Agent-based model of information spread in social networks. Introduction

Similar documents
STATISTICAL TECHNIQUES. Data Analysis and Modelling

Modeling Brand Switching in Consumers Products

CHAPTER 2 LITERATURE SURVEY

eservices Social Media Solution Guide Genesys Social Engagement Overview

Social Media Analytics

Genetic Algorithms in Matrix Representation and Its Application in Synthetic Data

C programming on Waiting Line Systems

A SURVEY ON PRODUCT REVIEW SENTIMENT ANALYSIS

Negotiation to Improve Role Adoption in Organizations

Technical Guidance on Clinical Evaluation of Medical Devices

Testing of Web Services A Systematic Mapping

Software Development Experience in Designing of Steel Structural Joints

A PETRI NET MODEL FOR SIMULATION OF CONTAINER TERMINALS OPERATIONS

The Retailers Choices of Profit Strategies in a Cournot Duopoly: Relative Profit and Pure Profit

COMPUTATIONAL ANALYSIS OF A MULTI-SERVER BULK ARRIVAL WITH TWO MODES SERVER BREAKDOWN

Forecasting Cash Withdrawals in the ATM Network Using a Combined Model based on the Holt-Winters Method and Markov Chains

Markov and Non-Markov Models for Brand Switching and Market Share Forecasting

Quality Control Analysis of Enterprise Training Project. Xian Ji 1. Abstract

Modeling of competition in revenue management Petr Fiala 1

An Approach to Analyze and Quantify the Functional Requirements in Software System Engineering

GENETIC ALGORITHMS. Narra Priyanka. K.Naga Sowjanya. Vasavi College of Engineering. Ibrahimbahg,Hyderabad.

DISTRIBUTED ARTIFICIAL INTELLIGENCE

No THE MUSEUM PASS GAME AND ITS VALUE REVISITED. By Arantza Estévez-Fernández, Peter Borm, Herbert Hamers. January 2004 ISSN

A Decision Support System for Performance Evaluation

Stochastic Gradient Approach for Energy and Supply Optimisation in Water Systems Management

Lesson Plan Promotion Involves Communication

Measure Performance of VRS Model using Simulation Approach by Comparing COCOMO Intermediate Model in Software Engineering

Data Preprocessing, Sentiment Analysis & NER On Twitter Data.

Mathematical analysis of the spreading of a rumor among different subgroups of spreaders

SAP Predictive Analytics Suite

Evolutionary Algorithms

Topic 2 Market Research. Higher Business Management

Preference Ordering in Agenda Based multi-issue negotiation for Service Level Agreement

A Parametric Bootstrapping Approach to Forecast Intermittent Demand

Getting Started with OptQuest

Bilateral and Multilateral Exchanges for Peer-Assisted Content Distribution

Some relationships between evolutionary stability criteria in games

Erfle, Stephen. "Bracketing Utility." International Journal of Economics, Commerce and Management 2, no. 1 (2014): 1-9.

MANUFACTURING PROCESS MANAGEMENT USING A FLEXIBLE MODELING AND SIMULATION APPROACH. Duilio Curcio Francesco Longo Giovanni Mirabelli

Xerox Social on Demand

Using #hashtags

Optimizing the Selection of Cost Drivers in Activity-Based Costing Using Quasi-Knapsack Structure

OPTIMIZATION AND OPERATIONS RESEARCH Vol. IV - Inventory Models - Waldmann K.-H

Data Mining in Social Network. Presenter: Keren Ye

CHAPTER 2: IMPLEMENTATION PHASES AND OFFERINGS

Data Mining and Applications in Genomics

FAQ: Various Research Methods

BUSSINES SIMULATING PROCES FOR THE PRODUCTION SURROUND, USING QUEUEING SYSTEM SIMULATION WITH WINQSB

A Guide to Connections between the GLOBE Program and the Next Generation Science Standards*

Safety-critical Certification of FPGA-based Platform against Requirements of U.S. Nuclear Regulatory Commission (NRC): Industrial Case Study

1. Contingency Table (Cross Tabulation Table)

Bio-inspired Models of Computation. An Introduction

Limits of Software Reuse

Data Mining Applications with R

Ibm Maximo Mobile Work Manager User Guide

OPERATING SYSTEMS. Systems and Models. CS 3502 Spring Chapter 03

APPLICATION OF EFQM EXCELLENCE MODEL TO THE SABANCI UNIVERSITY IC

Now, I wish you lots of pleasure while reading this report. In case of questions or remarks please contact me at:

Resource Decisions in Software Development Using Risk Assessment Model

The Impact of 5S Implementation on Industrial Organizations Performance

WEB SERVICES COMPOSING BY MULTIAGENT NEGOTIATION

Gravity Load Collapse of Reinforced Concrete Columns with Brittle Failure Modes

Cross-Dock Modeling And Simulation Output Analysis

On the assessment of multiaxial fatigue damage under variable amplitude loading

Reaction Paper Regarding the Flow of Influence and Social Meaning Across Social Media Networks

It s about your success

Optimal Inspection Policy based on Measurement Quality Degradation: Case of Pitot Sensors System

Single Machine Scheduling with Interfering Job Sets

D.B.E. Digital Business Ecosystem. WP33: Dissemination and Community Building. D33.1: DBE Brand Identity Definition.

Introduction to Analytics Tools Data Models Problem solving with analytics

Inter-cultural management Nestlé Case MBA ESG INTERCULTURAL MANAGEMENT NESTLE CASE

9. Verification, Validation, Testing

University Of Manchester, Institute For Development Policy and Management

Towards Modelling-Based Self-adaptive Resource Allocation in Multi-tiers Cloud Systems

UKRAINE - UKraine Replication, Awareness and INnovation based on EGNSS. Horizon 2020 Space Information Days Prague, October 5 th 2016

Social Media Training

A Fuzzy Optimization Model for Single-Period Inventory Problem

METHODOLOGY FOR TRANSITION PROBABILITIES DETERMINATION IN A MARKOV DECISION PROCESSES MODEL FOR QUALITY-ACCURACY MANAGEMENT

1. For s, a, initialize Q ( s,

Capacity Dilemma: Economic Scale Size versus. Demand Fulfillment

Chapter 15: Asset Management System

UNIT Market Operations and the Scottish Economy (SCQF level 5)

A Basic Proof Method for the Verification, Validation and Evaluation of Expert Systems

Research is a formalized curiosity. It is poking and prying with a purpose.

An easy to use software toolkit providing Overview, Transparency and Performance Management of your utility data

Technical Guidance on Clinical Evaluation of Medical Devices 1

Research Article Research on Evaluation on Agility of Agile Supply Chain Network Based on Complex Network Theory

Equating and Scaling for Examination Programs

SINGLE MACHINE SEQUENCING. ISE480 Sequencing and Scheduling Fall semestre

Immune Programming. Payman Samadi. Supervisor: Dr. Majid Ahmadi. March Department of Electrical & Computer Engineering University of Windsor

Personal Listening Profile

An Inventory Model with Demand Dependent Replenishment Rate for Damageable Item and Shortage

Coordination in Economics 1. What & How much to produce? 2. How to

Data Driven Model of Evidence Based Practices for Corrections Programs. by Sangeetha Hariharan. Under the supervision of Dr.

Software Modeling & Analysis. - Fundamentals of Software Engineering - Software Process Model. Lecturer: JUNBEOM YOO

Journal of Global Research in Computer Science PREMATURE CONVERGENCE AND GENETIC ALGORITHM UNDER OPERATING SYSTEM PROCESS SCHEDULING PROBLEM

Carbon Cycle A CORE LEARNING GOALS ACTIVITY FOR SCIENCE AND MATHEMATICS

The Application of Agile Management in Software Project

CHAPTER 4 EXAMINATION OF THE OVERALL R&M ACTIVITY CONTENTS

Transcription:

Agent-based model of information spread in social networks D.V. Lande a,b, A.M. Hraivoronska a, B.O. Berezin a a Institute for Information Recording NASU, Kiev, Ukraine b NTUU Kyiv Polytechnic Institute, Kiev, Ukraine We propose evolution rules of the multiagent network and determine statistical patterns in life cycle of agents information messages. The main discussed statistical pattern is connected with the number of likes and reposts for a message. This distribution corresponds to Weibull distribution according to modeling results. We examine proposed model using the data from Twitter, an online social networking service. Keywords: social network, modeling, Weibull distribution, agent-based system, information spread. Introduction The flows of information have a strong influence on opinion formation and other processes in the society. Today social networks play a fundamental role as a medium for the information spread. These facts motivate to explore mechanisms of creation of information flows and influence on them. Dealing with this requires focusing attention on modeling and finding laws or patterns in the spread of information [1]. In this article we present an agent-based model of information spread. The agent in this model is an information message [2]. A message published in social network may cause different types of public reaction. This model involves types of reaction such as positive or negative comments, respect or protest (we will call it like/dislike); message may be shared or copied (repost); also one message may have a link to another one (link). The evolution of the agent is controlled by mentioned above types of reaction. The main attribute of the agent is energy (E); that is representation of current relevance of the message or a degree of interest to the topic of the message by people. Naturally, a positive reaction or appearance of link to the message cause increase of energy. In opposite way, energy decreases when the 1

message gets negative feedback. Anyway, energy tends to decrease because information eventually becomes outdated. The agent specification More precisely the rules of agent evolution are as follows. Each agent appears with the initial energy (E 0 ) and dies when its energy becomes 0. The energy varies during the agent s life cycle depending on the types of reaction. Let us list them all and their impact on the energy: like: energy is incremented; dislike: energy is decremented; repost: energy is increased by 2; reference: energy is incremented; In addition the energy is decremented at every time step (we consider the evolution in discrete time). On the other hand, the more relevance of the message, the more likely people respond and express their opinion about information in this message. It is assumed the probability to get some response depends on current energy of agent. We introduce the probability of getting certain reaction for the agent with energy E as follows We denote by initial parameters of the model, and by some monotone nondecreasing function from to [0, 1]. The simulation of information spread Earlier we introduced the evolution rules for the agent. The information flow consists of the set of such agents. We simulate the dynamics of the whole information flow as follows. At the initial time only one agent exists. New agents may appear in two ways. Firstly there is a probability of spontaneous generation ( ). It means that new agent may appear with probability at every time step. Such appearance. 2

corresponds to the publishing new information by somebody. Secondly a copy of existing agent may be created (repost). Here we describe the life cycle of one agent in terms of variation of its energy. Let denote the value of energy at time t. Suppose is the random variable such that ( ) ( ) ( ) ( ) Let us denote. Then we have It follows that we can consider a change of energy as the random walk on { } with transition probabilities { { } In other words the stochastic sequence is a Markov chain with transition probabilities. A state diagram for this Markov chain is shown on Figure 1, using a directed graph to picture the state transitions. model. Figure 1. A state diagram for Markov chain. States represent energy of an agent The random walk of energy is useful approach to analysis of properties of the 3

Model results Now let us consider the statistical distribution of likes and reposts for messages in the information flow. Note that we can find the probability to get n likes for one agent according to the above theoretical approach. Suppose an agent gets like at time t; then { }, otherwise { }. Denote by any vector such that { }, if t and { } otherwise for. It is easily proved that { } Data generated by the model is illustrated in Figure 2. Figure 2. Distribution of likes generated by model The frequency distribution of likes (blue line with dots) increases at first, and then decreases. It looks like a density function of the Weibull distribution [4] { ( ) ( ) 4

In Figure 2 a density function of the Weibull distribution with the shape parameter and the scale parameter is shown (red line). We get this density function as an approximation for the frequency distribution of likes using the method of least squares. The frequency distribution of reposts and its approximation are shown in Figure 3. Here a density function of the Weibull distribution has the shape parameter and the scale parameter. Figure 3. Distribution of reposts generated by model Information flows in social networks We study life cycles of news publications in Twitter and compare results with output produced by the model. Data about increase of likes and retweets for special information messages were collected [3]. We found that distributions of likes and retweets from a real social network fit Weibull distribution similarly to the model (Figure 5 and Figure 6). The shape parameter coincides with good accuracy in both situations. 5

Figure 5. Distribution of likes from Twitter Figure 6. Distribution of retweets from Twitter We developed a computer program using R programming language for analyzing statistical data. Processing was carried out in three following steps. At first step the program detected increases in number of retweets for one user in online mode. For example, messages of New York Times newspaper were scanned every 15 minutes. 6

At second step the program treated data accumulated at the first step. We applied Weibull distribution for data approximation, so the scale parameter and the shape parameter were calculated. In addition, we estimated the rate of increase for number of retweets. analysis. At third step all gathered data were stored in the external data base for future To summarize, we collected texts of each message, timestamps for messages, scale and shape parameters, and numerous graphs. These graphs represent number of likes and retweets, the rate of growth for number of likes and retweets, and approximation for number of likes and retweets with Weibull distribution. Conclusion We constructed agent-based model of message life cycle in social networks. The statistical pattern for number of likes and reposts for information messages was found. Distribution of likes and reposts satisfy Weibull distribution according to modeling results. Model output is quite similar to the results from the real social network. It follows that the statistical pattern exists in real social networks and the model captures this pattern. Findings described in this article can be useful for future studying of information spread in social networks. Also the presented results can be applied to detecting anomalies in a life cycle of information messages. 1. Dodonov A.G., Lande D.V., Prischepa V.V., Putiatin V.G. Competitive intelligence in computer networks. K.: IPRI NAS of Ukraine, 2013. 248 p. 2. Hraivoronska A.M., Lande D.V. Agent-based approach to investigating dynamics of the information flows // System analysis and information technologies: Materials of the 17 th International scientific conference SAIT 2015, Kiev, 22-25 June 2015 / UNK IASA NTUU "KPI". K.: ESC IASA NTUU "KPI, 2015. C. 62-63. 3. Li R., Lei K.H., Khadiwala R., Chang K.C. TEDAS: A Twitter-based Event Detection and Analysis System // Data Engineering (ICDE), 2012 IEEE 28th International Conference, 2012. P. 1273-1276. 4. Neshitoy V.V. Mathematical and statistical analysis techniques in library and informationtional activities. Minsk: Belarus. State. Univ. of Culture and Arts, 2009. 203 p. 7