questions

Mark Scheme (Results) November 2009

OC30 Conduct a qualitative experiment to detect the presence of dissolved solids in water samples, and test water for hardness (soap test)

Equation Writing and Predicting Products Chemistry I Acc

AP* CHEMISTRY EQUATIONS BY TYPE

CHM5. Unit 5 Thermodynamics and Further Inorganic Chemistry (including Synoptic Assessment)

Hypochlorite Production General Information. 740 E. Monroe Road, St. Louis, MI

APPLICATIONS OF ELECTROCHEMISTRY

Transcription:

Learn Chemistry Starter for Ten 9. Redox Developed by Dr Kristy Turner, RSC School Teacher Fellow 2011-2012 at the University of Manchester, and Dr Catherine Smith, RSC School Teacher Fellow 2011-2012 at the University of Leicester This resource was produced as part of the National HE STEM Programme www.rsc.org/learn-chemistry Registered Charity Number 207890

9. REDOX 9.1 Oxidation and reduction 9.1.1 Oxidation numbers 9.1.2 Writing half equations 9.1.3 Half equations to overall equations 9.2 Extraction of metals 9.2.1 Electrolysis of aluminium 9.2.2 Extraction of other metals 9.3 The halogens 9.3.1 Displacement reactions 9.3.2 Ability to reduce sulfuric acid 9.3.3 Uses of chlorine and chlorate(i) 9.3.4 Halogens summary Redox answers Chapter 9 Contents

9.1.1 Oxidation numbers Work out the oxidation numbers for the bold elements in the compounds and perform the calculation. Present your answer to your teacher. There is 1 mark for each correct oxidation number you have deduced. Note: You are calculating the oxidation number of the element, not it s overall contribution to the compound eg, CaCl 2 you would give the answer for Cl as -1, not as Cl 2 (-2). MgO VO 2+ KMnO 4 NaH NaNO 3 H 2 SO 4 HClO NaI Cr 2 O 7 2- V 3+ = Redox 9.1.1

9.1.2 Redox: Half Equations Balance the half equations by balancing the atoms and adding Electrons H + H 2 O 1. Mg Mg 2+ 2. Cl 2 Cl - 3. H 2 O 2 2-4. SO 4 5. CH 3 CH 2 OH 6. CH 3 CH 2 OH 2-7. Cr 2 O 7-8. MnO 4 9. H 2 S 10. IO - 3 O 2 SO 2 CH 3 COOH CH 3 CHO Cr 3+ Mn 2+ S I 2 Redox 9.1.2

9.1.3 Half equations to overall equations MnO 4 - Fe Mn 2+ Fe 2+ Cl - Cl 2 VO 2 + VO 2+ Cu 2+ Cu 1. Balance the half equations above (5 marks) 2. Using the equations you have balanced above, construct overall equations to show - (a) The reduction of manganate(vii) by chloride ions (b) The reduction of copper(ii) to copper by iron 3. Construct an overall equation to show how the VO + 2 ion is reduced by zinc metal (2 marks) 4. The reaction above shows the oxidation of an aldehyde to a carboxylic acid using the dichromate ion. From this equation deduce the half equation for the dichromate reduction. Redox 9.1.3

9.2.1 Extraction of aluminium Al 3+ Al O 2- O 2 1. The above equations show the transformations occurring during electrolysis of aluminium oxide, Al 2 O 3. Balance the equations for stoichiometry and charge. (2 marks) 2. On first consideration the electrolysis process does not produce the greenhouse gas carbon dioxide. Give 2 reasons why the process does in fact produce CO 2. (3 marks) 3. Why does the aluminium oxide have to be molten for electrolysis to occur? 4. The cheapest method of metal extraction available is reduction with carbon. Why can aluminium not be extracted in this way? 5. The melting point of bauxite, the main aluminium ore is 2050 C. How is the ore made into the molten state for the electrolysis process? 5. Below is a simplified diagram of a cell used for aluminium electrolysis. Label the anode and cathode. (2 marks) Redox 9.2.1

9.2.2 Extraction of other metals Extraction with carbon Extraction with a more reactive metal Extraction with hydrogen Extraction using scrap iron MnO 2 TiO 2 WO 3 Fe 2 O 3 CuCO 3 CuSO 4 1. Place the ores above into the appropriate box showing the method used to extract the metal from them. (4 marks) 2. For the metals that are extracted using a more reactive metal or with hydrogen, state why they cannot simply be extracted using carbon. (2 marks) 3. Titanium is an abundant and useful metal and is extracted using a batch process in 2 stages. Outline the stages using equations and annotate the 2 nd stage using oxidation numbers to show that it is a redox process. (3 marks) 4. What is the main hazard with the use of hydrogen in metal extraction? Redox 9.2.2

9.3.1 Displacement reactions Cl 2 (aq) Colourless solution Br 2 (aq) Orange solution I 2 (aq) Brown solution KCl(aq) Colourless solution x No reaction KBr(aq) Colourless solution x KI(aq) Colourless solution No reaction No reaction x 1. A more reactive halogen will displace a less reactive halide form its salt. The table above shows the results from displacement reactions of the halogens. Complete the table to show what you would see if you carried out the reactions. (3 marks) 2. Write ionic equations for these displacement reactions. (3 marks) 3. Using the reaction of Br 2 with KI as an example, describe why displacement reactions are redox processes. (1 marks) 4. When the halogens react they gain an electron. Explain why iodine is the least reactive halogen. (2 marks) 5. If you were able to use a solution of fluorine water to react with the halide solutions shown above which ones would you expect to show a reaction? Redox 9.3.1

9.3.2 Reduction of sulfuric acid 1. The above diagram illustrates how sulfuric acid, H 2 SO 4 reacts with halides. Complete the diagram by showing the O.S of sulfur for each species and which halide salt(s) achieve each reaction. (7 marks) 2. Which of the transformations is not a redox reaction? 3. State the general trend in reducing ability of the halides and the 2 factors about the atoms that lead to this trend. (2 marks) Redox 9.3.2

9.3.3 Chlorine and chlorate(i) 1. Chlorination has been used for many years as a way of protecting public health by disinfecting water supplies thus preventing the growth of harmful microorganisms. Chlorination can be carried out by bubbling chlorine gas through water. (a) Write an equation to show how chlorine reacts with water (b) Explain how this process is an example of a disproportionation reaction. (2 mark) Bacteria are killed by the chlorate(i) ion. (c) Show using an equation how the chlorate(i) ion is formed from a product of the reaction of chlorine with water. (d) Give 2 reasons why people object to chlorination of drinking water. (2 mark) (e) Given the objections to chlorination, why does the UK government continue to chlorinate drinking water? 2. Chlorine can also be used in the production of bleach. (a) Write an equation to show how chlorine is used to produce bleach. Indicate which compound in your equation is responsible for the bleaching property and show that the reaction is another example of disproportionation. (3 marks) Redox 9.3.3

9.3.4 Halogens Summary A student carried out an experiment to identify some solid sodium halides. Below is his incomplete results table showing what he observed. Complete the results table with observations (take care to use suitable technical language) and identify the halide anion in the solids A, B, C. Solid Addition of AgNO 3 /H + to solution of the halide Addition of dil. NH 3 to silver precipitate from test 1 Addition of conc. NH 3 to tube from test 2 Addition of conc. H 2 SO 4 to the solid A White formed precipitate Misty fumes seen which turn litmus paper red B No visible change, precipitate remains C No visible change, precipitate remains Purple vapour visible and solid crystals seen on the top of the test tube Redox 9.3.4

CHAPTER 9: Answers 9.1.1 +2 MgO +4 VO 2+ +7 KMnO 4-1 NaH +5 +6 +1 NaNO 3 H 2 SO 4 HClO -1 NaI +6 Cr 2 O 7 2- +3 V 3+ = 32 (1 mark each deduction, no mark for final answer) 9.1.2 Chapter 9 Answers

9.1.3 1. MnO 4 - +8H + +5e - Mn 2+ +4H 2 O Fe Fe 2+ +2e - 2 Cl - Cl 2 + VO 2 +2H + +e - VO 2+ +2e - +H 2 O Cu 2+ +2e - Cu 2. (a) 2MnO 4 -+16H + + 10Cl- 5Cl 2 +2Mn + 2 +8H 2 O (b) Cu 2+ +Fe Fe 2+ +Cu 3. 2VO 2 + +4H + +Zn 2VO 2+ +2H 2 O+Zn 2+ 4. Cr 2 O 7 2- +14H + +6e- 2Cr 3+ +7H 2 O 9.2.1 1. 2. Electrodes are made of carbon and are oxidised to CO2 Uses electricity which is generated form the burning of fossil fuels 3. So the ions are free to move 4. It is more reactive than carbon 5. Dissolved in molten cryolite 6. Anode (+) Cathode (-) Chapter 9 Answers

9.2.2 1. Extraction with carbon Extraction with a more reactive metal MnO 2 Fe 2 O 3 CuCO 3 TiO 2 Extraction with hydrogen Extraction using scrap iron WO 3 CuSO 4 (1 mark each correct box = 4 marks) 2. Tungsten and titanium Stable carbides are formed which make the metals brittle. (2 marks) 3. 4 Hydrogen is flammable/explosion. 9.3.1 Cl 2 (aq) Colourless solution Br 2 (aq) Orange solution I 2 (aq) Brown solution KCl(aq) Colourless solution KBr(aq) Colourless solution KI(aq) Colourless solution x Orange solution formed Brown solution formed (some black crystals of iodine may be seen) No reaction x Brown solution formed (some black crystals of iodine may be seen) No reaction No reaction x (1 mark each, iodide observation does not need observation of crystals for the mark) 2. 3. The Br goes from an O.S of 0 in Br 2 to -1 in KBr so it is reduced. Chapter 9 Answers

The I goes from an O.S of -1 in KI to 0 in I 2 so it is oxidised. (1 mark for either, must include bold) 4. Any one from the following for 1 mark Large atomic radius More shielding Plus for the other mark 5. All of them. Lower effective nuclear charge Chapter 9 Answers

9.3.2 1. (1 mark each correct box) 2. H 2 SO 4 NaHSO 4 (the O.S of S does not change) 3. Reducing ability increases down the group Atomic radius and shielding (both needed for 1 mark or ½ mark each) 9.3.3 1. (a) Cl 2 + H 2 O HClO + HCl (b) Chlorine goes from an O.S of 0 in Cl 2 to +1 in HClO and -1 in HCl. It is both oxidised and reduced. (1 mark for the O.S numbers, 1 for bold) (c) HClO + H 2 O ClO- + H 3 O + (d) Any 2 from the following for 2 marks Chlorine can react with organic material in water to form carcinogens Chlorine gas is harmful No choice in it (e) The benefits outweight the risks or WTTE. 2. NaOH + Cl 2 NaClO + NaCl + H 2 O NaClO is the bleaching agent. Chlorine goes from an O.S of 0 in Cl 2 to +1 in HClO and -1 in HCl. It is both oxidised and reduced. Chapter 9 Answers

9.3.4 (1 mark for each correct box) Solid Addition of AgNO 3 /H + to solution of the halide Addition of dil. NH 3 to silver precipitate from test 1 Addition of conc. NH 3 to tube from test 2 Addition of conc. H 2 SO 4 to the solid A White formed precipitate Precipitate dissolves/solution goes clear No visible change Misty fumes seen which turn litmus paper red B Cream coloured precipitate formed No visible change, precipitate remains Precipitate dissolves/solution goes clear Brown formed/acrid produced solution fumes C Pale yellow coloured precipitate formed No visible change, precipitate remains No visible change, precipitate remains Purple vapour visible and solid crystals seen on the top of the test tube. A = NaCl, B = NaBr, C = NaI (1 mark each) Chapter 9 Answers