Chapter 10 Biotechnology

Similar documents
Molecular Cell Biology - Problem Drill 11: Recombinant DNA

Lecture Four. Molecular Approaches I: Nucleic Acids

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech )

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology.

Chapter 15 Gene Technologies and Human Applications

Manipulating DNA. Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates.

2 Gene Technologies in Our Lives

CHAPTER 08: RECOMBINANT DNA TECHNOLOGY Pearson Education, Inc.

Chapter 8 Recombinant DNA Technology. 10/1/ MDufilho

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

Synthetic Biology for

2054, Chap. 14, page 1

DNA Technology. Asilomar Singer, Zinder, Brenner, Berg

Genetic Fingerprinting

DNA FINGERPRINTING MADE EASY FOR FORENSICS

BIOTECHNOLOGY. Understanding the Application

DNA Technology. B. Using Bacteria to Clone Genes: Overview:

Biotechnology. DNA Cloning Finding Needles in Haystacks. DNA Sequencing. Genetic Engineering. Gene Therapy

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

NCERT. 2. An enzyme catalysing the removal of nucleotides from the ends of DNA is: a. endonuclease b. exonuclease c. DNA ligase d.

DNA Profiling. (DNA fingerprinting)

Unit 3.notebook June 03, Genetic Counseling. May 11 12:18 PM. Genetic Counseling

Biotechnology. Chapter 13

Chapter 20: Biotechnology

Lecture 3 (FW) January 28, 2009 Cloning of DNA; PCR amplification Reading assignment: Cloning, ; ; 330 PCR, ; 329.

Genetics Lecture 21 Recombinant DNA

Genetic Engineering & Recombinant DNA

Polymerase Chain Reaction (PCR) and Its Applications

Chapter 9 Genetic Engineering

Covalently bonded sugar-phosphate backbone with relatively strong bonds keeps the nucleotides in the backbone connected in the correct sequence.

Molecular Genetics Techniques. BIT 220 Chapter 20

HiPer Random Amplification of Polymorphic DNA (RAPD) Teaching Kit

Bio 101 Sample questions: Chapter 10

Chapter 10 Genetic Engineering. A Revolution in Molecular Biology

Genetics and Genomics in Medicine Chapter 3. Questions & Answers

Chapter 20: Biotechnology

Biotechnology. Explorer Program. Serious About Science Education 5/17/09 1

UNIT 3: GENETICS Chapter 9: Frontiers of Biotechnology

Further Reading - DNA

Chapter 7 DNA Fingerprinting By the end of this chapter you will be able to:

The process of new DNA to another organism. The goal is to add one or more that are not already found in that organism.

AP Biology Gene Expression/Biotechnology REVIEW

HiPer RT-PCR Teaching Kit

Appendix A DNA and PCR in detail DNA: A Detailed Look

3. Replication of DNA a. When a cell divides, the DNA must be doubled so that each daughter cell gets a complete copy. It is important for this

Genetic Engineering RESTRICTION ENDONUCLEASES

Biotech Term 3 Test. True/False Indicate whether the statement is true or false.

Microbial Biotechnology agustin krisna wardani

CHAPTER 4A MAKING SURE YOU VE GOT A RECOMBINANT PLASMID. CHAPTER 4A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved.

The Polymerase Chain Reaction. Chapter 6: Background

Multiple choice questions (numbers in brackets indicate the number of correct answers)

AP Biology Day 34. Monday, November 14, 2016

Origins of Biotechnology

Basic Steps of the DNA process

Genetics and Biotechnology Chapter 13

DNA Profiling with PCR

pamp, pkan, or pblu?

Biotechnology: Genomics: field that compares the entire DNA content of different organisms

PCR Testing By Spike Cover

MOLECULAR BIOLOGY EXPERIMENT PCR & SEEDING

Chapter 17. PCR the polymerase chain reaction and its many uses. Prepared by Woojoo Choi

Practice Test #3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Session 3 Cloning Overview & Polymerase Chain Reaction

CHAPTER 2A HOW DO YOU BEGIN TO CLONE A GENE? CHAPTER 2A STUDENT GUIDE 2013 Amgen Foundation. All rights reserved.

Chapter 13. Genetic Engineering

Biotechnology Worksheets

Problem Set 8. Answer Key

1. Why do DNA restriction fragments and plasmids separate when analyzed by gel electrophoresis?

Chapter 5. Genetically Modified Foods are Not Fearful

Recombinant DNA Technology

LAB 6: Agarose Gel Electrophoresis of Restriction Digested Plasmid DNA

CHAPTER 21. Genetic engineering. What is Genetic Engineering? How is genetic engineering used? What are plasmids? DNA Technology Genomics.

Computational Biology I LSM5191

Chapter 10 Analytical Biotechnology and the Human Genome

Molecular Scissors: Lambda Digest Student Materials

Biotechnology and Genomics in Public Health. Sharon S. Krag, PhD Johns Hopkins University

DNA Replication. DNA Replication. Meselson & Stahl Experiment. Contents

This is a typical chromatogram generated by automated sequencing.

PCR Laboratory Exercise

INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist

15.3 Applications of Genetic Engineering

BIOLOGY Dr.Locke Lecture# 27 An Introduction to Polymerase Chain Reaction (PCR)

Unit 6: DNA and Protein Synthesis Guided Notes

Chapter 9. Biotechnology and DNA Technology

Genetics module. DNA Structure, Replication. The Genetic Code; Transcription and Translation. Principles of Heredity; Gene Mapping

CHAPTER 9 DNA Technologies

PV92 PCR Bio Informatics

GM (Genetically Modified) Plants. Background

3 Designing Primers for Site-Directed Mutagenesis

RFLP: Restriction Fragment Length Polymorphism

TECHNIQUES USED IN GENETIC ENGINEERING 1

BIOTECHNOLOGY OLD BIOTECHNOLOGY (TRADITIONAL BIOTECHNOLOGY) MODERN BIOTECHNOLOGY RECOMBINANT DNA TECHNOLOGY.

How Can Pieces of DNA Solve a Puzzle?

Pasteurella multocida

Genome Sequence Assembly

The Polymerase Chain Reaction. Chapter 6: Background

Polymerase Chain Reaction (PCR) May 23, 2017

Total Test Questions: 66 Levels: Grades Units of Credit: 1.0 STANDARD 2. Demonstrate appropriate use of personal protective devices.

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication.

Total Test Questions: 71 Levels: Grades Units of Credit: 1.0 STANDARD 1 STUDENTS WILL INVESTIGATE THE PAST, PRESENT, AND FUTURE APPLICATIONS OF

Transcription:

Chapter 10 Biotechnology Biotechnology is the use of organisms or cell components to produce useful products or any technological process that uses organisms. Biotech applications impact our daily lives, products produced include medicines, vitamins, and food and technological processes include the use of stem cells for potential use in humans. You may have heard of genetically modified organisms (GMO), this term GMO is commonly associated with food products. These food products have been modified genetically through the use of recombinant DNA technology, so that the plant produces an enzyme that benefits the plant. Such modifications have caused controversy and questions about food safety. Recombinant DNA technology involves the insertion or modification of a gene (DNA) to produce a desired protein. This technology requires the use of a vector, which is DNA used to carry the gene of interest into the cell and DNA that will replicate independently from the chromosome once inserted into the organism. Vectors include plasmids, which can be taken in by bacterial cells through transformation, or viruses, which will infect cells with the desired gene. There are numerous biotechnological processes and applications in this chapter we will highlight some processes that are significant for healthcare. DNA Technology The first step in many biotech applications involves the isolation or extraction of DNA from a cell in order for scientists to manipulate or insert genes. DNA is extracted by disrupting cell walls and cell membranes of bacteria and plants and by disrupting cell membranes of animal cells. The extraction of DNA can be through a chemical or physical process. Once DNA is isolated from other cell materials it can then be manipulated. One way scientists manipulate DNA is amplification through a process called polymerase chain reaction (PCR). The process of PCR is basically DNA replication in a test tube. In a matter of a couple hours a scientist can replicate DNA more than a billion times. This amplification process is extremely important for down stream applications such as DNA sequencing, DNA fingerprinting, and detection of pathogens. PCR is made possible due to the heat stable enzyme Taq polymerase, which is purified from Thermus aquaticus, a bacterium found in hot springs. The PCR process involves repeated cycles of raising and lowering the temperature of the samples in an instrument called a thermocycler. DNA with the gene of interest is added to a small test tube along with DNA primers, Taq polymerase, and nucleotides the samples are then loaded into the thermocyler. The first step of PCR is heating the samples to 94 degrees Celsius, which denatures DNA (double stranded to single stranded), once the DNA is denatured the sample is cooled to 60 degrees Celsius so DNA primers can anneal or bond to their complementary base pairs. Primers are small DNA molecules that target the region you are interested in amplifying and provide a 3` end for the replication process. The samples are heated to 72 degrees Celsius, which is the optimal temperature for Taq polymerase. Taq can now bind to the primer on the DNA strand and then adds nucleotides to the 3` end of the primer and continues to read and add nucleotides to the template strand of DNA. The cycling of heating and cooling is repeated 30-40

times, turning a few copies of your target gene into millions or even billions of copies of DNA for further analysis. Figure 10.1: DNA Amplification Using the Polymerase Chain Reaction Insert image 10.13 from kendall hunt customization site: Microbiology Line Art: Recombinant DNA technology PCR and Medical Microbiology DNA extractions and PCR is often used in the medical field to confirm diagnosis or to identify organisms causing disease. An example of one such disease is pertussis or commonly called whooping cough. Pertussis is caused by, an aerobic, Gram-negative, bacillus, Bordetella pertussis. Bordetella pertussis is very difficult to isolate due to its extreme sensitivity to desiccation. Specimens are taken from nasopharyngeal aspirates and nasopharyngeal swabs and inoculated on a special media Bordet-Genou medium (after the scientists whom discovered the bacterium). Due to the difficulty in culturing the bacterium, hospitals in Michigan usually send patient specimens to the Michigan Department of Community health for PCR analysis. DNA is first extracted from the patient specimen and specific primers targeting regions specific to B. pertussis are used in a PCR. The presence of the genes specific for B. pertussis confirms that the patient does indeed have pertussis. Pertussis was once almost completely eradicated from the United States due to the DTaP vaccine which protects against pertussis along with two other diseases. However, due to parental refusal to vaccinate their children, for fear of side effects, this disease is increasing in the number of cases presented each year. Another reason pertussis is on the rise is due to the vaccines inability to give long lasting immunity, booster shots are required periodically which most adults are unaware of. To find out more on the vaccination schedule for pertussis visit www.cdc.gov. PCR, Environmental Microbiology, and Bioterrorism With the increase in homeland security following the September 11 th attacks in New York and Washington D.C. and the 2001 anthrax attacks in the United States, government agencies developed protocols to screen certain government buildings against biological weapon attacks. One such system deploys air filters within existing air filters that monitor air quality. These air filters are taken to a lab where DNA is extracted from them. PCR is used to screen the samples for potential weaponizable pathogens such as Bacillus anthracis, Yersinia pestis, and Brucella sp. Biological terrorism is an ongoing threat due to the ease of deploying such an agent (Table 10.1). Insert Table 18.8 from Kendall hunt customization site: Microbiology line art: Public Health and epidemiology. Rename table 10.1

Restriction Enzymes Polymerase Chain Reaction is an important technique often used in combination with restriction digests in labs around the world. Restriction digests employ the use of restriction enzymes, which are enzymes that recognize 4-6 base pair sequences on double stranded DNA. The enzymes cut the DNA, which generates fragments of different lengths. These fragments are called restriction fragment length polymorphisms (RFLPs). Exposing DNA to restriction enzymes is called a restriction digest. Restriction enzymes such as BamH1 (table 10.1) cut double stranded DNA and create what are called sticky ends. The sticky ends can be used in recombinant DNA technology to insert a gene into a vector (Figure 10.2). HaeIII on the other hand creates blunt ends, restriction digests that use enzymes such as HaeIII can be used in other down stream applications such as DNA fingerprinting. Table 10.1: Example of 2 restriction enzymes. BamH1 creates sticky ends and HaelII creates blunt ends. Enzyme Recognition Sequence BamH1 GGATCC CCTAGG HaeIII GGCC CCGG

DNA Fingerprinting DNA fingerprinting is a DNA technology application involving PCR, Restriction digests, and gel electrophoresis. DNA fingerprinting identifies individuals (human, bacteria, etc.) based on DNA fragment lengths. DNA fragments are generated using restriction enzymes, each individuals genome varies therefore each individual would have their own unique barcode or fingerprint that identifies the individual. DNA RFLPs can be separated using Agarose gel electrophoresis. Gel Electrophoresis We use Tris- Acetate- EDTA (TAE) buffer for electrophoresis, the phosphate groups on the DNA fragments generated by the restriction digest will remain negatively charged. Therefore, the RFLPs will move toward the positive electrode when an electrical current is applied. The agarose gel forms a lattice or meshwork through which the DNA will travel. The fragments will migrate through this lattice according to their sizes. The smallest pieces of DNA will be able to move through the agarose matrix very fast, but the larger pieces will take longer because they will weave their way through the lattice. The DNA is not visible to the eye during electrophoresis so a tracking dye is usually added to each sample so that one can see the migration occurring. The tracking dye usually contains a sugar such as sucrose which is more dense than the buffer and allows the DNA to to sink to the bottom of the Figure 10.2: Basic schematic of how recombinant DNA technology is used to create human insulin. Restriction enzymes cut the gene for human insulin out of the genome and the gene is inserted into a plasmid vector. Bacteria such as E. coli can then undergo transformation and produce the insulin protein.

well. The tracking dye separates during the process into colored bands, some migrate rapidly and the others move very slowly. Ethidium bromide is used in the electrophoresis buffer to allow the DNA fragments to be seen after the electrophoresis. Ethidium bromide intercalates between the bases in the DNA strand and fluoresces under UV light producing a visual image of the DNA band (Figure 10.3). When running a gel electrophoresis, scientists also run a molecular base pair standard (ladder) for fragment size comparison (Figure 10.3, shown as 100 bp ladder). Sample fragments can be compared across to the molecular standard to estimate the sizes of each fragment. When DNA from two different microorganisms are treated with the same restriction enzyme, the RFLP pattern may be compared creating a DNA fingerprint. Because the two organisms will have a different sequence of bases in their DNA, the restriction enzyme will produce a different pattern of fragments. A comparison of the number and the sizes of the fragments can then be made. The more similar the patterns, the more closely related the organisms are expected to be. The same fingerprint means the DNA is from the same source. Restriction digests are useful in other applications such as crime scene analysis and paternity cases. In crime scene analysis samples would be acquired from the victim, evidence from the victim (hair, skin cells, or semen for example) and samples would also be taken from the suspects. DNA would then be extracted and restriction enzymes would be used to create fingerprints for each sample. Matching fingerprints would indicate the guilty party. Figure 10.3. Example picture of RFLPs after UV exposure. Lane one on the left is the molecular base pair standard the band at the top is 1000 base pairs and each band below the top band will decrease by 100 base pairs. Image provided by Author. Probe Technologies Probe technologies involve the use of fluorescence microscopy and single stranded DNA or RNA probes (similar to a primer) with a fluorescent dye attached to the

probe. The application of this technology is referred to as FISH, fluorescence in situ hybridization. FISH allows us to rapidly identify organisms by bypassing the need to cultivate organisms in the lab. An example as to how this is can be applied is with patients suspected to have tuberculosis, as you know Mycobacterium tuberculosis has a very slow generation time of around 24 hours. Conventional biochemical testing can take a long time to generate results. However, using FISH a sputum sample can be combined with probes specific for Mycobacterium tuberculosis, when samples are viewed with a fluorescent microscope illumination of the probe would indicate a positive sample and further testing for tuberculosis could proceed (Figure 10.4). Figure 10.4: Use of two different probes to stain cells. Image from McGraw Hill: Microbiology a human perspective 6 th edition. Pg. 229. Genetically Engineered Eukaryotes The process used to genetically engineering eukaryotes is called transfection, which is a process very similar to transformation except with the use of eukaryotic cells. Eukaryotic cells can also obtain new genes through transduction. Transduction is the process of infecting cells with a virus. Plants such as corn, cotton, and potatoes have been genetically modified so they produce BT toxin. BT toxin is produced by the bacterium Bacillus thuringiensis, the gene for BT toxin is inserted into the plant so the plant produces BT toxin, since BT toxin is toxic to insects crop loss is avoided. This toxin however, is not toxic to humans therefore we can consume the toxin without harm. This same technology is responsible for crops such as Roundup TM ready crops, making the crop herbicide resistant. Genetic modification technology is

also being put to use to make crops more nutritious and potentially make edible vaccines. Stem Cell Technology Most of you have likely heard of stem cells either in another class or in the media. There are different types of stem cells Embryonic, Umbilical, Adult, and Induced Pluripotent Stem (ips) cells to name a few. These cells have great potential to advance medicine to point where scientists can make many medical conditions and diseases a thing of the past (Figure 10.5). Embryonic stem cells have the greatest potential and can differentiate into any cell type. Adult stem cells have less potential however can be harvested from anyone. Induced pluripotent stem cells are adult cells that have been reprogramed genetically to go back in time and become a stem cell, however may pose risk for use in humans. By learning biotechnological techniques such as those discussed in this chapter, you can apply the methods to all fields in biology. PCR is one of the most common tools biologists use in laboratories today. Figure 10.5. Figures show rat skulls with a man made defect. Slides A- C had human embryonic stem cells differentiated into osteoblast cells seeded on a cell scaffold and transplanted into the skull. Slide D is a control with no stem cells only the scaffold. Slides A- C were shown to have human bone developing and repairing the defect. How do we know this is human bone and not rat bone? DNA is extracted from the bone tissue and human specific primers are used in PCR, the presence of human genes confirms human bone tissue was formed. Image courtesy of author.