REPORT DOCUMENTATION PAGE Form Approved OMB No

Similar documents
AND Ti-Si-(Al) EUTECTIC ALLOYS Introduction. temperatur-dependent

Joint JAA/EUROCONTROL Task- Force on UAVs

The Nuts and Bolts of Zinc-Nickel

Kelly Black Neptune & Company, Inc.

Yttria Nanoparticle Reinforced Commercially Pure (CP) Titanium

Transparent Ceramic Yb 3+ :Lu2O3 Materials

AFRL-RX-TY-TP

RFID and Hazardous Waste Implementation Highlights

Emission Guide Update for Mobile and Stationary Sources at Air Force Installations

Implementation of the Best in Class Project Management and Contract Management Initiative at the U.S. Department of Energy s Office of Environmental

Parametric Study of Heating in a Ferrite Core Using SolidWorks Simulation Tools

Title: Nano shape memory alloy composite development and applications

Fort Belvoir Compliance-Focused EMS. E2S2 Symposium Session June 16, 2010

Flexible Photovoltaics: An Update

Satisfying DoD Contract Reporting With Agile Artifacts

Predicting Disposal Costs for United States Air Force Aircraft (Presentation)

Vehicle Thermal Management Simulation at TARDEC

Final Report for AOARD

Deciding in a Complex Environment : Human Performance Modeling of Dislocated Organizations

Static and dynamic testing of bridges and highways using long-gage fiber Bragg grating based strain sensors

Progress on LHE Zinc-Nickel and Other Cadmium Alternatives

Update on ESTCP Project ER-0918: Field Sampling and Sample Processing for Metals on DoD Ranges. Jay L. Clausen US Army Corps of Engineers, ERDC CRREL

Reintroducing High Workload Needle Free Jet Injectors to the US Military Medical Community

Characterizing PCB contamination in Painted Concrete and Substrates: The Painted History at Army Industrial Sites

Navy s Approach to Green and Sustainable Remediation

VARTM PROCESS VARIABILITY STUDY

Department of Defense Green Procurement Program and Biobased Products

Optical and Mechanical Properties of Nano-Composite Optical Ceramics

Title: Human Factors Reach Comfort Determination Using Fuzzy Logic.

Testing Cadmium-free Coatings

Red-cockaded Woodpecker (RCW) Management at Fort Stewart

Systems Engineering, Knowledge Management, Artificial Intelligence, the Semantic Web and Operations Research

EFFECT OF MATERIAL PHASE CHANGE ON PENETRATION AND SHOCK WAVES

Air Intakes for Subsonic UCAV Applications - Some Design Considerations

Views on Mini UAVs & Mini UAV Competition

STRENGTHENING MECHANISM IN METALS

Processing and Deposition of Nanocrystalline Oxide Composites for Thermal Barrier Coatings

Reporting Limit (RL) Presenter

Chapter 8: Strain Hardening and Annealing

Report No. D August 1, Internal Controls Over U.S. Army Corps of Engineers, Civil Works, Disbursement Processes

THE NATIONAL SHIPBUILDING RESEARCH PROGRAM

Safe Disposal of Secondary Waste

Implementing Open Architecture. Dr. Tom Huynh Naval Postgraduate School

Lithium Potassium Manganese Mixed Metal Oxide Material for Rechargeable Electrochemical Cells

Progress on S53 for Rotary Gear Actuators ESTCP Project WP-0619

EXPLOSIVE CAPACITY DETERMINATION SYSTEM. The following provides the Guidelines for Use of the QDARC Program for the PC.

Surfactant-Based Chemical and Biological Agent Decontaminating Solution Development

Strengthening Mechanisms

Aeronautical Systems Center

Hybrid Vapor Compression Ejector Cycle: Presentation to IAPG Mechanical Working Group

Laser Stripping of Aerospace Materials with Closed-Loop, Color-Recognition Control

Overview of USD-AT&L Memo on Cr 6+ and Other Regulatory Issues

REPORT DOCUMENTATION PAGE

Grinding & Superfinishing. Methods & Specifications

DoD Environmental Information Technology Management (EITM) Program

Climate Change Adaptation: U.S. Navy Actions in the Face of Uncertainty

ENHANCED PROPELLANT AND ALTERNATIVE CARTRIDGE CASE DESIGNS

Evaluation of Dipsol IZ-C17 LHE Zinc-Nickel Plating

Sustainable Management of Available Resources and Technology (SMART) Cleanup

Novel Corrosion Control Coating Utilizing Carbon Nanotechnology

STORAGE OF LIMITED QUANTITIES OF EXPLOSIVES AT REDUCED Q-D

Magnesium-Rich Coatings

Counters for Monitoring

3 Workshop Thermochemical processes in plasma aerodynamics

Software And Systems Engineering Risk Management

Fall 2014 SEI Research Review. Team Attributes &Team Performance FY14-7 Expert Performance and Measurement

A Conceptual Model of Military Recruitment

Avoiding Terminations, Single Offer Competition, and Costly Changes with Fixed Price Contracts

1 ISM Document and Training Roadmap. Challenges/ Opportunities. Principles. Systematic Planning. Statistical Design. Field.

UNITED STATES DEPARTMENT OF INTERIOR GEOLOGICAL SURVEY DISPOSAL SITE IN NORTHEASTERN HARDEMAN COUNTY,

60mm M225 FATIGUE TEST AND BURST TEST

DISTRIBUTION A: Distribution approved for public release.

Enhance Facility Energy Management at Naval Expeditionary Base Camp Lemonnier, Djibouti. 12 May 2011

Incremental Sampling Methodology Status Report on ITRC Guidance

Designing martensitic steels: structure & properties Enrique Galindo-Nava and Pedro Rivera

Use of Residual Compression in Design to Improve Damage Tolerance in Ti-6Al-4V Aero Engine Blade Dovetails

The Business Case for Systems Engineering: Comparison of Defense-Domain and Non- Defense Projects

Grain growth, precipitate state and microstructure evolution in an Nb-alloyed PHFP (AFP) steel

CONTRACTING ORGANIZATION: Henry M. Jackson Foundation for the Advancement of Military Medicine Rockville, MD 20852

Corrosion-Fatigue Cracking in Al 7075 Alloys

Protective Design. Force Protection Standards and Historic Preservation Policy. DoD Conservation Conference

Stormwater Asset Inventory and Condition Assessments to Support Asset Management Session 12710

UPDM and SysML for Systems Engineers.

Integrated Systems Engineering and Test & Evaluation. Paul Waters AIR FORCE FLIGHT TEST CENTER EDWARDS AFB, CA. 16 August 2011

DoD Sustainability Strategy The Latest. Mr. Dave Asiello DUSD(I&E)/CMRM

US Naval Facilities Engineering Service Center Environmental Program on Climate Change

Development of an integrated ISFET ph sensor for high pressure applications in the deep-sea

Thin Products < 75 mm 7055-T7751. Strength (MPa) 500. Thick Products mm Year First Used in Aircraft

Report Documentation Page

Stakeholder Needs and Expectations

Logistics Technology Assessment

Suspended Sediment Discharges in Streams

Improving Strategic Decision and Senior-level Teamwork in U.S. National Security Organizations

Process for Evaluating Logistics. Readiness Levels (LRLs(

Joint Expeditionary Collective Protection (JECP) Family of Systems (FoS)

Recrystallization Behavior of Cold Rolled Alloy 718. R.P. Singh, J.M. Hyzak, T.E. Howson and R.R. Biederman *

SAIC Analysis of Data Acquired at Camp Butner, NC. Dean Keiswetter

Sediment and Terrestrial Toxicity and Bioaccumulation of Nano Aluminum Oxide. Click to edit Master subtitle style

Development of Rolling Schedules for AZ31 Magnesium Alloy Sheets

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline

Transcription:

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 11 Jefferson Davis Highway, Suite 4, Arlington, VA 0-40. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.. REPORT TYPE 1. REPORT DATE (DD-MM-YYYY) 7-01-007 4. TITLE AND SUBTITLE Mechanisms of Recrystallization in Superalloys Final Report. DATES COVERED (From To) 1 January 006-6-Jul-07 a. CONTRACT NUMBER FA86-06-M-4001 b. GRANT NUMBER c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Frank J Montheillet d. PROJECT NUMBER d. TASK NUMBER e. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Ecole des Mines de Saint-Etienne (ENSM-SE) 18, cours Fauriel Saint-Etienne Cedex 40 France 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) EOARD PSC 81 BOX 14 FPO AE 0941-0014. SPONSOR/MONITOR S ACRONYM(S) 11. SPONSOR/MONITOR S REPORT NUMBER(S) SPC 06-4001 1. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 1. SUPPLEMENTARY NOTES 14. ABSTRACT This report results from a contract tasking Ecole des Mines de Saint-Etienne (ENSM-SE) as follows: The project will study the effects and influence of very low (0 - ppm) and very high (-1%) niobium content in solid solution. Quantitative analysis of the stress-strain relationship will be conducted to determine stress-strain curves (up to large strains) at various temperatures and strain rates (typical ranges: 800 to 0 C, 0.01 to 1 s-1). Beyond the overall strain rate sensitivity (m) and apparent activation energy (Q), strain hardening (h) and dynamic recovery (r) parameters will be extracted from the data using one of the available physical equations. Evolutions of the above rheological parameters with Nb content for given straining conditions will therefore be deduced and compared with that of industrial grades. Electron Backscattering Diffraction imaging will be used to determine the Dynamic Recrystallization mechanisms operating in the various cases. Deformation microstructures will be characterized quantitatively (grain or crystallite size distributions, misorientation distributions, crystallographic texture). Such data will be put into correlation with the associated hot deformation flow stress (Derby diagrams). Two or three different states likely to be associated with precipitation of NiNb will first be selected from the stress-strain curve shapes and microhardness measurements. Transmission Electron Microscopy will then be used to determine the nature, size, morphology and localization of the intermetallic (NiNb) particles after straining followed by quench. In particular, their possible interactions with dislocations and grain boundaries will be analyzed. 1. SUBJECT TERMS Microstructure, Superalloy, Metallic Materials 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18, NUMBER 19a. NAME OF RESPONSIBLE PERSON ABSTRACT OF PAGES WYNN SANDERS, Maj (S), USAF a. REPORT b. ABSTRACT c. THIS PAGE UL UNCLAS UNCLAS UNCLAS 19b. TELEPHONE NUMBER (Include area code) +44 (0)0 714 14 Standard Form 98 (Rev. 8/98) Prescribed by ANSI Std. Z9-18

MECHANISMS OF RECRYSTALLIZATION IN SUPERALLOYS!"##$%"$ $&%%' ( )*+ *,%%-

!"#$%&&'%('' )* )* + )!, # ) * *- * #". / # " )) 0#" ) "#$%&&'%(''!0!!1 ) * * 1 ) * * *! 4)- * * * ) * )* #". /0!!1 )! (4-6 7 *)! " 4 / /

CONTENTS I. INTRODUCTION II. PREPARATION OF MODEL HIGH PURITY BASE Ni-Nb ALLOYS III. RHEOLOGICAL BEHAVIOUR OF THE Ni-0.01Nb, Ni-Nb, and Ni-1Nb ALLOYS IV. QUANTITATIVE ANALYSIS OF THE STRESS-STRAIN CURVES OF Ni-Nb ALLOYS V. STEADY STATE STRESS VS. GRAIN SIZE RELATIONSHIP VI. DISCUSSION VII. CONCLUSIONS AND FUTURE DEVELOPMENTS! " #!#

$../0/. # # %#%%!%!& # # #"!! "% % % % %!%% % "% '% ()*+, -'*./001$11/4 "% # % # 4 6 /7!!" 4% 849 #!!-"-1 4-"8-14-"9!#4-" 8-14-"9 40-" 8-140-"9! ":: 1! -14-" -14-" #"! ##% # #! " ;! " %!-140-" % #"! #"! &"!! #! % 8:::9 : :< 1-1-"! #4444-"8-14-"-14-"-1 4-" -14-"!9!& # =1 1 >?, "!?"! # # & # %%!< '!" % <:../. 1../4$! # %# " 6 &4@@0A 7 % "! %# #! #1! #% "% % % "! % " %! # % 8 %!: 1 )(9 # #":

Table I. Chemical analyses of the alloys *! -"89 8%9 8%9 )8%9-8%9 - -14-" 40 00 0 0 4 B -14-" @0 / 0 $ $ B -140-" 40 @ B :# " 44# # 40C 8 % 9! " % 4/%% "! ## % % % 4D%%4$ %###D%% % /%% % %"...1. 41.0 /1 $%%' $'% $'# ' % # %% #"::E -1 40-" 8 :::$9 * % % "& 8 40%9 # % % # %%! % 0!! Table II. Temperature and strain rate conditions of the torsion tests carried out on pure Ni, Ni-0.01Nb, Ni-0.1Nb, Ni-1Nb, and Ni-Nb % 8C 9..0 @ @0 4 $ 4 8 4 9 $ " %! %.@4C #! 4 4 #!

0?# #?!% = Γ F - %E % - #%E%% 8 % 9!8 % 9#! #!% # # #'BG $ Γ σ = ( $ + % + ) 849 $ π+ + %:" %?# #? # % = ΓF- % % Γ - #%#...'$%%' 1!-14-"! # % '# 4 $4$ 4! % 6/7" #!# # % " -: " " " ## &:! # & #! %!%!&## &!" #" '!! # % "%!%!&! % % %.@ 4C " 8% = σf ε 9! 8% = σf ε9 %# σ # ε '#, "::: % #! % # % H4D$% H4$8!?# #? % %!9: % #! % #! %! % 8I 9! 8I 9 4 4 % σ 4F '# $*! -!-14-" -14-" " % "! # # % 6 /7 σf84f9 = %IF+ +#%%I % J#" #% % # "GI H0$>F%I H$4>F%

/ Table III. Strain rate sensitivity values of the Ni-0.01Nb alloy % 8C 9 % 8 9 % 8! 9. 4/$ 44 @ 4@ 4 4 4/0 40 * # 4D$ 4$

D 00 Ni-0.01Nb 0.0 s -1 Flow Stress (MPa) 0 900 C 0 C 00 0 0 1 4 Strain Ni-0.01Nb 0.1 s -1 Flow Stress (MPa) 0 80 C 900 C 90 C 0 C 00 0 0 1 4 Strain Ni-0.01Nb 0. s -1 Flow Stress (MPa) 0 900 C 0 C 0 0 1 4 Strain Figure 1. Torsion stress-strain curves of alloy Ni-0.01Nb

. Ni-0.01 Nb Stress (MPa) 9 8 7 6 900 C 0 C 4 4 6 8 4 0.1 Strain Rate (s -1 ) Figure. Strain rate dependence of the flow stress of alloy Ni-0.01Nb (triangles: peak stress; circles: steady state stress) 0 Ni-0.01Nb 0.1 s -1 Flow Stress (MPa) 7.E-4 8.0E-4 8.E-4 9.0E-4 9.E-4 1/T Figure.Temperature dependence of the flow stress of alloy Ni-0.01Nb (triangles: peak stress; circles: steady state stress)

@...,$'% * # -1-" # % 8'# D9 "% %!#% #*E %# -14-"8'# 9'.C 4 4 σ H40 -. -14-"0./ -14-"'.C @C $ 4 #!"!1# 8 % " 9 J #! " # % 1 '# 0! % % 8 9% 8! 9 ":<: % #!% % " σ 4F ε =4 4 '# / % "!# " σ σ %# % I % I 8% 9* I #! #% 8":<9 Table IV. Strain rate sensitivity and apparent activation energy (at 0.1 s 1 ) values for the peak stress (m M, Q M ) and the steady state flow stress (m S, Q S ) of the Ni-Nb alloy % % I F+ I % 8C 9 % I F+ I % 8K9 8>F%9 8K9 8>F%9. 0 @DD 1 1 @ 0.D 4D $.0 0/@ 44. $0D 4 4D@ D$ 444 $.

4 700 600 Ni-Nb 0.0 s -1 Flow Stress (MPa) 00 400 00 00 900 C 0 C 700 600 0 0 1 4 Strain Ni-Nb 0.1 s -1 Flow Stress (MPa) 00 400 00 00 900 C 90 C 0 C 0 0 1 4 Strain 700 Ni-Nb 0. s -1 600 Flow Stress (MPa) 00 400 00 00 900 C 0 C 0 0 1 4 Strain Figure 4. Torsion stress-strain curves of alloy Ni-Nb (crosses mean fracture)

44 0 9 8 Ni-Nb 7 6 Stress (MPa) 4 900 C 0 C 4 6 8 4 0.1 Strain Rate (s -1 ) Figure. Strain rate dependence of the flow stress of alloy Ni-Nb (triangles: peak stress; circles: steady state stress) 0 Ni-Nb 0.1 s -1 Flow Stress (MPa) 7.E-4 8.0E-4 8.E-4 9.0E-4 9.E-4 1/T Figure 6. Temperature dependence of the flow stress of alloy Ni-Nb (triangles: peak stress; circles: steady state stress)

4...6$'#!-140-"! % "% % % 8- $ -"9 #" % "% 4 # %'# D! 8 9" 4C # 40% 40C % % % % 89 4% # %% %# # A 89 # - $ -" 8 %! <:$9 J! # 1#% %" εh0"! 8'#.9 ' " " % # %!; #!"% %" 8!9! #@C 4 4C 14 4 G L 1;% % I $D>F% "! " " 8<:9 % %!% %M1! %!" Nb-wt% 1 1600 1400 Temperature ( C) 0 800 Ni Nb 600 Ni (atom per cent) Figure 7. Ni rich part of the Ni-Nb phase diagram

4$ 1 Ni-1Nb Torque (Nm) - 0.00 s -1 0 C - 0.1 s -1 900 C - 0.00 s -1 0 0 1 N (rev) Figure 8. Torque-twist curves of alloy Ni-1Nb (the star means fracture).70/.//.. /1 /$/. 0 $ : #!-1 4-"-14-"-14-"-14-"!& # =1 1> 8=>9 6=4@.DA >4@@47 #!%! # %% G ρ = ρ ε 89 ρ! # %!%! % :# 89 %" σ = αµ " ρ α 4µ %" B # %G { } 4F 8 9E [ 8 9 ] σ = σ σ σ ε ε 8$9 ; ε σ! σ = α µ " F 8 9! " "!%!& ' 1! 8ε σ 9 % %!*% %! σ ##"8$9!%!& E % " 8 ε = ε 9!

4 ε < 80F/9 ε 6+ 4@D$7'# @! E% -14-" %4 4 : # %"=># 00 Ni-0.01Nb 0.1 s -1 Flow Stress (MPa) 0 80 C 900 C 90 C 0 C Figure 9.Example showing how the YLJ equation (broken lines) fits the first part (i.e., before the onset of DRX) of the experimental stress-strain curves (dotted lines).'σ 0 0.0 0.1 0. 0. 0.4 Strain : σ % % # % * # % # 67E" %G % % I B E σ = ε + 89 % %I = ε E + 809 % % I I #σ!+# '# 41!-14-"-14-" -14-"-14-"

40 0 Pure Ni 0 Ni-0.01Nb 0 900 C 0 C 4 6 8 4 0.1 Strain Rate (s -1 ) Ni-0.1Nb 0 900 C 0 C 4 6 8 4 0.1 Strain Rate (s -1 ) Ni-1Nb 0 900 C 0 C 4 6 8 4 0.1 Strain Rate (s -1 ) Ni-Nb 900 C 0 C 4 6 8 4 0.1 Strain Rate (s -1 ) Figure a. Strain rate dependence of σ for pure nickel and the four alloys Ni-0.01Nb, Ni-0.1Nb, Ni-1Nb, Ni-Nb 900 C 0 C 4 6 8 4 0.1 Strain Rate (s -1 )

4/ Pure Ni 0 C Ni-0.01Nb 900 C r r 1 4 6 8 4 0.1 Strain Rate (s -1 ) Ni-0.1Nb 1 4 6 8 4 0.1 Strain Rate (s -1 ) Ni-1Nb r r r 1 4 6 8 4 0.1 Strain Rate (s -1 ) Ni-Nb 1 4 6 8 4 0.1 Strain Rate (s -1 ) Figure b. Strain rate dependence of r for pure nickel and the four alloys Ni- 0.01Nb, Ni-0.1Nb, Ni-1Nb, Ni-Nb 4 6 8 4 0.1 Strain Rate (s -1 )

4D 0 Pure Ni 0 Ni-0.01Nb 7.E-4 8.0E-4 8.E-4 9.0E-4 9.E-4 1/T 0 Ni-0.1Nb 7.E-4 8.0E-4 8.E-4 9.0E-4 9.E-4 1/T 0 0. s -1 0.1 s -1 0.0 s -1 Ni-1Nb 7.E-4 8.0E-4 8.E-4 9.0E-4 9.E-4 1/T 0 Ni-Nb 7.E-4 8.0E-4 8.E-4 9.0E-4 9.E-4 1/T Figure c. Temperature dependence of σ for pure nickel and the four alloys Ni- 0.01Nb, Ni-0.1Nb, Ni-1Nb, Ni-Nb 7.E-4 8.0E-4 8.E-4 9.0E-4 9.E-4 1/T

4. Pure Ni Ni-0.01Nb r r 1 7.E-4 8.0E-4 8.E-4 9.0E-4 9.E-4 1/T Ni-0.1Nb 0. s -1 1 7.E-4 8.0E-4 8.E-4 9.0E-4 9.E-4 1/T 0.0 s -1 0.1 s -1 Ni-1Nb r r r 1 7.E-4 8.0E-4 8.E-4 9.0E-4 9.E-4 1/T Ni-Nb 1 7.E-4 8.0E-4 8.E-4 9.0E-4 9.E-4 1/T Figure d. Temperature dependence of r for pure nickel and the four alloys Ni- 0.01Nb, Ni-0.1Nb, Ni-1Nb, Ni-Nb 7.E-4 8.0E-4 8.E-4 9.0E-4 9.E-4 1/T %% #G

4@ G'# 4 % σ 6897 #% "< #% "%' % #8'# 4"9; % % #"%A -14-"-14-"!%!4C Table V. Strain rate sensitivities m and m r associated with σ and r, respectively (brackets indicate estimated values) 8C 9 % %. $ /$$ - @ 60.7 1 4 6$@07.0. 4 40-14-" @ 4/@ 44D 4 4$ $.. 440-14-" @ 440 0 4 404 $. // 4-14-" @ 440 @D 4 4 0. 0-14-" @ 4/ 1 4 4D@

G ' σ % "! # 8'# 49 * %89 % I F+ # I "<: ; % # % # % # I *$4 4 "% %#! I ; $ 4 "1# #' #% " %I 8 % #% 9#"!! # "% "% & # -14-" -14-"8'# 49' % %!: % H"!I %! #%% I E89 '!-14-" %I % #% #I %.,) # % % % G σ = αµ " F 8/9 α%!"h@x4 4 %8 9 %µ %% % #6' *"!4@.7G $ µ = µ 4 + η 8D9 E% µ HD.@x4 8 -$K9 H4D/K 8-9ηH /!'# 441 # % % % #: # ## #!" 4!% 84-"9" % 0! %!$ 6 47!!! # #!% B! -14-"!% # 1 ;! %!%!!"!# "! #!'# 44 # % "% 4 " #! -14-"-14-"

4 Table VI. Temperature dependence parameters associated with σ and r (brackets indicate estimated values) 4 ε 8 9 % I F+ 8K9 I 8>F%9 %I F+ 8K9 $ 1 1 1 I 8>F%9-4 //0 647.D/ 44 $ D$ 647 $. $ 0D0 @D.. $@ -14-" 4 $4 $./4 D4 $ 0 $D.@. / $.0 $/.D $D -14-" 4 $.$/ D 4/ 4/ $ $.4/ D 4./ $D $ //D @ /$@ 00-14-" 4 04D $@/ 1 1 $ $0 $0$ 4D. 40 $ /@4 / -14-" 4 0@D0 $@/ $ @ $/ 1

80 60 Ni Ni- 0.01Nb Ni- 0.1Nb Ni- 1Nb Ni-Nb r 40 0 0 0 00 000 h Figure 11. Diagram showing the h and r values of the five materials investigated.////..8/.1. *%" "! #!# 8!9&G σ = KF, 8.9 E#! ##"/.6, "!4@@7 # " # --1 4-"-14-"-14-" % 08!9 %.@@C ε =4 4 # % % # $N%! # %#8 9*! %% % 8(,9# " ## &!'# 4# %(B, "!8 # &% " % # # 40#9 E "<::' -!-1 4-" -14-" #!! H4$0-14-" 8%!9 % # ; (B, H0. %! % "% " JE! # % ## & # "%## #"% "! # %'! 8)9 # % # 8" 9

$ $$% ""!, "!64@@7! Steady State Flow Stress (MPa) 0 Ni-Nb Alloys 0.1 s -1 OM EBSD Ni-1 %Nb Ni-0.1 %Nb 1 0 Average Grain Size (µm) Figure 1. Diagram showing the relationship between steady state flow stress and average grain size. Optical microscopy (OM) and EBSD data. The broken line fits the whole set of OM data. Table VII. Exponent a of the steady state flow stress vs. grain size relationship (OM: optical microscopy) Ni-0.01 %Nb Ni -8)9-14-"8)9-14-"8)9-14-"8)9-14-"8(B,9 *) 0$ /. 4$0 0. $$

..0. ## "!"6 7"% % "!&.') B σ! σ!! "% "!'# 4$ -1-"!: ## %G σ = σ + E 8@9 E89 # %$D$ # %! 8 # 9 %% :"% % σ σ!" "!# &!# &!B E #E " #: " #"! "%# %.,(()9 '# 4 "% %I # % %I! %I!# # %E%% "% " # -14-" B! % I % # # "%! # E! % -14-" "% #" "% % # 4" ## %% # %8O49 #8 49"%

0 0.1 s -1 σ M - σ M Ni 900 0 0.01 0. 1.00.00 Nb Content (wt%) 0.1 s -1 σ S - σ S Ni 900 0 0.01 0. 1.00.00 Nb Content (wt%) Figure 1. Influence of niobium content on the peak and steady state flow stresses of pure nickel and the Ni-Nb alloys at various temperatures and a strain rate of 0.1 s 1

/ 00 S 0.1 s -1 87 000 M mq/r (K) 400 4000 0.0 0. 0.4 0.6 0.8 1.0 Nb Content (wt%) 0.0.0 900 C Strain Rate Sensitivity m 0.1 0. 0.0 m M m S Apparent Activation Energy Q (kj/mol) 0.00 0.0 0. 0.4 0.6 0.8 1.0 Nb Content (wt%) 00 400 00 00 Q S 0.1 s-1 0 0.0 0. 0.4 0.6 0.8 1.0 Nb Content (wt%) Figure 14. Influence of the solute niobium content on mq, m and Q (M: peak stress; S: steady state stress) Q M.0.0

D.64):)$'#!" % " F %!-140-"8:::$ "9' %!% %.C -140-"!4@.DC :% 4 40C % "%! % : % # # % '# 40 E" % -140-"4C @C.C B! -140-".C DC " "0%#% 8 #%9"! % # %# % '# D' % #% "%! M1! % % %%-1 40-" # %.C 840% 4%9 @C 84%9 % εh0 @C 0x4 $ 4 : ' % % $0@% -1-" #"4-"6 4@/7 '! % %!" % % ": E"! % E " " #%# : " % 8- $ -"9-140-"!!%" %! " % E % 4 ' % % % %! %"

. Pure nickel - L/Lo (%) 0.80 0.84 0.840 0.8 0.80 0.8 801.0 800. 800.0 799. 799.0 798. Temperature ( C) 0.80 798.0 000 00 0 0000 Time (s) Ni-1Nb - 0 C Ni-1Nb - 900 C 0.97 1. 0.8 901.0 L/Lo (%) 0.96 1.0 0.9 0. 0.94 0.0 0.9 999. 0.9 999.0 000 00 0 0000 Time (s) Ni-1Nb - Temperature ( C) L/Lo (%) 0.80 900. 0.800 900.0 0.79 899. 0.790 899.0 0.78 898. 0.780 898.0 000 00 0 0000 Time (s) Ni-1Nb - 700 C Temperature ( C) 0.71 801.0 0.60 701.0 L/Lo (%) 0.7 0.70 0.700 0.69 0.690 0.68 798.0 000 00 0 0000 Time (s) 800. 800.0 799. 799.0 798. Temperature ( C) 0.600 698.0 600 600 1600 0600 Figure 1. Dilatometry measurements carried out on pure nickel at and on alloy Ni-1Nb at 0, 900, 800, and 700 C L/Lo (%) 0.6 0.60 0.61 0.6 0.60 Time (s) 700. 700.0 699. 699.0 698. Temperature ( C)

@ 0. 0/0 / ""%" 6 7! " # "%8%!9 # #-"!G 89-"%!! # σ = σ + E E"% 89!# &!:! " # "%!# & % 89' % σ 84F9! % %I% #%I! -"%! #! # 8O49"%" # 89*! # =1 1> % # % σ! "!%!& #!%!8!% 9 %!% " "!& "% %!%% %:!! "# #%% #"% 89'! % -140-"! 1 1 "! " % # %! #" ; "!-1-"! #%% #- $ -" %! :-D4. 1 % % % %# # #" %%"!-1-"! % # "% # & 8 # %!%!&9 # % ' %#! (B, " " % %!:" # % E!! " "!-1-"!! E " # # 1 %!& #

$ " %% "!8 :-D4.9 # % -1-1 1' " "% 4,!%!&G! # &,- 40.4140.084@@9 1* ), %1%%%! % % #% 84@.9 : +!% P E!" (1(849 *** # % -D.1.84@@49 +*/;< 4 #! %% #( %4@D+! "# $ %&' K!1! > >:$D41$.@84@@09 ) $. ) +*: "%!%!& ()*+, -'*./001 $11/4'+ 89 ) ) +* ; # #!" 1"%!: # # * 8;(+( P/9 < B 8/9 = 4* " # %! #% 84@/9 " # (! ) ":89 # + C$/ %" #4D01$84@D$9 ) <91.); '%!& # *,-01 $484@.D9