Non-destructive measurement of the tungsten content in the binder phase of tungsten heavy alloys

Similar documents
Cost effective manufacturing of tungsten heavy alloy foil and sheet material

J = D C A C B x A x B + D C A C. = x A kg /m 2

11.3 The analysis of electron diffraction patterns

Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11)

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE

Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained by Crystallization of Cast Amorphous Phase

A - Transformation of anatase into rutile

Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1

Ab-initio Calculation of Structural and Magnetic Properties of Annealed Cu 2 MnAl Heusler Alloy

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

ZINC/IRON PHASE TRANSFORMATION STUDIES ON GALVANNEALED STEEL COATINGS BY X-RAY DIFFRACTION

Travaux Pratiques de Matériaux de Construction

Microstructural Evolution of Ti-Mo-Ni-C Powder by Mechanical Alloying

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process

Effect of Li Addition on Synthesis of Mg-Ti BCC Alloys by means of Ball Milling

2. EXPERIMENTAL PROCEDURE, RESULTS AND DISCUSSION

Engineering Materials

Heat Treatment of Tubes for Condenser, Feedwater Heater, and Shell & Tube Heat Exchangers

Heat treatment and effects of Cr and Ni in low alloy steel

APPLICATIONS OF Fe-C PHASE DIAGRAM

THE FORMATION OF SOLID SOLUTION BAND AT THE SURFACE OF Ti(CN)-BASED CERMETS

Travaux Pratiques de Matériaux de Construction. Etude de Matériaux Cimentaires par Diffraction des Rayons X sur Poudre

Americium alloys with gold and copper

X-ray diffraction (XRD) for grade control of iron ores

Microwave dielectric properties and microstructures of MgTa 2 O 6 ceramics with CuO addition

Free Sintering or Hot Pressing? A Decision Support

Diffraction: Powder Method

Evaluation of High Pressure Water Atomized Powders for Large Scale PIM Production using Different Binder Formulations

Characterization of β and Mg 41 Nd 5 equilibrium phases in Elektron 21 magnesium alloy after long-term annealing

Thermal Spray Coatings in Severe Service Elaine Motyka 3/2/2017

Structure of silica glasses (Chapter 12)

Core-Shell-Structured Tungsten Composite Powders. A. Bicherl*, A. Bock*, B. Zeiler*, W.D. Schubert**

Microstructures and Mechanical Properties of (Ti 0:8 Mo 0:2 )C-30 mass% Ni without Core-Rim Structure

DESIGNING LOW ALLOY STEEL POWDERS FOR SINTERHARDENING APPLICATIONS

Thin Film Characterizations Using XRD The Cases of VO2 and NbTiN

Progress in Friction Stir Welding High Temperature Materials

Strengthening Mechanisms

Cu/Ag Eutectic System

AISI 304 steel: anomalous evolution of martensitic phase following heat treatments at 400 C

RESIDUAL STRESS DISTRIBUTION IN GRAIN-ORIENTED SILICON STEEL

The influence of aluminium alloy quench sensitivity on the magnitude of heat treatment induced residual stress

Fabrication of Ti-Ni-Zr Shape Memory Alloy by P/M Process

VITROBRAZE. Advanced Materials The Key to Progress. vitrobraze

EFFECT OF CARBON CONTENT ON SINTERABILITY AND PROPERTIES OF ZrO 2 DOPED WC-CERMETS

LONG TERM THERMAL EXPOSURE OF HAYNES 282 ALLOY

Master examination. Metallic Materials

SYNTHESIS, CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITY OF MgO NANOPARTICLES

Ph.D. Admission 20XX-XX Semester X

Hahn-Meitner-Institut Berlin, Glienicker Str. 100, D-14109, Berlin, Germany

High Resolution X-ray Diffraction

The Empyrean Tube. Advanced eco-friendly design, powerful performance

1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following.

U. KÖNIG* and E. SPICER *PANalytical B.V., Almelo, The Netherlands Richards Bay Minerals, Richards Bay, South Africa

The changes of ADI structure during high temperature annealing

Reliable data for high-temperature viscosity and surface tension: results from a European project

XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel

EFFECT OF MOLYBDENUM CONTENT IN PM STEELS

Formation and Soft Magnetic Properties of Co Fe Si B Nb Bulk Glassy Alloys

University of Pretoria Z Tang (2006) Chapter 8 Studies of acicular ferrite by thin foil TEM

MA-SHS of ZrC and ZrB2 in Air from The Zr/B/C Powder. the original is available online at Instructions for use

Phase Diagrams of Pure Substances Predicts the stable phase as a function of P total and T. Example: water can exist in solid, liquid and vapor

CHAPTER 6: CRYSTAL GROWTH & XRD. Sarah Lambart

X ray diffraction in materials science

Microstructures and Properties of Recycled Composites Particle Reinforced Iron Matrix Functionally Graded Materials Fabricated by Centrifugal Casting

AGING BEHAVIOR IN CO-CR-MO-C ALLOYS

Nickel Based Superalloy Incoloy 800 (UNS N08800)

Arch. Metall. Mater. 62 (2017), 2B,

HEAT-RESISTANT BRAZING FILLER METALS FOR JOINING TITANIUM ALUMINIDE AND TITANIUM ALLOYS

Diffraction Basics. The qualitative basics:

Microstructural Characterization of Aluminum Powder Liquid Coating on IN 738 Superalloy

Non-Magnetic Stainless Steels Reinvestigated a Small Effective Field Component in External Magnetic Fields

Effect of Molybdenum Content on Mechanical Properties of Sintered PM Steels. Candido Ruas, Sylvain St-Laurent Quebec Metal Powders Limited

Influence of Bulk Graphite Thickness on the Accuracy of X-Ray Diffraction Measurement. I. Introduction

Phase Investigation of Austempered Ductile Iron

Development and Microstructural Characterization of High Speed Tool Steel through Microwave Energy

TaeguTec Tungsten Powders 3

The Microstructure and Mechanical Properties of Inconel 718 Fine Grain Ring Forging

THE EFFECT OF SOL-GEL TECHNIQUE ON THE ALUMINIUM SiCp COMPOSITE

FAYALITE SLAG MODIFIED STAINLESS STEEL AOD SLAG

World Academy of Science, Engineering and Technology International Journal of Materials and Metallurgical Engineering Vol:8, No:4, 2014

3. Anisotropic blurring by dislocations

The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram

STRENGTHENING MECHANISM IN METALS

Titanium and titanium alloys. Josef Stráský

LASER SURFACE MELTING OF 17-4 PH PRECIPITATION-HARDENABLE STAINLESS STEEL Paper 1203

RAPID PATTERN BASED POWDER SINTERING TECHNIQUE AND RELATED SHRINKAGE CONTROL

Heat Treating Basics-Steels

Zirconium Oxide X-ray Diffraction Data Processing ByRietveld Analysis Method

An Introduction to X-Ray Powder Diffraction. credits to: Scott A Speakman, Patrick McArdle Edited by Di Cicco 2014

Methodological Aspects of the Highenergy Synchrotron X-ray Diffraction Technique for Internal Stress Evaluation

PREPARATION AND PROPERTIES OF Al Fe AND Al Fe Cr ALLOYS. Petra HANUSOVÁ 1, Pavel NOVÁK 2

STRUCTURE AND MAGNETIC PROPERTIES OF CoFeB ALLOYS PREPARED BY BALL MILLING

Developing Extreme Hardness (> 15 GPa) in Iron Based Nanocomposites

CHAPTER 4 PROPERTIES OF ALUMINIUM ALLOY BASED METAL MATRIX COMPOSITES

MTLS 4L04 Steel Section. Lecture 6

Local buckling of slender aluminium sections exposed to fire. Residual stresses in welded square hollow sections of alloy 5083-H111

MICROSTRUCTURAL CHANGES DUE TO FRICTION PROCESSES IN BRAKES

Instrument Configuration for Powder Diffraction

Characterization of Phases in an As-cast Copper-Manganese- Aluminum Alloy

ScienceDirect. Densification and phase formation kinetics in composite materials of WC embedded in an Fe-matrix

Transcription:

19 th Plansee Seminar RM 54/1 Non-destructive measurement of the tungsten content in the binder phase of tungsten heavy alloys S. Marschnigg*, C. Gierl-Mayer*, H. Danninger*, T. Weirather**, T. Granzer**, P. Zobl** * TU Wien, Institute of Chemical Technologies and Analytics, 1060 Vienna, Austria ** Plansee Composite Materials GmbH, 86983 Lechbruck am See, Germany Abstract Measurement of the magnetic properties is well-established to non-destructively monitor composition and microstructure of cemented carbides. The present study demonstrates that this method can also be applied to ferromagnetic tungsten heavy alloys. Compositional changes during heat treatment may have effects on the magnetic properties of W-Ni-Fe heavy alloys, as an example, which would allow for simple non-destructive measurement. We report that increasing tungsten content in Ni-Fe(-W) samples and higher annealing temperatures for Densimet 180 grade 95W-Ni-Fe heavy alloy samples cause a decrease of their respective weight-specific saturation magnetization. XRD analyses show that higher heat treatment temperatures result in larger lattice parameters of the binder phase. Likewise, larger amounts of tungsten dissolved in the nickel-iron samples also widen the γ-ni-fe lattice. This suggests that the decrease in saturation magnetization of heavy alloys annealed at higher temperatures is caused by more dissolved tungsten in the binder phase. A relationship between saturation magnetization and tungsten content in the binder could be established through the Ni-Fe(-W) samples with known amounts of tungsten. In view of these results, we propose saturation magnetization measurements as a simple non-destructive tool for additional quality control in the production of ferromagnetic tungsten heavy alloys. Keywords Tungsten heavy alloy, W-Ni-Fe, composite material, liquid-phase sintering, saturation magnetization, heat treatment, XRD Introduction Liquid-phase sintered composite materials made of tungsten, nickel and other transition metals are commonly known as Tungsten Heavy Alloys (WHAs). Due to their unique combination of very high density, outstanding mechanical properties and excellent machinability, they are used in a wide range of high-performance applications, e.g. for balancing weights in aerospace and automotive industry,

19 th Plansee Seminar RM 54/2 collimators and radiation shielding components, vibration-damping tool holders, kinetic energy penetrators, oscillating weights and sports equipment [1, 2]. WHAs are composed of nearly pure body-centered cubic (bcc) tungsten grains embedded in a ductile face-centered cubic (fcc) matrix phase (Fig. 1). Although full density may be achieved through solid-state sintering, the presence of a liquid phase during sintering of WHAs is essential for obtaining their typical structure and properties [3]. Among the multitude of processes occuring during liquid-phase sintering, solution-reprecipitation of tungsten plays a major role. Upon melting of the binder powders, tungsten is dissolved in the newly formed liquid phase. Dissolution occurs preferentially at small grains and convex surfaces, whereas reprecipitation of tungsten is favored at large grains and concave surfaces [4]. In the long run, this effect causes growth and rounding of the tungsten grains. When the liquid phase solidifies during cooling, some tungsten remains dissolved in it and will therefore affect the properties of the binder. W-Ni-Fe, one of the most commonly used WHA types, is weakly ferromagnetic [5] and therefore, considering its structure, in some way comparable to cemented carbides, typically composed of hard tungsten carbide grains in a ductile cobalt matrix. For cemented carbides, coercivity and saturation magnetization measurements are well-established non-destructive methods of monitoring chemical composition and microstructure [6]. A correlation between tungsten grain size and coercivity (as known for tungsten carbide in cemented carbides) was reported for W-Ni-Fe heavy alloys by Danninger et al. [7]. However, very little information can be found in the literature about their magnetization behavior [5, 8] and, to the best of the authors knowledge, no connection between saturation magnetization and applied heat treatment has been described for W-Ni-Fe. In this work, we intend to fill this gap by investigating the effects of heat treatment on the saturation magnetization of W-Ni-Fe and exploring whether saturation magnetization measurements may therefore be used for determining the tungsten content in the binder phase of ferromagnetic WHAs. Figure 1: Typical structure of a 95W-Ni-Fe heavy alloy (BSE image, tungsten particles are bright, binder phase is dark)

19 th Plansee Seminar RM 54/3 Experimental Small Densimet 180 grade 95W-Ni-Fe heavy alloy samples (approximately 10x10x5 mm³ in size) were produced by Plansee Composite Materials via liquid-phase sintering in hydrogen atmosphere at an isothermal sintering temperature of 1773 K (1500 C). Specimens were then vacuum annealed for 10 hours at 1373, 1473 and 1573 K (1100, 1200 and 1300 C), respectively. Furthermore, in order to exclude effects other than compositional changes, a stepwise heat treatment was performed involving a 10-hour heat treatment at 1573 K followed by 10 hours at 1373 K. The linearized cooling rate after annealing was approximately 10 K/min down to 873 K (600 C). Nickel-iron(-tungsten) specimens with defined amounts of dissolved tungsten between 0 and 20 wt.% were produced by mixing elemental powders (from the same powder batches and at the same nickel-to-iron ratio as for the W-Ni-Fe samples) and melting the powder mixtures by heating to 1773 K (1500 C) in hydrogen atmosphere with an isothermal dwell time of 1 hour before cooling (nominal heating and cooling rates were 10 K/min each). Weight-specific saturation magnetization σ s was determined for all samples with a Koerzimat CS 1.096 instrument (Institut Dr. Foerster GmbH & Co. KG, Germany) using the withdrawal method in accordance with IEC 60404-14. X-ray diffractograms were recorded by the TU Wien X-Ray Center with an XPert Pro MPD diffractometer (PANalytical B.V., Netherlands) using Bragg-Brentano geometry for 2θ angles from 5 to 100 and Cu K α irradiation. Rietveld refinement calculations were performed using the HighScore Plus software by PANalytical. Results Weight-specific saturation magnetization values of Densimet 180 samples measured in the as-sintered state and after vacuum heat treatment at varying temperatures are given in Fig. 2 and Table I. It can be seen that the saturation magnetization decreases with higher temperatures. Stepwise heat treatment at 1573 K followed by 1373 K resulted in saturation magnetization values comparable to those of samples annealed at 1373 K only, suggesting that the microstructural changes introduced during heat treatment are not permanent. Likewise, weight-specific saturation magnetization values measured for Ni-Fe(-W) samples with 0 to 20 % dissolved tungsten are shown in Fig. 3. The red line indicates the calculated values assuming that nickel-iron and tungsten were hypothetically present as fully separate phases (i.e. if the decrease in saturation magnetization was solely caused by the lower amount of ferromagnetic nickel-iron phase due to the addition of tungsten), based on the saturation magnetization of the pure nickel-iron alloy.

19 th Plansee Seminar RM 54/4 Figure 2: Weight-specific saturation magnetization of Densimet 180 samples after different vacuum heat treatments Table I: Weight-specific saturation magnetization of Densimet 180 samples after different vacuum heat treatments Heat treatment as-sintered Saturation magnetization σs 4.620 ± 0.004 µt*m 3 /kg 1373 K (1100 C) 4.943 ± 0.006 µt*m 3 /kg 1473 K (1200 C) 4.793 ± 0.004 µt*m 3 /kg 1573 K (1300 C) 4.590 ± 0.004 µt*m 3 /kg 1573 1373 K 4.963 ± 0.006 µt*m 3 /kg Figure 3: Weight-specific saturation magnetization of Ni-Fe(-W) samples with varying tungsten contents

19 th Plansee Seminar RM 54/5 X-ray diffractograms (Fig. 4) show that the Ni-Fe(-W) specimens are monophasic, as only the peaks of fcc γ-ni-fe (Ref. code 00-047-1417 [9]) are present. The five visible peaks in all diffractograms can be assigned to the (111), (200), (220), (311) and (222) lattice planes of γ-ni-fe, confirming that tungsten is fully dissolved. With increasing amounts of dissolved tungsten, the peaks are shifted slightly towards lower diffraction angles. According to the Bragg equation nλ = 2d sin θ (1) lower 2θ-angles correspond to an increase in the interplanar distance d and therefore an increase in the lattice parameter a of the cubic unit cell according to d hkl = with h, k, l being the Laue indices of the lattice plane. a (h 2 +k 2 +l 2 ) 0.5 (2) Lattice parameters of the γ-ni-fe(-w) phase were obtained for each sample applying Rietveld refinement to the recorded diffractograms. As can be seen from Fig. 5, these calculations confirmed that dissolved tungsten widens the fcc lattice by approximately 0,141 ± 0,009 pm for each percent of tungsten added. Figure 4: X-ray diffractograms of Ni-Fe(-W) samples with varying tungsten contents

19 th Plansee Seminar RM 54/6 Figure 5: Lattice parameters of Ni-Fe(-W) samples with varying tungsten contents Discussion The production of WHAs usually comprises liquid-phase sintering under hydrogen atmosphere, since the reduction of oxides present in the metal powders is essential for obtaining the excellent mechanical properties of heavy alloys [10]. Since hydrogen is dissolved in the binder phase during sintering, post-sintering heat treatments are performed in vacuum or argon atmosphere in order to avoid hydrogen embrittlement. Besides the removal of hydrogen, heat treatment is also beneficial for homogenizing the chemical composition of the binder phase [11]. The presented results show that the magnetic properties of W-Ni-Fe heavy alloys are clearly influenced by the vacuum heat treatment performed after sintering. Higher temperatures lower the resulting saturation magnetization. This effect, however, appears to be non-permanent, as annealing at 1573 K followed by 1373 K gives nearly the same results as heat treatment at 1373 K only. We therefore conclude that this phenomenon is caused by a larger amount of tungsten dissolved in the nickel-iron binder phase of samples annealed at higher temperatures. Saturation magnetization after heat treatment at 1573 K is comparable to the as-sintered state. This is somewhat surprising, as sintering was performed at 1773 K. One possible explanation is that the tungsten diffusion in the solidified binder during cooling is still rather fast at temperatures close to the solidus temperature of the nickel-iron phase. Since the binder in 95W-Ni-Fe alloys is very thin, the diffusion paths for dissolved tungsten are short (cf. Fig. 1), which may allow for a comparably quick precipitation from the oversaturated solid solution. This could likely lead to a similar tungsten content in the binder phase and thus to a saturation magnetization similar to that of samples annealed at 1573 K. Since tungsten itself is paramagnetic, the weak ferromagnetism of W-Ni-Fe heavy alloys is caused by the thin nickel-iron binder phase (which, however, contains certain amounts of dissolved tungsten) surrounding the almost pure tungsten particles. The saturation magnetization of ferromagnetic materials

19 th Plansee Seminar RM 54/7 generally depends on the purity of the material and is lowered by non-magnetic solutes [12]. It is well known that dissolved tungsten and carbon in the Co binder phase of WC-Co cemented carbides lower their saturation magnetization [6], therefore it appears reasonable to assume that such an effect also occurs in structurally similar W-Ni-Fe heavy alloys. Indeed, it could be shown that the weight-specific saturation magnetization of Ni-Fe(-W) samples is lowered as more tungsten is dissolved. This linear decrease in saturation magnetization is stronger than what could be expected assuming (hypothetically) that tungsten was insoluble in the nickel-iron phase (indicated by the red line in Fig. 3). Given that the magnetism of W-Ni-Fe is caused solely by the binder phase, the data shown in Fig. 3 allows for an approximation of the amount of dissolved tungsten. Linear regression gives a correlation between the tungsten concentration in the binder (%W) and the weight-specific saturation magnetization σ s according to %W = 160.137 σ s 3.658 (3) Since only 5 % of the Densimet 180 heavy alloy is nickel-iron, the measured σ s values from Table I must be multiplied by a factor of 20 in order to allow for comparison with the monophasic Ni-Fe(-W) specimens. Taking this into account and inserting the respective σ s values in Equation 3, the tungsten concentrations given in Table II are obtained. It must be noted that this method is merely an approximation, as the dissolution of tungsten in the binder phase will inevitably affect the mass and volume percentage of the binder in the WHA. For exact calculations, the tungsten concentration would have to be known in advance (rendering the calculations themselves pointless). Table II: Tungsten concentration in the binder phase of Densimet 180 samples after different vacuum heat treatments calculated from saturation magnetization measurements Heat treatment Tungsten concentration in binder phase as-sintered 18.5 % 1373 K (1100 C) 16.8 % 1473 K (1200 C) 17.6 % 1573 K (1300 C) 18.7 % 1573 1373 K 16.6 % In the X-ray diffractograms of the Ni-Fe(-W) samples (Fig. 4), a slight peak shift towards lower 2θ angles is clearly visible as the amount of dissolved tungsten increases, indicating a widening of the fcc lattice. Similar to Equation 3, Equation 4 describes the mathematical correlation between the tungsten concentration and the lattice parameter a depicted in Fig. 5. Tungsten concentrations calculated with this method are listed in Table III. %W = a 356.5163 0.1407 (4)

19 th Plansee Seminar RM 54/8 Table III: Tungsten concentration in the binder phase of Densimet 180 samples after different vacuum heat treatments calculated from X-ray diffractograms Heat treatment Tungsten concentration in binder phase 1373 K (1100 C) 14.4 % 1473 K (1200 C) 16.8 % 1573 K (1300 C) 17.5 % Comparing the two methods, it is apparent that the calculations based on the lattice parameters derived from XRD analyses give lower concentrations than those based on the saturation magnetization measurements. This might be due to larger uncertainty of the calculated lattice parameters values compared to the saturation magnetization data. For instance, the results of the Rietveld calculations depend to a certain extent on the refinement procedure used. Although the same refinement steps and parameters were used for all calculations, absolute values are assumed to be less precise than those obtained through saturation magnetization measurements. Furthermore, residual stresses in the composite material might influence the peak positions. Still, the trend of higher heat treatment temperatures leading to larger amounts of tungsten in the binder phase is confirmed by both methods. Preliminary results from ongoing experiments on the influence of powders provided by different suppliers indicate that the raw materials used have a certain but minor influence on the measured saturation magnetization of WHAs [13], which may be due to different levels and types of impurities in the metal powders. For exact absolute quantification, calibrations linking the saturation magnetization to the tungsten concentration in the binder phase would probably have to be created for each combination of tungsten, nickel and iron powders. While this is, of course, always a possible option, simply monitoring relative differences of ferromagnetic WHA parts from the same batch should already be sufficient to detect anomalous parts. Since saturation magnetization measurements are fast, non-destructive, independent of specimen geometry and automatable, they could readily be incorporated into existing quality control routines of heavy alloy producers. Conclusion This work demonstrates that higher heat treatment temperatures lead to a non-permanent decrease in weight-specific saturation magnetization of W-Ni-Fe heavy alloys. XRD analyses reveal that this phenomenon is caused by increasing tungsten concentrations in the nickel-iron binder phase. Using Densimet 180 as an example, it was shown that the tungsten content in the binder phase of WHAs can be calculated from their magnetic properties, based on saturation magnetization measurements of Ni-Fe(-W) with defined amounts of dissolved tungsten. Although the absolute saturation magnetization may to some minor extent depend on the raw materials used, this method is ideal for detecting anomalous parts in batches of ferromagnetic WHAs by simply monitoring relative differences and could therefore be a valuable tool for quality control.

19 th Plansee Seminar RM 54/9 Acknowledgements The authors wish to thank Werner Artner of the TU Wien X-Ray Center for performing the XRD measurements and assisting with the evaluation of the diffractograms. References 1. Plansee Composite Materials GmbH, https://www.plansee.com/en/materials/tungsten-heavy-metal.html, accessed Feb. 27, 2017 2. R. M. German, Liquid Phase Sintering, p. 228, Plenum Press, New York (1985) 3. A. Upadhyaya, Mater. Chem. Phys. 67 [1 3], 101 110 (2001) 4. R. M. German, P. Suri and S. J. Park, J. Mater. Sci. 44 [1], 1 39 (2009) 5. S. Kolling, B. M. Oborn, P. J. Keall and J. Horvat, Med. Phys. 41 [6], 061707 (2014) 6. G. S. Upadhyaya, Cemented Tungsten Carbides Production, Properties and Testing, pp. 227 236, Noyes Publications, Westwood (1998) 7. H. Danninger, W. Pisan, G. Jangg and B. Lux, Z. Metallkd. 74 [3], 151 155 (1983) [in German] 8. J. J. Bucki, E. Fortuna-Zalesna, M. Kowalczyk and Z. Ludynski, Kompozyty 11 [3], 268 273 (2011) 9. International Center for Diffraction Data, PDF-2 Database (2001) 10. H. Danninger, W. Pisan, G. Jangg and B. Lux, Z. Werkstofftech. 15 [3], 96 102 (1983) [in German] 11. B. Katavic and Z. Odanovic, Powder Metall. 47 [2], 191 199 (2004) 12. Z. Fang and J. W. Eason, Int. J. Powder Metall. 29 [3], 259 265 (1993) 13. S. Marschnigg, C. Gierl-Mayer and H. Danninger, unpublished research