Ovality Correction Methods for Pipes

Similar documents
9. VACUUM TANK 9. VACUUM TANK

CYLINDRICAL VESSEL LIMIT LOAD ESTIMATION FOR OBLIQUE NOZZLE BY USING ANSYS AS ANALYSIS TOOL

Burst Pressure Prediction of Cylindrical Shell Intersection

FEA and Experimental Studies of Adaptive Composite Materials with SMA Wires

E APPENDIX. The following problems are intended for solution using finite element. Problems for Computer Solution E.1 CHAPTER 3

Metal Forming Process. Prof.A.Chandrashekhar

Prediction of Residual Stresses after Local Post-Weld Heat Treatment

Vibration Analysis of Propeller Shaft Using FEM.

GLOBAL RATCHETING BY ELASTIC-PLASTIC FEA ACCORDING TO ASME SECTION VIII RULES

Chapter 15 Extrusion and Drawing of Metals

Properties in Shear. Figure 7c. Figure 7b. Figure 7a

EFFECT OF LOCAL WALL THINNING ON FRACTURE BEHAVIOR OF STRAIGHT PIPE

Performance and Optimization of Annular Fins by Using Finite Element Analysis

ELASTO-PLASTIC BEHAVIOR OF HORIZONTAL HAUNCHED BEAM-TO- COLUMN CONNECTION

Modeling Component Assembly of a Bearing Using Abaqus

In-plane testing of precast concrete wall panels with grouted sleeve

Stress calculation at tube-to-tubesheet joint using spring model and its comparison with beam model

ME -215 ENGINEERING MATERIALS AND PROCESES

Design for welding: Design recommendations

NLFEA Fire Resistance of 3D System Ceiling Panel

Casting. Forming. Sheet metal processing. Powder- and Ceramics Processing. Plastics processing. Cutting. Joining.

Fig. 1: Schematic of roughing rolling unit of Mobarakeh Steel Company

CHAPTER 9 INFLUENCE OF RESIDUAL STRESSES ON THE FAILURE PRESSURE OF CYLINDRICAL VESSELS

MANUFACTURING PROCESSES

COMPUTATIONAL MODELING OF BLAST FURNACE COOLING STAVE BASED ON HEAT TRANSFER ANALYSIS

Hot Forming. Kalpakjian

1E5 Advanced design of glass structures. Martina Eliášová

Bulk Deformation Processes

Oil and Gas Pipeline Design, Maintenance and Repair

BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS

Angle Cleat Base Connections

CHAPTER 11: PRESTRESSED CONCRETE

Contact Pressure Analysis of Steam Turbine Casing

REVISED PAGES IMPORTANT TERMS AND CONCEPTS REFERENCES QUESTIONS AND PROBLEMS. 166 Chapter 6 / Mechanical Properties of Metals

Determination of Failure Strength of Flat Plate Weld Joint Using Finite Element Analysis

Module 3 Selection of Manufacturing Processes. IIT Bombay

Installation Guidelines for Flygt Pumps Pump Anchoring Recommendations

Weld Distortion Control Methods and Applications of Weld Modeling

SPECIFICATION FOR REINFORCED SOIL WALL

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July ISSN

Design and Bolt Optimization of Steam Turbine Casing using FEM Analysis

PVP Proceedings of the ASME 2014 Pressure Vessels & Piping Conference PVP2014 July 20-24, 2014, Anaheim, California, USA

Earthquake Design of Flexible Soil Retaining Structures

Design of a Horizontal Creep Testing Machine

Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components

Residual Stress Influence on Material Properties and Column Behaviour of Stainless Steel SHS. M. Jandera 1, J. Machacek 2

DESIGN AND WEIGHT OPTIMIZATION OF GRAVITY ROLLER CONVEYOR

Girth Weld Failure Analysis In Coker BlowdownHeaders

Module 4 Design for Assembly

Effects of Misalignment in Cylindrical Roller Bearings on Contact between Roller and Inner Ring

BEHAVIOR OF REINFORCED CONCRETE BEAM WITH OPENING

Numerical and Experimental Study of Buckling of Rectangular Steel Plates with a Cutout

PVP PVP

Design and Stress Analysis 0f Various Cross Section of Hook

Stress Distribution Model of Prefabricate Block Electric Furnace Roof

Abhijit Devaraj 1 1 Department of Mechanical Engineering, BMS College of Engineering. IJRASET 2015: All Rights are Reserved.

STRUCTURAL BEHAVIOUR OF HOLLOW STEEL SECTIONS UNDER COMBINED AXIAL COMPRESSION AND BENDING

Design of Blowout Preventer Lifting Frame

Bulging Assessment and Long- Term Repair of Coke Drums

YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION

Simulation of Residual Deformation from a Forming and Welding Process using LS-DYNA

APPENDIX B. LOAD FRAME. This Appendix will describe the philosophy in the design and operation of the loading system.

Improving the Fatigue Resistance of Thermite Railroad Rail Weldments. F. V. Lawrence Y-R. Chen J. P. Cyre

LINEAR AND STATIC ANALYSIS USING FEA VARIOUS NOZZLE TO SHELL JUNCTION OF PRESSURE VESSEL

Bulk Deformation Forming - Rolling

Section 906. STRUCTURAL STEEL

FEM STRESS CONCENTRATION FACTORS FOR FILLET WELDED CHS-PLATE T-JOINT

Theoretical study on Cold Open Die Forging Process Optimization for Multipass Workability

STRESS -STRAIN ANALYSIS AND EXPERIMENTAL VERIFICATION OF THREE-ROLL PYRAMIDAL SHAPE CONFIGURATION ROLL BENDING MACHINE

ST7008 PRESTRESSED CONCRETE

INDIAN REGISTER OF SHIPPING CLASSIFICATION NOTES. Type Approval of Mechanical Joints used in Piping

FINITE ELEMENT ANALYSIS OF BALL VALVES

1. Cast-in-place concrete is specified in Section

Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

PV Newsletter Monthly Publication from CoDesign Engineering Academy

Design of Progressive Die Using Fe Analysis

FE Analysis of Creep of Welds - Challenges and Difficulties

Higher National Unit Specification. General information for centres. Fabrication Forming Processes. Unit code: DR25 34

Cast Steel Propellers W27. (May 2000) (Rev.1 May 2004)

Modeling Welded. ANSYS e-learning. June CAE Associates

Chapter 15 Fundamentals of Metal Forming. Materials Processing. Deformation Processes. MET Manufacturing Processes

GLASS FIBER-REINFORCED PLASTIC POLES FOR TRANSMISSION AND DISTRIBUTION LINES: AN EXPERIMENTAL INVESTIGATION

A Review of Suitability for PWHT Exemption Requirements in the Aspect of Residual Stresses and Microstructures

Finite Element Analysis of Perforated Steel Plate during Compression

MODEL SPECIFICATIONS: Hydraulically Driven Steel Underpinning Pile Specifications

The advantages of Bi-orientation technology and all the PVC qualities OROC.

LRFD AND EUROCODE-3 SPECIFICATIONS FOR ULTIMATE LOAD CARRYING CAPACITY EVALUATION OF STEEL COLUMNS AND EFFECTS OF IMPERFECTIONS

FATIGUE ANALYSIS OF A NOTCHED CANTILEVER BEAM USING ANSYS WORKBENCH. N. Sinan Köksal, Arif Kayapunar and Mehmet Çevik

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1

DESIGN AND ANALYSIS OF HIGH-PRESSURE CASING OF A STEAM TURBINE

FINITE ELEMENT ANALYSIS OF COMPOSITE REPAIRS WITH FULL-SCALE VALIDATION TESTING

GENERAL CONTENTS SECTION I - NUCLEAR ISLAND COMPONENTS

SiC/SiC Composite Properties and Flow Channel Insert Design

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN

FEA calculation. Aluminum Inner Shell NIKHEF C DeMaCo P Client: DeMaCo Author: R. van Ruijven Checked: J.H.

Modeling of Residual Stresses in a Butt-welded Joint with Experimental Validation

Nonlinear Analysis of Shear Dominant Prestressed Concrete Beams using ANSYS

Design and Analysis of Multilayer High Pressure Vessels and Piping Tarun Mandalapu 1 Ravi Krishnamoorthy. S 2

Transcription:

Ovality Correction Methods for Pipes M. Balachandran U.G student, Mechanical Engineering Saranathan College of Engineering Trichy-12, India Email: srivasanthram5@gmail.com Abstract Ovality nothing but deviation from roundness is a main defect in all pipe fabrication industries where heat treatment is involved. Bending in pipes alter the mechanical properties of the material. The main alteration is formation of stress concentration. Stress concentration is a condition in which high localized stress is induced due to change in shape of the element and this will be higher than yield stress of that element. It leads to fracture, crack and failure of pipe. So a pipe should undergo a heat treatment process before further process. Heat treatment refines grain size, improves mechanical properties and machinability. Our main objective is to reduce ovality of pipes during stress relieving in the furnace. A new concept is suggested to correct the ovality. Index Terms ovality, stress concentration, stress relieving, roundness deviation, heat treatment. I. INTRODUCTION Pipe bends are generally most economical means of changing directions while providing flexibility and end reactions to piping systems within the allowable limits[l].the bend section may be a source of damage during working due to internal pressure and other loads particularly where ovality and wall thickness variation exists which are introduced during manufacturing process[2-4]. The acceptability of pipe bends depends on magnitude of shape functions [5]. The cross section of the pipe bend is often assumed to be perfectively oval for numerical investigation [6-9]. Distortion in cold tubes is usually limited to the outer half of the bend where flattening occurs and described as a semi-oval section [10]. Both the shapes do not represent true cross section but are approximated. In industries the contour of pipe bend cross section are captured in their first off trail test(fot) to study about ovality and reveals that the cross section is neither elliptical nor semi oval. Analysis in pipe bends rely on the assumptions of constant wall thickness along the contour of pipe s cross section and no initial ovality and normally have variable wall thickness along the contour of the pipe s cross section[11]. Bending of a curved pipe is accompanied by flattening forces and transforms initial circular cross sections into oval cross sections [12]. Pipe bending is mainly caused by the ovality [13]. Our objective is to correct the ovality in pipes by using refractory bricks and structural member. Refractory bricks is used to make the pipe to withstand high temperature during heat treatment and structural member is used reduce the deformation as compared to the using of refractory bricks. II. EXISTING OVALITY CORRECTION METHODS 1. HYDRAULIC JACK METHOD The ovality was corrected using a hydraulic jack by placing the jack inside the pipe with suitable wedge fixes. When the jack is operated the hydraulic energy is converted to mechanical force which pulls out the pipe in vertical direction. This method was commonly used in plant because of its simplicity. The whole operation was done manually including all the set up and wedge fixing. Despite of its hazards such as oil seal break up, slipping of wedge etc this method gave good results. ADVANTAGES: This was simpler method of ovality correction. There were no need of fixtures and holding devices. DISADVANTAGES: The maximum capacity of hydraulic used was 200 tons, but load needed to correct the ovality was 300 tons. Since the working pressure exceeds the permissible pressure of the jack the seal failure occurs. This leads to total jack failure and thus increases the cost. Fig.1 Hydraulic jack method 33

2. EXTERNAL PRESSING METHOD In this method two stationery actuators and two movable actuators were used. The stationery actuators were used to hold the pipe, the pressure was given using two movable actuators operated by hydraulics. This method was not widely used because of formation of wrinkles, buckling and poor work holding techniques. This method of correcting ovality was not successful as much as jack method. ADVANTAGES: This method was simple and convenient. The cost and working hours were less comparatively. DISADVANTAGES: It required fixtures and complex work holding devices. 3. EXTERNAL HYDRAULIC LIFTING This mechanism is the combination of fork lift and universal testing machine, two forks acts as jaws and expands the pipe from inside. The power is given by hydraulic which uses the same mechanism as the hydraulic jack. Job setting is difficult, need of platform. 4. DOUBLE ACTING HYDRAULIC JACK The hydraulic jack failure occurs due to over loading. If the jack is made as double acting, the load divides as two. And seal becomes still stronger. Manufacturing of such jack is costly. 5. GAS TRAP METHOD The Co 2 gas is filled as trap in enclosed pipe. This when heated the gas expands and treats the ovality. There is a possibility of puncturing of pipes. REFRACTORY METHOD Setting of job was complex and setting time was high. The ovality correction in pipes using refractory was experimentally done. The refractory bricks which were used in the furnace were stacked and built inside the pipe like a wall. This holds the pipe from bending in any direction and the heat conduction was not disturbed as well. Fig.2 External Pressing Method ΙΙΙ. OTHER SUGGESTED METHOD 1. REFRACTORY METHOD The refractory bricks which were used in the furnace were stacked and built inside the pipe like a wall using refractory material. This holds the pipe from bending in any direction and the heat conduction was not disturbed as well. The human working accuracy was less and not reliable. Refractory disposal and handling were time consuming. Wall may collapse due to prolonged usage of same refractory brick. 2. EDGE FILLET The pipe s edge is cut to suitable angle so that the ovality becomes negligible. The welding can be done in between groves of the joint. The strength of joint reduces, not all the pipes can be edge filleted due to variation. OBSERVATION: Fig.3 Refractory method Std. diameter of pipe =760 mm; Thickness =30 mm BEFORE HEAT TREATMENT PROCESS Diameter at both ends 762 mm AFTER HEAT TREATMENT PROCESS Diameter at one end 762 mm Diameter at another end 776 mm Table.1 Dimensions of pipe before and after heat treatment This proved beyond doubt that the Ovality can be prevented using refractory materials without affecting its heat treatment process since it was built inside the pipe. 34

ADVANTAGES: Ability to withstand high temperatures. Ability to withstand sudden changes of temperatures. Ability to withstand action of molten metal slag, glass, hot gases, etc. Ability to withstand load at service conditions. Low coefficient of thermal expansion and cost. DISADVANTAGES: The human working accuracy was less and not reliable. Refractory disposal and handling were time consuming. Wall may collapse due to prolonged usage of same refractory brick. During crane handling, the wall may fall down. CONCLUSION: Due to the issue such as handling, wall collapse etc, made this method difficult to process further hence another convenient method was used. STRUCTURAL MEMBER The structural member was a plus section made of cast steel which was also the material of furnace pedal cast. It could withstand high temperature more than 1773 K. This material was used because it does not undergo deformation at the working temperature of the job. So this plus section can act as a support and holds the job preventing the deformation of the pipe. As the temperature needed to deform the cast steel was far higher than job (P91 pipe material) the self weight which causes the deformation was prevented by plus section. If there is no structural member section deformation occurs. Fig.5 Structural member inside the pipe S. PART MATERIAL COUNT No. NAME 1 CENTRE CAST STEEL 1 PIECE GRADE 11 2 THREADED PIPE CASTE STEEL 11 4 3 NUT CAST STEEL 8 GRADE 11 4 WEDGE CAST STEEL 4 GRADE 11 Table.2 Components of Structural member ΙV. ANALYSIS COUPLED FIELD ANALYSIS OF P91 PIPE The couple field analysis combines two kinds of analysis. In this case we combine the structural and thermal analysis. Our aim is to analyze the deformation of pipe P91 using ANSYS software. MATERIAL: P91 (ASME SA335 91) Density =7850 Kg/m 3 Young s modulus =2.08*e11 N/m 2 Poisson ratio =0.3 Thermal expansion coefficient =1.1e-5 / K Thermal conductivity =42.7 W/mK Specific heat =461 KJ/Kg ELEMENTS: COUPLED FIELD, TET 10 NODE 227. This is the higher element in coupled field analysis and this element gives high accuracy. LOADING: Fig.4 Structural member Colors (blue, aqua and pink) depict the supports Uy = 0 Gravity: y = - 9. 81m/s 2 35

Temperature: 1323 K (whole volume) (max. temp of furnace) Temperature film coefficient: 2864.19 W/m 2 K (at outer surface) Fig.10 Deformation along Z-axis Fig.6 Modelling of P91 pipe Fig.11 Deformation along all co-ordinate axes Fig.7 Meshing into successive finite element Fig.12 Von Messis total mechanical strain+ thermal strain Fig.8 Deformation of pipe along X-axis RESULT: Fig.13 Von Messis total mechanical strain The deformation of the pipe is analyzed using couple field analysis the results are Fig.9 Deformation of pipe along Y-axis Minimum deformation = 0 Maximum deformation =0.007623 m = 7.62 mm. 36

COUPLED FIELD ANALYSIS OF PIPE WITH STRUCTURAL MEMBER To analyze the deformation of structural member that undergoes the temperature and self-weight. MATERIAL: CAST STEEL IS 4522 GRADE 11 Density =7700 Kg/m 3 Young s modulus =1.9*e11 N/m 2 Poisson ratio =0.26 Thermal expansion coefficient =1.51e-5 / K Thermal conductivity =37 W/mK Specific heat =530 KJ/Kg LOADING: Displacement at Uy=0 (area 21,44and their opposite sides) Gravity: y = - 9. 81m/s 2 Temperature: 1323 K Temperature film coefficient: 2864.19 W/m 2 K (at outer surface) Fig.17 Deformation along Y-axis Fig.18 Deformation along Z-axis Fig.19 Deformation along all co-ordinate axes Fig.14 Modelling of structural member inside a pipe Fig.15 Meshing of structural member and pipe Fig.20 Von Messis total mechanical strain+ thermal strain Fig.16 Deformation along X-axis RESULT: Fig.21 Von Messis total mechanical strain The deformation of the pipe is analyzed using couple field analysis the results are 37

Minimum deformation = 0 Maximum deformation =0.00361m = 3.61 mm. V. CONCLUSION Our aim is to prevent the ovality of pipes during heat treatment processes. Using structural member made of cast steel grade 11 instead of external pressing method in correcting ovality can reduce the time consumption, human effort etc. This structural member can acts as a support and holds the job preventing the deformation of the pipe. Due to its high thermal properties the cast steel can be best suited material. We have proved practically by using refractory bricks (IS 8) that can withstand high temperature of about 2000 C and also we have proved analytically using couple field analysis. From this analysis we have reduced the deformation of 7.623mm to3.61mm by providing structural member. REFERENCES [1] Reno C King, Piping Handbook, 5th Ed, McGraw- Hill Book Company. 1973 [2] BP. Patel, C.S. Munot, SS. Gupta, C T.sambandam, M. Gunapathi, "Application of higher order finite element for elastic stability analysis of laminated cross ply oval cylindrical shells" Finite Elements in Analysis and design, vol 40,pp 1083-1104,2004 [3] TH Hyde, W Sun. JA Williams, life estimation of Pressurized Pipe Bends Using Steady-State Creep Reference Rupture Stress". International Journal of Pressure Vessels & Piping. vol.79. pp. 799-805. 2002 [4] TH Hyde, AA Becker, W Sun, JA Williams, "Influence of geometry change on creep failure life of 90' pressurized pipe bends with no initial ovality. International Journal of Pressure Vessels & Piping, vol 82.pp 509-5l6.2005 [5] AR Veerappan. S Shanmugam. "Analysis for Flexibility in the Ovality and thinning Limits of Pipe Bend". ARPN Journal of Engineering and Applied Sciences, vol. 3, pp 31-4l, 2008 [6] AR Veerappan, S. Shanmugam, S Soundrapandian, The Accepting of Pipe Bends with Ovality and Thinning Using finite element Method" ASME Journal of Pressure Vessel Technology vol 132,pp 031204-1-031204-9,2010 [7] ML. Nayyar, Piping handbook, 7th Ed, McGraw- Hill, A269, 2000 [8] Dan Vlaicu. "The Influence of the Initial Ovality Tolerance on the Nonlinear Cycling Analysis of Piping Bends", ASME Journal of Pressure Vessel Technology.2009. vol 131,041203-1-041203-7 [9] VBSann. The steady laminar flow of an elasticviscous liquid in a Curved Pipe of Varying Elliptic Cross Section, Computer Modeling, vol 26, pp 104-121, I997 [I0] JT Boyle, JA Spence, Simple Stress Analysis for out-of-round Pressurized Pipe Bends". International Journal of Pressure Vessels and Pipings.vol 9.pp 251-261, 1981 [11] V P Chemiy. "The bending of Curved Pipes with- Variable Wall Thickness Journal of applied mechanics, vol 70.pp253-259. 2003 [12] VP Chemiy. Effect of curved bar properties on Bending of Curved Pipes, Journal of Applied Mechanics, VoI.68, pp 650 655, 2001. [13] AV Kale, H T. Thorat. "Effect of Precompression on Ovality of Pipe after Bending", "Journal of Pressure Vessel Technology", vol 131, pp 011207-1-011207-7, 2009. 38