WaterFurnace Explains GEOTHERMAL HEATING & COOLING

Similar documents
Geothermal Comfort Systems

3/6/2017 Past president & currently on the board of directors for the Wisconsin Geothermal Association

Geothermal Comfort System. 3 Series 300A11

Geothermal Comfort System. 5 Series 500A11

Geothermal Comfort System. 7 Series 700A11

Energy Savers: Air-Source Heat Pumps

Less energy, more savings and comfort year-round

Climate Control Solutions. Geothermal. A New Level of. Comfort. & Reliability.

30 DIGITAL SERIES CLIMATEMASTER GEOTHERMAL HEATING AND COOLING

Instant discount of 33% off improvement cost, up to $1,250 Plus, potential savings bonus of up to $250 (**)

Green Movement Energizes Growth at ClimateMaster. Product Focus: Heating and Cooling. Company Profiles. plumbing heating cooling.

22 DIGITAL SERIES CLIMATEMASTER GEOTHERMAL HEATING AND COOLING

Chapter 9: Applications of the Laws of Thermodynamics

The Participants in this GreenON Rebates Program are homeowners and landlords.

TRANQUILITY WATER-TO-WATER SERIES

PROPOSAL FOR THE PROMOTION OF GEOTHERMAL HEATING FOR THE TOWN OF MONO. June 2009 CONTENTS

White Paper. Geothermal Heating and Cooling

Farm Energy IQ. Farms Today Securing Our Energy Future. Farm Energy Efficiency Principles Tom Manning, New Jersey Agricultural Experiment Station

Geothermal Heating & Cooling in Health Care Applications

Heat Pump. Using Propane Heating Systems

Bifluid Geothermal System New Generation

GEOTHERMAL HEAT PUMPS CONFIGURATIONS/INSTALLATION

Ductless Heat Pump Program Guidelines

RESIDENTIAL PRODUCT GUIDE

Energy Efficiency Programs

Value of Air Source Heat Pumps in Light of Variable Energy Prices. Jeff Haase. Energy Design Conference February 27, 2013

a.k.a. David N. Shaw, P. E.

Electric Heating. Geothermal captures the earth s free heat Off-peak electric heating options Comparing energy costs for heating

EES Energy Efficient Systems Rotary Screw Air Compressors kw Horsepower

PacifiCorp s Planned Changes to the Home Energy Savings Program in California March 2014

A GUIDE TO REACH SYSTEM RELIABILITY. Commercial HVAC Buyers Guide

A furnace that fits your lifestyle

To find out more about installing a heat pump call or visit energysavingtrust.org.uk

California HERO Program Residential Eligible Product List All Products

2017 Incentive Policies for Housing and Economic Development. Notice of Revision

2018 Smart Energy New Homes Program Manual

The desire for fossil fuel alternatives and environmentally friendly energy has

Geothermal Systems: Harnessing Earth s Energy

How making smart choices at home can save you money and help protect the environment

Ground Source Heat Pump System Performance: Measuring the COP

Renewable Energy. to heat your home. thermia.com

Large University Central Chiller Plant Design Considerations

Renewable Energy Systems 10

Chapter 18 Renewable Energy

Daikin AURORA MULTI-ZONE HEATING & COOLING SYSTEMS

Planning for Biomed Facility Puts Energy Efficiency Under Microscope

Save with Business Programs and Services

SGM Engineering, Inc.

GEO-HEAT CENTER EXECUTIVE SUMMARY

GEOTHERMAL HEAT PUMPS. Q & a. Modern Geothermal HVAC Engineering Applications and Controls- McGraw-Hill 2013

A Homeowner s Guide to Energy Efficiency

Entergy Arkansas, Inc CoolSaver Commercial Program Manual

l a t i t u d s e r i e s A I R C O N D I T I O N E R S & H E A T P U M P S

Business Energy Rebates Application

A furnace that fits your lifestyle

Innovative Solutions from Mitsubishi Electric

September Hybrid Air, Solar, and Ground Source Heat Pump Designs. Gaylord Olson, Yao Yu

HERO Program Residential Eligible Product List California Residential Eligible Products... 2

Changes to the Minnesota Commercial Energy Code. Presented by: Andy Thielen, PE

Property Condition Assessment

THE GEOTHERMAL ADVANTAGE

Florida HERO Program Residential Eligible Product List All Products

Installation address City State ZIP. Complete all fields for each piece of equipment purchased and installed. Natural Gas Furnace Information

THE ILLIANA HOME INSULATION GUIDE

LEED for Homes Project Checklist

SUMMARY OF SERVICES & INCENTIVES

AB 2339 WORKING GROUP DRAFT DOCUMENT. Draft Energy Commission Policy for Ground Source Heat Pumps April 19, 2013

TABLE OF CONTENTS SELECTING AN ENCLOSURE COOLING SYSTEM MANUFACTURER. 3 7 QUALITIES TO LOOK FOR IN A MANUFACTURER Manufacturer Location..

Energy-efficient weatherization

Home Energy Assessment Rebate Guide

Residential electric heating and cooling rebates

Date Rater Verified. Rater Verified. Slab / Pre-Drywall / Thermal Inspection

VARIABLE REFRIGERANT FLOW MULTI-SPLIT AIR-CONDITIONERS AND HEAT PUMPS CERTIFICATION PROGRAM

EVALUATION OF GROUND COUPLED HEAT PUMPS FOR THE STATE OF WISCONSIN

Water Quality Specification for Power Supplies

Asset Energy Calculator Guidance

Personal: Residential Grant Table for ecoenergy Retrofit

2012 CLEAResult All rights reserved. Residential Energy Efficiency

Air Source Heat Pumps in the Commercial Market. Thursday, February 5, :00-10:30 a.m.

Chilled Beams. The new system of choice?

MSRE 517 SUSTAINABILITY PROPERTY REPORT STEPHEN JENSEN DANIEL REEVES WILLIAM SCOTT MSRE CLASS OF 2012 UNIVERSITY OF SAN DIEGO

Chapter 6 THE SECOND LAW OF THERMODYNAMICS

The ENERGY DETECTIVE. Where Is Your Home Losing Money? Find out with The Energy Detective Call Home Energy Analysis Program

Intelligent Process Cooling Technology Saves on Water and Energy, Improves Productivity

2. Is there anything I can do to prevent my water service lateral from freezing?

U.S. Department of Energy, in conjunction with the U.S. Environmental Protection Agency. Home Performance with ENERGY STAR

2010 Standard for Performance Rating of Variable Refrigerant Flow (VRF) Multi-Split Air-Conditioning and Heat Pump Equipment

Presentation Overview: NC Energy Code RESNET Standards HERS Index HERS Verification Process

A. This Section includes exterior piping for vertical, direct-buried, ground-loop, heat-pump systems that operate between 23 and 104 deg F.

WHITE PAPER. HVLS Industrial Fans Evaluation Guide: 7 Defining Application Design Factors That Will Add Up to a Smart Investment

Performance Testing of Cold Climate Air Source Heat Pumps

2018 ILLINOIS ENERGY EFFICIENCY REBATE INFORMATION FOR YOUR HOME

CERTIFICATE OF FIELD VERIFICATION & DIAGNOSTIC TESTING (Page 1 of 8)

Rebel commercial packaged rooftop systems

Is Yours? Homes Across Missouri are Being Built to the Latest National Energy Efficiency Standards

Ground Source Heat Pump System Design and Permitting AWWA Pacific Northwest Section Conference, May 6-8, 2009 Salem, Oregon

Read Only Copy Not For Distribution. Chapter 17. Private Potable Water Supply Systems 17.1 GENERAL REGULATIONS 17.2 QUANTITY OF WATER REQUIRED

LEED. Leadership in Energy and Environmental Design

Texas Industries of the Future November 20, 2013

DIRECTIONAL-BORE GROUND SOURCE HEAT PUMP FIELD REPORT

Transcription:

WaterFurnace Explains GEOTHERMAL HEATING & COOLING

WaterFurnace geothermal heating and cooling systems use the clean, renewable energy in your back yard to save homeowners up to 70% on heating, cooling and hot water. The Environmental Protection Agency and the Department of Energy call it the most cost-effective, energy efficient and environmentally friendly method of heating and cooling your home available today. This booklet will help explain how WaterFurnace can accomplish all this and how you can reduce your utility bills today and for many years to come. TABLE OF CONTENTS Geothermal Basics... 1 Geothermal Heat Pumps... 4 In The Loop... 7 What Every Owner Should Know... 12 Learn More... 15 Glossary... 16 Conversion Table... 17

GEOTHERMAL HEATING AND COOLING AN INTRODUCTION Geothermal heating and cooling is in step with the times and with the future. Green technologies which work with the environment instead of against it continue to gain momentum amid concerns over the skyrocketing cost of fossil fuels and energy conservation. Geothermal technology is proven, reliable and safe. It significantly reduces energy usage and utility bills for homeowners and business owners. Millions of geothermal systems are currently saving money and protecting the environment in all 50 states and around the world. We ve prepared this booklet to answer questions about how geothermal systems work and how you can benefit from going geothermal. For more information visit waterfurnace.com. GEOTHERMAL BASICS How does a geothermal heating and cooling system work? Outdoor temperatures fluctuate with the changing seasons but underground temperatures don t. Four to six feet below the earth s surface, temperatures remain relatively constant year-round. A geothermal system capitalizes on these constant temperatures to provide free energy. In winter, a series of fluid-filled underground pipes called a loop absorbs stored heat and carries it indoors. The indoor unit compresses the heat to a higher temperature and distributes it throughout the building. In summer, the system reverses, pulling heat from the building, carrying it through the earth loop and depositing it in the cooler earth. GEOTHERMAL HEATING AND COOLING AN INTRODUCTION 1

WHAT MAKES A GEOTHERMAL SYSTEM DIFFERENT FROM ORDINARY SYSTEMS? Unlike ordinary systems, geothermal systems don t burn fossil fuel to generate heat; they simply transfer heat to and from the earth to provide a more efficient, affordable and environmentally friendly method of heating and cooling. Typically, only a small amount of electricity is used to operate the unit s fan, compressor and pump. WHAT ARE THE COMPONENTS OF A GEOTHERMAL SYSTEM? The three main parts consist of the geothermal unit, the underground piping system (open or closed loop), and the ductwork. HOW EFFICIENT IS A GEOTHERMAL SYSTEM? A geothermal system is over five times more efficient in heating and more than twice as efficient in cooling as the most efficient ordinary system. Because geothermal systems move existing heat rather than creating it through combustion, they provide four to five units of energy for every one unit used to power the system. HOW IS EFFICIENCY RATED FOR GEOTHERMAL? All heating and cooling systems have a rated efficiency from a U.S. governmental agency. Fossil fuel furnaces use AFUE. Air conditioners use SEER while heat pumps use HSPF and SEER. Geothermal heat pumps rate heating efficiencies according to their coefficient of performance or COP. It s a scientific way of determining how much energy the system produces versus how much it uses. Most geothermal heat pump systems have COPs of 3-4.5. The WaterFurnace 7 Series 700A11 holds some of the highest recorded certified performances of 6.0 COP in an open loop and 5.3 in a closed loop. That means for every dollar of energy used to power the system, $6 or $5.30 of energy are supplied as heat. Where a fossil fuel furnace may be 78-98% efficient, a geothermal heat pump is over 500% efficient. 2 GEOTHERMAL HEATING AND COOLING AN INTRODUCTION

For cooling, geothermal units are rated by Energy Efficiency Ratio (EER). EER is a measure of efficiency in the cooling mode when measured at a constant temperature(95 F). The higher the EER, the more efficient the unit. The WaterFurnace 7 Series holds the highest recorded certified performance of 41EER for closed loop and 53.2 for open loop. DO GEOTHERMAL SYSTEMS REQUIRE MUCH MAINTENANCE? No. Geothermal systems are practically maintenance free. The buried loop will last for generations. The unit s fan, compressor and pump is housed indoors, protected from the weather and contamination. Usually, periodic checks and filter changes are the only required maintenance. While WaterFurnace does offer an outdoor geothermal unit for jobs where space is limited, its rugged housing is sealed so that no components are exposed to the elements. GEOTHERMAL HEATING AND COOLING AN INTRODUCTION 3

GEOTHERMAL HEAT PUMPS WHAT DOES GEOTHERMAL MEAN FOR THE ENVIRONMENT? Geothermal systems work with nature, not against it. They emit no greenhouse gases - which have been linked to pollution, acid rain and other environmental hazards. WaterFurnace s earth-loop antifreeze will not harm the environment in the unlikely event of a leak. And all of the current WaterFurnace product lines use R-410A or R134a, both of which are performance-enhancing refrigerants that will not harm the earth s ozone layer. ARE ALL GEOTHERMAL HEAT PUMPS ALIKE? No. There are different kinds of geothermal heat pumps designed for specific applications. Many geothermal heat pumps, for example, are intended for use only with higher temperature ground water encountered in open-loop systems. Others will operate at entering water temperatures as low as 25 F, which are possible in closedloop systems. Most geothermal heat pumps provide summer air conditioning, but a few brands are designed only for winter heating. Geothermal heat pumps also can differ in the way they are designed. Self-contained units combine the blower, compressor, heat exchanger and coil in a single cabinet. Split systems (such as the WaterFurnace Envision Series Split) allow the coil to be added to a forced-air furnace and utilize the existing blower. HOW DOES A GEOTHERMAL HEAT PUMP WORK? Heat pumps don t create heat. They take existing heat and move it. Anyone with a refrigerator has witnessed the operation of a heat pump. Refrigerators collect heat from the unit s interior and move it to the exterior for cooling purposes. Unlike a refrigerator, a heat pump can reverse itself. An air-source heat pump, for example, can extract heat from outdoor air and pump it indoors for heating purposes. A geothermal heat pump works the same way, except that its heat source is the warmth of the earth. The process of elevating 4 GEOTHERMAL HEAT PUMPS

low-temperature heat to over 100 F and transferring it indoors involves a cycle of evaporation, compression, condensation and expansion. A refrigerant is used as the heat-transfer medium which circulates within the heat pump. The cycle starts as the cold, liquid refrigerant passes through a heat exchanger (evaporator) and absorbs heat from the low-temperature source (fluid from the ground loop). The refrigerant evaporates into a gas as heat is absorbed. The gaseous refrigerant then passes through a compressor where the refrigerant is pressurized, raising its temperature to more than 180 F. The hot gas then circulates through a refrigerant-to-air heat exchanger where heat is removed and pumped into the building at about 100 F. When it loses the heat, the refrigerant changes back to a liquid. The liquid is cooled as it passes through an expansion valve and begins the process again. To work as an air conditioner, the system s flow is reversed. DOES A GEOTHERMAL SYSTEM HEAT AND COOL? One thing that makes a geothermal heat pump so versatile is its ability to be a heating and cooling system in one. With a simple flip of a switch on your indoor thermostat, you can change from one mode to another. In the cooling mode, a geothermal heat pump takes heat from indoors and transfers it to the cooler earth through either groundwater or an underground earth loop system. In the heating mode, the process is reversed. GEOTHERMAL HEAT PUMPS 5

CAN A GEOTHERMAL SYSTEM ALSO HEAT WATER? Yes. Some geothermal heat pumps can provide all of your hot water needs at the same high efficiencies as the heating/cooling cycles. An option called a hot water assist can be added to most heat pumps. It will provide significant savings by heating water before it enters your hot water tank. 6 GEOTHERMAL HEAT PUMPS

IN THE LOOP DO I NEED SEPARATE EARTH LOOPS FOR HEATING AND COOLING? No. The same loop works for both. To switch heating to cooling or vice versa, the flow of heat is simply reversed. DOES THE UNDERGROUND PIPE SYSTEM REALLY WORK? The buried pipe, or earth loop, was an important technical advancement in heat pump technology. The idea of burying pipe in the ground to gather heat energy originated in the 1940 s. New heat pump designs and more durable pipe materials have been combined to make geothermal heat pumps the most efficient heating and cooling systems available. WHAT TYPES OF LOOPS ARE AVAILABLE? There are two main types: open and closed. WHAT IS AN OPEN LOOP SYSTEM? An open loop system uses groundwater from an ordinary well as a heat source. The groundwater is pumped into the heat pump unit where heat is extracted and the water is disposed of in an environmentally safe manner. Because groundwater is a relatively constant temperature year-round, wells are an excellent heat source. HOW MUCH WATER FLOW DOES AN OPEN LOOP SYSTEM REQUIRE? The water requirement of a specific model is usually expressed in gallons per minute (gpm) and is listed in the unit s specifications. Generally, the average system will use 1.5 gpm per ton of capacity while operating, but the amount of water required depends on the IN THE LOOP 7

size of the unit and the manufacturer s specifications. Your contractor should be able to provide this information. Your well and pump combination should be large enough to supply the water needed by the heat pump in addition to your domestic water requirements. You ll probably need to enlarge your pressure tank or modify your plumbing to supply adequate water to the heat pump. WHAT DO I DO WITH THE DISCHARGE WATER? There are a number of ways to dispose of water after it has passed through the heat pump. The open discharge method is the easiest and least expensive. Open discharge simply involves releasing the water into a stream, river, lake, pond, ditch or drainage tile. Obviously, one of these alternatives must be readily available and have the capacity to accept the amount of water used by the heat pump before open discharge is feasible. A second means of water discharge is the return well. A return well is a second well bore that returns the water to the ground aquifer. A return well must have enough capacity to dispose of the water passed through the heat pump. A new return well should be installed by a qualified well driller. Likewise, a professional should test the capacity of an existing well before it is used as a return. ARE THERE ANY LAWS THAT APPLY TO OPEN LOOP INSTALLATIONS? All or part of the installation may be subject to local ordinances, codes, covenants or licensing requirements. Check with local authorities to determine if any restrictions apply in your area. DOES AN OPEN LOOP SYSTEM CAUSE ENVIRONMENTAL DAMAGE? No. They are pollution free. The heat pump merely removes or adds heat to the water. No pollutants are added. The only change in the water returned to the environment is a slight increase or decrease in temperature. 8 IN THE LOOP

WHAT PROBLEMS CAN BE CAUSED BY POOR WATER QUALITY? Poor water quality can cause serious problems in open loop systems. Your water should be tested for hardness, acidity and iron content before a heat pump is installed. Your contractor or equipment manufacturer can tell you what level of water is acceptable. Mineral deposits can build up inside the heat pump s heat exchanger. Sometimes a periodic cleaning with a mild acid solution is all that s needed to remove the build-up. Impurities, particularly iron, can eventually clog a return well. If your water has high iron content, make sure that the discharge water is not aerated before it s injected into a return well. IN THE LOOP 9

WHAT IS A CLOSED LOOP SYSTEM? A closed loop system uses a continuous loop of buried polyethylene pipe. The pipe is connected to the indoor heat pump to form a sealed, underground loop through which an environmentally friendly antifreezeand-water solution is circulated. A closed loop system constantly recirculates its heat-transferring solution in pressurized pipe, unlike an open loop system that consumes water from a well. Most closed loops are trenched horizontally in areas adjacent to the building. However, where adequate land is not available, loops are vertically bored. Any area near a home or business with appropriate soil conditions and adequate square footage will work. HOW LONG WILL THE LOOP PIPE LAST? Closed loop systems should be installed using only high-density polyethylene pipe. Properly installed, these pipes can outlast the house. They are inert to chemicals normally found in soil and have good heat conducting properties. PVC pipe should never be used. HOW DEEP OR LONG WILL MY TRENCHES BE? Trenches are normally four to six feet deep and up to 400 feet long, depending on the number of pipes in a trench. One advantage of a horizontal loop system is being able to lay the trenches according to the shape of the land. As a rule of thumb, 500-600 feet of pipe is required per ton of system capacity. A well-insulated 2,000 squarefoot home would need about a three-ton system with 1,500-1,800 feet of pipe. Loop lengths and depths may vary with loop type, soil conditions and climate. HOW ARE THE PIPE SECTIONS OF THE LOOP JOINED? Pipe sections are joined by thermal fusion. Thermal fusion involves heating the pipe connections and then fusing them together to form a joint that s stronger than the original pipe. This technique creates a secure connection to protect from leakage and contamination. 10 IN THE LOOP

I HAVE A POND NEARBY. CAN I PUT A LOOP IN IT? Yes, if it s deep enough and large enough. A minimum of six feet in depth at its lowest level during the year is needed for a pond to be considered. The amount of surface area required depends on the heating and cooling load of the structure. You should opt against using water from a spring, pond, lake or river as a source for an open loop system unless it s proven to be free of excessive particles and organic matter. They can clog a heat pump system and make it inoperable in a short time. CAN I INSTALL AN EARTH LOOP MYSELF? It s not recommended. Good earth-to-coil contact is very important for successful loop operation. Nonprofessional installations may result in inefficient system performance. WHAT IF I DON T HAVE ENOUGH ROOM FOR A HORIZONTAL LOOP? Closed loop systems also can be vertical. Holes are bored up to 250 feet per ton of heat pump capacity, depending on where you live. U-shaped loops of pipe are inserted in the holes. The holes are then grouted from bottom to top to ensure consistent ground contact with the earth. VERTICAL LOOP HORIZONTAL LOOP POND LOOP IN THE LOOP 11

WHAT EVERY OWNER SHOULD KNOW HOW DO I KNOW IF THE DEALER AND LOOP INSTALLERS ARE QUALIFIED? Don t be afraid to ask for references from dealers. A reputable dealer or loop installer won t hesitate to give you names and numbers to call to confirm his capabilities. CAN A GEOTHERMAL HEAT PUMP BE ADDED TO MY FOSSIL FUEL FURNACE? Split systems can easily be added to existing furnaces for those wishing to have a dual-fuel heating system. Dual-fuel systems use the heat pump as the main heating source and a fossil fuel furnace as a supplement in extremely cold weather if additional heat is needed. IS A GEOTHERMAL HEAT PUMP DIFFICULT TO INSTALL? Most units are easy to install, particularly when they replace another forced-air system. They can be installed in areas unsuitable for fossil fuel furnaces because there is no combustion, thus no need to vent exhaust gases. Ductwork must be installed in homes that don t have an existing air distribution system. The difficulty of installing ductwork will vary and should be assessed by a contractor. Another popular way to use geothermal technology is with in-floor radiant heating, in which hot water circulating through pipes under the floor heats the room. I HAVE DUCTWORK, BUT WILL IT WORK WITH THIS SYSTEM? In all probability, yes. Your installing contractor should be able to determine ductwork requirements and any minor modifications if needed. 12 WHAT EVERY OWNER SHOULD KNOW

IF A HOME HAS CEILING CABLE HEAT OR BASEBOARD HEAT, DO AIR DUCTS NEED TO BE INSTALLED? Not always. It may be desirable to install geothermal heat pump room units. For some small homes, a one-room unit would handle the heating and cooling needs. Ceiling cable or baseboard units could be used for supplemental heat if desired. DO I NEED TO INCREASE THE SIZE OF MY ELECTRIC SERVICE? Geothermal heat pumps don t use large amounts of resistance heat so your existing service may be adequate. Generally, a 200-amp service will have enough capacity, and smaller amp services may be large enough in some cases. Your electric utility or contractor can determine your service needs. WHAT IS THE BTU SIZE OF THE FURNACE THAT S BEING PROPOSED? Furnaces are designed to provide specific amounts of heat energy per hour. The term BTUH refers to how much heat can be produced by the unit in an hour. Before you can determine what size furnace you ll need, you must have a heat loss/heat gain calculation done on the structure. From that, an accurate determination can be made of the size of the system you ll need. Most fossil fuel furnaces are substantially oversized for heating requirements, resulting in increased operating cost and unpleasant temperature swings. WHAT EVERY OWNER SHOULD KNOW 13

SHOULD I BUY A GEOTHERMAL HEAT PUMP LARGE ENOUGH TO HEAT WITH NO SUPPLEMENTAL HEAT? Your contractor should provide a heating and cooling load calculation (heat loss, heat gain) to guide your equipment selection. Geothermal heat pumps typically are sized to meet your cooling requirements. Depending on your heating needs, a geothermal heat pump will supply 80-100 percent of your heating load. Sizing the heat pump to handle your entire heating needs may result in slightly lower heating costs, but the savings may not offset the added cost of the larger heat pump unit and larger loop installation. Also, an oversized unit can cause dehumidification problems in the cooling mode, resulting in a loss of summer comfort. HOW LONG IS THE PAYBACK PERIOD FOR A GEOTHERMAL SYSTEM? Geo thermal systems are so energy-efficient that the payback period is remarkably brief. A study by the Air Force Institute of Technology calculated that it takes on average just seven to eight years to recoup costs. Your specific payback point depends on factors like local utility rates, excavation/drilling costs, how well your house is insulated, the efficiency of the model you choose, and what incentives your state or utilities provide. One of the best aspects about geothermal is cash flow. If you install a geothermal system, the monthly savings in operating costs generally offset the additional monthly financing cost, resulting in an immediate positive cash flow - especially in a new home. Again, your specific situation may vary. 14 WHAT EVERY OWNER SHOULD KNOW

LEARN MORE HOW CAN I LEARN MORE ABOUT GEOTHERMAL SYSTEMS? Visit our website at waterfurnace.com. Our comprehensive site offers a wide variety of information on geothermal technology, our latest products and the latest news. It also will help you find an independent WaterFurnace dealer in your area. Most electric utilities have information about geothermal systems. Get in touch with the experts and start saving on your utility bills right away! LEARN MORE 15

GLOSSARY BTU (BRITISH THERMAL UNIT): The amount of heat needed to raise the temperature of one pound of water one degree Fahrenheit. Btu is used to signify the heating and cooling capacity of a system and the heat losses and gains of buildings and homes. BTUH: The number of BTUs produced in one hour. CLOSED LOOP SYSTEM: A heat pump system that uses a loop of buried pipe as a heat exchanger. Loops can be horizontal or vertical. COP (COEFFICIENT OF PERFORMANCE): The ratio of heating provided by a heat pump to the energy consumed by the system under designated operating conditions. The higher the COP, the more efficient the system. COMPRESSOR: The central part of a heat pump system. The compressor increases the pressure and temperature of the refrigerant and simultaneously reduces its volume while causing the refrigerant to move through the system. CONDENSER: A heat exchanger in which hot, pressurized (gaseous) refrigerant is condensed by transferring heat to cooler surrounding air, water or earth. CYCLING LOSSES: The efficiency of a heating or cooling system is reduced due to start-up and shut-down losses. Over-sizing a heating or cooling system increases cycling losses. EVAPORATOR: A heat exchanger in which cold, liquid refrigerant absorbs heat from the low-temperature source (fluid from the ground loop). FOSSIL FUEL: Combustible fuels formed from the decomposition of organic matter. Examples are natural gas, propane, fuel oil, and coal. GEOTHERMAL HEAT PUMP: A heat pump that uses the earth as a heat source and heat sink. HEAT EXCHANGER: A device designed to transfer heat between two physically separated fluids or mediums of different temperatures. 16 GLOSSARY

HEAT PUMP: A mechanical device used for heating and cooling which operates by pumping heat from a cooler to a warmer location. Heat pumps can extract heat from air, water, or the earth. They are classified as either air-source or geothermal units. HEAT SINK: The medium air, water or earth which receives heat rejected from a heat pump. HEAT SOURCE: The medium air, water or earth from which heat is extracted by a heat pump. HOT WATER ASSIST: A device for recovering superheat from the compressor discharge gas of a heat pump or central air conditioner for use in heating or preheating water. OPEN LOOP SYSTEM: A heat pump system that uses groundwater from a well or surface water from a lake, pond, or river as a heat source. The water is returned to the environment. PAYBACK: A method of calculating how long it will take to recover the difference in costs between two different heating and cooling systems by using the energy and operating cost savings from the more efficient system. SUPPLEMENTAL HEATING: A heating system used during extremely cold weather when additional heat is needed to moderate indoor temperatures. May be in the form of fossil fuel or electric resistance. CONVERSION TABLE U.S. (EQUALS) CANADIAN 1 GALLON =.8 GALLON (3.78 LITERS) 1 FOOT =.304 METER 1,000 FEET = 304.8 METERS 1 BTU = 252 CALORIES (GRAMS) FAHRENHEIT = CELSIUS = (F - 32) X 5/9 (EXAMPLE: 40 F) = (4.44 C) GLOSSARY 17

WHY CHOOSE WATERFURNACE? WaterFurnace is the most recognized and respected name in geothermal. That s because we ve lead the industry in design, efficiency, reliability and warranty protection for over 30 years. We re also home of some of the most efficient heating and cooling systems ever certified by AHRI. WaterFurnace is dedicated to providing you with safe, reliable and energy-efficient heating and cooling systems that save you money while helping protect our environment. Our engineers and technicians work to create and build quality geothermal products that are extensively tested to ensure the highest quality. An industry leader and an innovator in geothermal technology WaterFurnace. Smarter from the Ground Up. QUALIFIES 3 GEO TAX CREDIT Printed with 10% post-consumer waste recycled paper BR1521MW 2/18 2018 WaterFurnace International, Inc., 9000 Conservation Way, Fort Wayne, IN 46809-9794. WaterFurnace has a policy of continuous product research and development, and reserves the right to change design and specifications without notice.