Field Analysis and Balancing Tools Needs and Solutions

Similar documents
Vibration Analysis Machinery Inspection & Evaluation Level II

Improve Manufacturing Reliability by Implementing Predictive Maintenance

Vibration Analysis. Category 1

DANIELI TOTAL ASSET MANAGEMENT SYSTEM*

ALERT. Vibration Diagnostic Software. Proven Technology for Machinery Condition Assessment

Pumping System Vibration

Management aspects on Condition Based Maintenance the new opportunity for maritime industry

PREDICTIVE AND PROACTIVE MAINTENANCE PROGRAM FOR MONITORING FACILITY ASSETS

Schaeffler UK Training Courses

Optimized Skid Design for Compressor Packages

INTERNATIONAL STANDARD

Operator Involvement Improves the Performance of a Condition Monitoring Programme

Aftermarket Technical Service Solutions for Pumping Technologies

VIBRATION ACCEPTANCE TEST REPORT

DIAGNOSIS PUMP PROBLEMS USING VIBRATION ANALYSIS

General HUMS Overview. Jason Alamond

Development Of Condition Based Maintenance For Coal Handling Plant Of Thermal Power Stations. By: Makarand M. Joshi

Total Productive Maintenance OVERVIEW

Part 3 Absolute, Machine Specific Standards

Cost savings from the CMS Vibration Monitoring and Predictive Maintenance Presented by: Tim Parmer Manufacturing in America 02/22-23/2017

Onshore Wind Services

Modal Analysis as a Tool to Resolve Pump Vibration Issues

NONDESTRUCTIVE EVALUATION (NDE) METHODS FOR QUALITY ASSURANCE OF EPOXY INJECTION CRACK REPAIRS

MGA Research Corporation

IMPACT ECHO TESTING OF IN-SITU PRECAST CONCRETE CYLINDER PIPE

Seismic Considerations of Circuit Breakers

How to Maximize the Return on Investment. Monitoring and Inspection of Mechanical Systems by Using Infrared Thermography

Improving Rotating Equipment Reliability and Machinery Health Training Course. Introduction to Rotating Equipment and Machinery Reliability:

Services Training, Renting, Coaching

Vibrational Analysis a Key for Pump Maintenance-Case Study

Product Inspection. Compliance Expertise Performance Uptime. Product Inspection Services Maximizing Productivity

Power plant Asset. Thermal power Hydro power Geothermal power. QuestIntegrity.com CHALLENGE CONVENTION

reasons to invest in a CMMS

OCEANIA. Capability Statement. Silver Alliance Partner

Break free of the reactive cycle of doom

PES ESSENTIAL. A bird s eye view

Piping Vibration Risks and Integrity Assessment

Steam Turbines. Leading Technology for Efficient, Reliable Generation Siemens Steam Turbines from 90 MW up to 1,900 MW.

Random Vibrational Analysis of High Speed Centrifugal Compressor

MTS Semiconductor Solution

Pump Vibration. Related Considerations and How Much is Too Much? MWEA Collection Systems Seminar. Steve Fehniger, P.E.

Steam Turbines-Generators and Auxiliary Systems - Program 65

Case Study. Cosma International improves systems through collaboration with Solarsoft. Customer Spotlight.

Vibration Analysis for Predictive Maintenance

Managing for Daily Improvement

ONLINE Fault MOINTORING System using Multi Agent Software

Development of Large-Capacity Single-Casing Reheat Steam Turbines for Single-Shaft Combined Cycle Plant

Presents. Practical. Machinery Vibration Analysis and Predictive Maintenance. Web Site:

Field Technology Services

FW66 FORESTRY WINCH FW66. Owner s Manual 19/02/2016

Interference of Wind Turbines with Different Yaw Angles of the Upstream Wind Turbine

YOUR LEADING RENEWABLES PARTNER THROUGH EXCELLENCE AND INNOVATION

Maintenance of automated terminals Arto Keskinen, VP Intelligent Service Solutions, Kalmar

Deadly Sins of. Business Process Management. Smarter Solutions, Inc.

Maintenance Planning & Scheduling. Dr. Khaleel Abushgair

2017 American Journal of Engineering Research (AJER)

ENERGIZE YOUR PROCESS

SIWAREX FTC The belt scales in SIMATIC More than just standard. siwarex ftc

NEW APPROACH OF ENVELOPE DYNAMIC ANALYSIS FOR MILLING PROCESS

Measuring and Diagnostic Service Guarantees reliable and safe plant operation

Overview of Technical Skills and Competencies

ISO INTERNATIONAL STANDARD

Lean Flow Enterprise Elements

Multi Rip Saws for Dividing Panel Materials

Power Quality tools. Recorders. Troubleshooters. Loggers. for industrial and commercial applications.

2015 DW Module 1: General Overview VOLUME III Answer Key

Dynamic Design of the Foundation of Reciprocating Machines for Offshore Installations in Persian Gulf

Field Assessment of Overall RMS Vibration Guidelines for Reciprocating Compressors

Understanding Manufacturing Execution Systems (MES)

Pressure Pulsations and Vibration Measurements in Francis Turbines with and without Freely Rotating Runner Cone Extension

Secrets to Achieving Lubrication Excellence

Published by DyRoBeS Manual RotorBal. Table of Contents License Agreement RotorBal. RotorBal 1/16

Water flow measurement in the oil and gas industry

10 Steps to become a Lean Enterprise. Level 2 Lean Practitioner In Manufacturing Training Course. Step 1 - Part 2

Program Description MECHATRONIC SYSTEMS TECHNICIAN ACADEMY

WHITE PAPER SERIES. Guide to Mobile CMMS

Low and Medium Voltage Motor Repair

WIND TURBINES. Vibration Control of: Wind Turbines APPLICATIONS POWER GENERATION - WIND TURBINES

Taking the LED Pick and Place Challenge

TGL Fabrication Co.,Ltd. A growing Company with a growing reputation. Horizontal Load Testing & Inspection Services.

SCIENTIFIC MANAGEMENT TECHNIQUES, INC.

Installation Guidelines for Flygt Pumps Pump Anchoring Recommendations

Digital Asset Management: Optimizing the Asset Life-cycle with new generation of tools. Filip Kowalski, SAP CEE

for higher reliability by lower costs

Smarter management of turbine assets: How to get the most from your condition monitoring system

Operator Driven Reliability

Determination of damage location in RC beams using mode shape derivatives

CFD Analysis of a Low Head Propeller Turbine with Comparison to Experimental Data By: Artem Ivashchenko, Mechanical Solutions, Inc.

Guardian Support and Guardian Support + Repair for Portable Analyzers and Online Systems

BINDT Accredited vibration analysis training from SKF. Setting the world standard for reliability instruction

VIBRATION CONTROL FOR A 25 MW STEAM-TURBINE GENERATOR INSTALLATION NEAR ACADEMIC TEACHING AND RESEARCH LABORATORIES

SECTION MECHANICAL EQUIPMENT - GENERAL REQUIREMENTS

Strategic Component Management Integrating Asset Management, Root Cause Analysis, and Predictive Maintenance

DESIGN GUIDE. Precision ground Ball Screws ENGINEERED BALL SCREW ASSEMBLIES FULL SERVICE REPAIR CONTACT US

LOCAL SERVICE, NATIONWIDE NETWORK

Cisco s Digital Transformation Supply Chain for the Digital Age

Improving Operational Performance - Apprenticeship

Can Machine Learning Prevent Application Downtime?

CENTRIFUGAL COMPRESSORS MAINTENANCE & FAILURE ANALYSIS

POSITION DESCRIPTION - STAKING TECHNICIAN PAGE 1 POSITION DESCRIPTION STAKING TECHNICIAN

Transcription:

The Toolkit for Success Field Analysis and Balancing Tools Needs and Solutions Dennis H. Shreve Commtest, Inc. September 2006 1

A Look at Industry Today The Economic Driving Forces Improving operating efficiency Minimizing downtime Immediate problem resolution Key Elements to Problem Resolution Detection Analysis Correction Verification Pressure on Maintenance Personnel Need to be readily available, and at a moment s notice Need to have all required tools in place 2

Evolution on PdM Equipment The Evolution: Human senses (and a wooden-handle screwdriver) Vibration transducer Portable meters for detecting (and quantifying) a problem Portable data collector for storing historical information Portable analyzer for storing, recalling, and examining data (amplitude, frequency, and phase) Portable collector, analyzer, and correction tool in one lightweight, integrated package Key Emphasis: Portability Completeness 3

Maintaining Assets Wants and Needs of Plant (and Management) Personnel: Advanced, but proven technology Right set of tools Dependability and repeatability Cost-effective solution Trained and skilled workforce Early problem detection Quick root-cause analysis Effective resolution, with high confidence The Fundamental Focus for Maintenance: Detection Analysis Correction Verification The 4 Key Elements 4

Field Service and Repair Addressing the problem Discovery Assessment Diagnosis Data gathering Root-cause analysis Correction Examining alternatives Selecting the best path for the solution Resolving the problem Verification 5

Key Elements of Service Quality Detection Accurate, repeatable sensing device Accurate, repeatable measuring instrument Right Interpretation (Analysis) What is vibrating? How much, what level (Amplitude)? What frequency (1X, 2X, etc. relative to running speed)? Under what conditions? Relative behavior to other machine components (Phase)? Resolution of Problem (Correction) What seems to be the matter? What should be tried? 6

Correction Common Methods for Correcting a Vibration Problem Balancing Alignment Tightening of loose parts Cleaning Replacing failed components, such as bearings Stiffening, damping, and isolation of vibrating components Active cancellation of vibration Common Sense Routine Maintenance Thorough inspection Checking machine components for looseness Cleaning of blades, vanes, etc. The Big 5 Faults Balancing Alignment Looseness Rolling Element Bearings Resonance 7

Unbalance The Major Problem Unbalance Is a Major Culprit In Rotating Equipment 40% of all vibration problems can be attributed to an unbalance condition Unbalance is characterized by a significant vibration at 1X running speed Typically resolved by adjusting mass distribution i.e., shifting, adding, or removing weight on the rotor 8

ANSI S2.19-1999 Balancing process of attempting to improve the mass distribution of a body so that it rotates in its bearings without unbalanced centrifugal forces Reducing these influences to the lowest limit possible. 9

Way back when Even early man had unbalance problems! 10

Why Balance? Benefits of Balancing Minimize noise Increase bearing life Decrease operating stress Consume less energy Improve product quality Decrease operator fatigue Improve personnel safety Eliminate fatigue of support structure 11

No Balancing Could Be Bad! OOPS! 12

Causes of Unbalance Source of Problem in Manufacturing (Production) Design errors Material variation Form, fit, assembly variation Source of Problem in Operations (Field) Deposits buildup Erosion Shifting of weights or components Gradual relief of residual stresses Production versus Field Balancing 13

The Challenge in the Field What Are Possible Causes of a Vibration Problem? Unbalance Misalignment Resonance Eccentricity Influences from other machine components We Must Get a Good Reading of the Situation The amount of vibration The frequency of the influence (looking for a significant 1X component) The direction (phase) of the influential forces 14

Fundamental Requirements for the Tool Small, lightweight, and preferably a hand-held package Proven hardware platform reputable supplier Accurate, reliable instrument Functionally independent in the field (no dependence on host) Easy to use, intuitive not requiring lots of training Complete package including key accessories On-board data storage and recall Chart and report capture Built-in analysis for qualifying and quantifying Incorporates a correction technique, like balancing Ability to function independently and without lifelines! plus Low Cost 15

Field Implementation Simple Menu Structure Instrument Setup Measurement Analysis Balancing Analysis Quick measurement Simple, fundamental measurements Speed of machine Amplitude and frequency of vibration Remember, if it is unbalance, we are looking for significant 1X component at running speed. 16

Provisions for Balancing Inclusion of all required components vibration transducers, phase measuring device, instrument cables, etc. Abilities for two-plane measurement, continuous or fixed rotor positions, direction orientation, adding or removing weight, combining weights, additional trimming Guidance and prompting through fundamental steps Initial run Introduction of trial weight (The Calibration) Correction run Trim run All with clear and concise numeric and graphical screens. 17

A Field Example Equipment is reported as running roughly Running speed is 1050 RPM Speed of shaft measured via photo tachometer (laser) and verified to be 1053 RPM Overall and FFT (frequency) measurements taken 18

Field Example (cont.) Overall at 0.230 IPS (inches per second 0-pk), with majority of contribution (0.219 IPS) at running speed (1050 RPM) Verified as rough from Severity Chart Vibration Velocity (IPS Peak) Vibration Velocity (mm/s Peak) Severity Level for Machine.001 0.025 Extremely Smooth.002 0.051 Very Smooth.004 0.102 Smooth.008 0.203 Very Good.016 0.406 Good.032 0.813 Fair.064 1.626 Slightly Rough.128 3.251 Rough 19

Field Example (cont.) Attach transducer Make an initial balancing run measurement on one plane Display speed, magnitude, and relative phase 20

Field Example (cont.) Stop rotor Attach trial weight plane 1 Bring up to speed Instrument measures unbalance and performs calculation for correction Remember the 30/30 rule. 21

Field Example (cont.) Correction weight is placed at recommended position Machine is brought up to running speed Speed, magnitude and phase measurements are taken 22

Field Example (cont.) It is decided to perform a trim A new weight callout is specified The machine is stopped, the weight is applied, and it brought back up to running speed Speed, magnitude and phase measurements are taken 23

Field Example (cont.) Overall and spectral readings are once again taken Certain progress is noted 24

Field Example (cont.) Data is compared in the instrument for a conclusive before and after comparison. (Certain improvement is noted.) 25

General Procedure in Review Determine 1X running speed Take overall and spectral information Verify significant 1X component Initiate balancing procedure initial, trial, correction, trim Check vibration levels Check spectrum display Trim more, if necessary Verify success Document End job 26

Conclusions: Time Is Money in Field Work Be prepared Travel lightly (with a single trip) Work efficiently Have All Required Components in Your Tool Box Keep the Process Simple Maintain Some Independence Document (Record) Your Work This has been an example of a specific implementation. 27

What does it take? PEOPLE EQUIPMENT TRAINING COMMITMENT 28

Case History Example A belt-driven air handler Run until the shaft breaks Primary and secondary damages $18,000 in parts and $4500 labor Run until bearing failure No secondary damages $600 in parts and $300 labor Vibration analysis - early warning calls for grease 3 cents in material and $6.00 labor Not even counting downtime, a savings of $22,493.97! 29

Governmental Studies Take a look the web site: http://www.eere.energy.gov/femp/operations_maintenance/strat egies/strat_predictive.cfm Return on investment: 10 times Reduction in maintenance costs: 25% to 30% Elimination of breakdowns: 70% to 75% Reduction in downtime: 35% to 45% Increase in production: 20% to 25% 30

Lean Manufacturing and PdM Commonly used buzz words in manufacturing today: Lean initiative Visual factory Pull scheduling Value stream mapping Six Sigma Cell design Asset management Kaizen blitz As Predictive Maintenance folks, where do we fit into the scheme of things? 31

Eight Steps in the Scientific Method PdM follows 8 steps: 1. Determine the basic problem 2. Collect data to define scope and severity 3. Decide a possible method for correction 4. Choose tools to address the problem 5. Try to correct the problem 6. Test the fix 7. Reassess the situation 8. Institute a change or remedy for going forward. 32

Asset Care and the Lean Initiative Industrial revolution put machines at core of the new model of manufacturing capability and capacity. Maintenance and reliability programs make machines and facilities reliable and available. Lean manufacturing emphasis places asset care as a crucial element of the toolbox. Predictive Maintenance methods (comprised of detection, analysis, correction, and verification) are essential to asset management. Balancing is a key correction tool for field work. 33

Questions & Follow-on Discussion 34