NGS immunogenetic analysis in vitro: clonality feasibility study

Similar documents
bioinformatics: state of art tools for NGS immunogenetics

Clonality testing Potentials & Problems

Antigen receptor (immunoglobulin and T-cell receptor) gene rearrangements: Utility in Routine Diagnostic Hematopathology

Applications of the Ion AmpliSeq Immune Repertoire Assay Plus TCRβ

European guidelines for the universal description of Ig / TCR clonality testing data

Towards detection of minimal residual disease in multiple myeloma through circulating tumour DNA sequence analysis

Fundamentals of Next-Generation Sequencing: Technologies and Applications

Implementation of Ion AmpliSeq in molecular diagnostics

Developing an Accurate and Precise Companion Diagnostic Assay for Targeted Therapies in DLBCL

Atlas of Genetics and Cytogenetics in Oncology and Haematology. IMMUNOGLOBULIN GENES: CONCEPT OF DNA REARRANGEMENT * Introduction

IgH/TCR Clonality Status. Performance Monitoring Cover Sheet. Final IgH Clonality Result IGH 131. Uncontrolled Copy

Polymerase Chain Reaction (PCR) and Its Applications

NGS, a suitable approach for TP53 screening in CLL?

MagMAX FFPE DNA/RNA Ultra Kit

MHC Region. MHC expression: Class I: All nucleated cells and platelets Class II: Antigen presenting cells

Immunoglobulins Harry W Schroeder Jr MD PhD

with drmid Dx for Illumina NGS systems

HLA-Typing Strategies

AmoyDx TM PIK3CA Five Mutations Detection Kit

Oncomine cfdna Assays Part III: Variant Analysis

PV92 PCR Bio Informatics

Impact of gdna Integrity on the Outcome of DNA Methylation Studies

Figure S1. Unrearranged locus. Rearranged locus. Concordant read pairs. Region1. Region2. Cluster of discordant read pairs, bundle

Targeted Sequencing Using Droplet-Based Microfluidics. Keith Brown Director, Sales

Ion S5 and Ion S5 XL Systems

Accessible answers. Targeted sequencing: accelerating and amplifying answers for oncology research

Welcome to the NGS webinar series

Immunoglobulin/T-cell receptor clonality diagnostics

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es

MILESTONE. Optimized Molecular Results. BoneSTATION Advanced system for fixation and decalcification of bone tissues

Outline. General principles of clonal sequencing Analysis principles Applications CNV analysis Genome architecture

Single Nucleotide Variant Analysis. H3ABioNet May 14, 2014

CSS451 Spring 2010 Polymerase Chain Reaction Laboratory

Assay Standards Working Group Nov 2012 Assay Standards Working Group Recommendations, November 2012

Leukemia (2003) 17, & 2003 Nature Publishing Group All rights reserved /03 $

Amplicon Sequencing Template Preparation

The Polymerase Chain Reaction. Chapter 6: Background

IBBL: Introduction to Biobanks and their services

Immunological Techniques in Research and Clinical Medicine. Philip L. Cohen, M.D. Chief of Rheumatology, LKSOM 10 March 2016

Targeted Sequencing in the NBS Laboratory

Cold Fusion Cloning Kit. Cat. #s MC100A-1, MC101A-1. User Manual

Minimal Residual Disease assessment in Multiple Myeloma by Next-Generation Sequencing

BRACAnalysis CDx Technical Information

Genome Sequence Assembly

Tech Note. Using the ncounter Analysis System with FFPE Samples for Gene Expression Analysis. ncounter Gene Expression. Molecules That Count

PrimePCR Assay Validation Report

TECHNICAL BULLETIN. SeqPlex DNA Amplification Kit for use with high throughput sequencing technologies. Catalog Number SEQX Storage Temperature 20 C

Antibody Repertoires in Humanized NOD-scid-IL2Rc null Mice and Human B Cells Reveals Human-Like Diversification and Tolerance Checkpoints in the Mouse

Hot Topic. Disclosures. None

Technical Review. Real time PCR

PrimePCR Assay Validation Report

Advances in B Lymphblastic Leukemia MRD. Brent Wood MD PhD Departments of Laboratory Medicine and Pathology University of Washington.

EpiQuik Quantitative PCR Fast Kit Base Catalog # P-1029

LightCycler 480 qpcr Tools. Meeting the Challenge of Your Research

PrimePCR Assay Validation Report

MassARRAY. Quantitative Methylation Analysis. High Resolution Profiling. Simplified with EpiTYPER.

Targeted Sequencing of Leukemia-Associated Genes Using 454 Sequencing Systems

Roche Molecular Biochemicals Technical Note No. LC 10/2000

HOST DEFENSE SMALL GROUP PROBLEM SOLVING SESSION CLINICAL IMMUNOLOGIC ASSAYS-II

Aligning Lab Goals & Institutional Goals Laughlin Rice

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es

SUPPLEMENTARY MATERIAL AND METHODS

A*01:02, 68:02 B*15:10, 58:02 DRB1*03:01, 12:01

PrimePCR Assay Validation Report

Practical Aspects and Typing Strategy in Molecular ABO and RH Blood Group Diagnosis

NRAS Mutation Analysis Reagents (Codons 12 and 13)

10 RXN 50 RXN 500 RXN

AccuPower PCR PreMix 73. AccuPower Taq PCR PreMix 77. AccuPower PCR PreMix (with UDG) 79. AccuPower HotStart PCR PreMix 81

PrimePCR Assay Validation Report

Instruction manual for product # PNAC Version 2.0

Executive Summary. clinical supply services

CLEARLLAB LS LYMPHOID SCREEN REAGENT

Application Note. NGS Analysis of B-Cell Receptors & Antibodies by AptaAnalyzer -BCR

AmoyDx EGFR 29 Mutations Detection Kit

Validation of cytology media for whole genome sequencing

Fusion Gene Analysis. ncounter Elements. Molecules That Count WHITE PAPER. v1.0 OCTOBER 2014 NanoString Technologies, Inc.

RNA-Sequencing analysis

Variant detection analysis in the BRCA1/2 genes from Ion torrent PGM data

Genetics Lecture 21 Recombinant DNA

SYBR Green Realtime PCR Master Mix

Next Generation Sequencing. Jeroen Van Houdt - Leuven 13/10/2017

NRAS Codon 61 Mutation Analysis Reagents

AmoyDx PIK3CA Five Mutations Detection Kit

General Comments. Misinformation in Immunohistochemistry. Common Misinformation s in Immunohistochemistry 4/13/2017

Archer ALK, RET, ROS1 Fusion Detection v1 Illumina Platform

Molekuláris vizsgálatok paraffinos szövetmintából: korlátok és lehetőségek

Bio Rad PCR Song Lyrics

CHARTING THE COURSE FOR PRECISION MEDICINE

Detection of Clonally Restricted Immunoglobulin Heavy Chain Gene Rearrangements in Normal and Lesional Skin

Amplicon Library Preparation Method Manual. GS FLX Titanium Series October 2009

SMARTer Ultra Low RNA Kit for Illumina Sequencing Two powerful technologies combine to enable sequencing with ultra-low levels of RNA

Exploring Genetic Variation in a Caffeine Metabolism gene LAB TWO: POLYMERASE CHAIN REACTION

Gene Expression on the Fluidigm BioMark HD

Efficiency in Next-Generation Sequencing for Public Health

Functional Genomics Research Stream. Research Meeting: June 19, 2012 SYBR Green qpcr, Research Update

SuperARMS EGFR T790M Mutation Detection Kit

IdentiClone T Cell Receptor Gamma Gene

Molecular Genetics Techniques. BIT 220 Chapter 20

detection limit of cytomorphological techniques detection limit of immunophenotyping and PCR techniques cure follow-up in years

Transcription:

NGS immunogenetic analysis in vitro: clonality feasibility study ERIC EuroClonality-NGS 1-day workshop Rotterdam, NL, November 24, 2017 Anton W. Langerak, Laboratory for Medical Immunology, Dept. Immunology Erasmus MC, Rotterdam a.langerak@erasmusmc.nl

NGS 2nd generation workflow

Ion Torrent PGM (ThermoFisher) Semiconductor sequencing Simple biochemistry: DNA polymerase/ nt Particularly attractive for pathology labs: - suboptimal DNA specimens - small amount of DNA (10 ng) needed - enables sequence analysis of >200 amplicons of 200 nt /run; ideal for simultaneous detection of somatic mutations in multiple genes ( >450x coverage of 95% of the reads)

B-cell clonality feasibility study Technical validation of the primers / protocols Reproducibility How low can you go? Input / sensitivity Samples: FFPE DNA Suboptimal DNA quality (FFPE), Low tumor loads Performance NGS - spectratyping Defining SOPs, including for ARReST / Interrogate

B-cell clonality feasibility study Technical validation of the primers / protocols Reproducibility How low can you go? Input / sensitivity Samples: FFPE DNA Suboptimal DNA quality (FFPE), Low tumor loads Performance NGS - spectratyping Defining SOPs, including for ARReST / Interrogate

Experimental approach feasibility study Each lab used its own primers and Taq Gold Scheijen, Meijers et al., ms. in preparation

Sample overview Laboratories performing the NGS IG-clonality experiments Sample Sample types (Lab of origin; original sample number) Sample number FS Nijmegen Rotterdam Berlin Tübingen 1 Polyclonal samples Peripheral blood mononuclear cells (Nijmegen; PBMC#3) PBMC1 X X X X 2 Peripheral blood mononuclear cells (Rotterdam; PBMC) PBMC2 X X X X 3 Reactive tonsil tissue-frozen (Nijmegen;Ton19367) Tonsil1 X X X X 4 Reactive tonsil tissue-ffpe (Nijmegen;Ton19367) Tonsil2 X X X X 5 Reactive tonsil tissue-frozen (Nijmegen;Ton10615) Tonsil3 X X X X 6 Reactive tonsil tissue-ffpe (Nijmegen; Ton10615) Tonsil4 X X X X 7 Monoclonal patient samples DLBCL abdomen FFPE (Nijmegen; DPA12-00926) Blym1 X X 8 EBV-positive B-cell lymphoma FFPE (Nijmegen; DPA16-00294) Blym2 X X 9 DLBCL skin (Nijmegen; DPA13-01063) Blym3 X X 10 Low-grade gastrointestinal MZL FFPE (Berlin; 1082-15) Blym4 X X 11 Paranasal sinus B-cell lymphoma FFPE (Berlin; 1325-15) Blym5 X X 12 EBV-positive PTLD (Nijmegen; DPA14-01568) Blym6 X X 13 Paired diagnosis-relapse samples DLBCL Uterine cervix FFPE (Nijmegen; DPA12-00726) Diag1 X X 14 DLBCL Vermiform appendix FFPE (Nijmegen; DPA12-00728) Relap1 X X 15 DLBCL testis FFPE (Nijmegen; DPA13-00689) Diag2 X X 16 CLL/SLL bone marrow FFPE (Nijmegen; DPA13-00690) Relap2 X X 17 MZL, partial involvement FFPE (Nijmegen; DPA14-01349) Diag3 X X 18 MZL FFPE (Nijmegen; DPA15-00208) Relap3 X X 19 Glandula parotis DLBCL FFPE (Nijmegen; DPA17-00891) Diag4 X X 20 Extranodal MZL FFPE (Nijmegen; DPA17-00892) Relap4 X X 21 Technical samples Dilution of Blym3 with Tonsil2 (1%Blym-99% Tonsil) Dilut1 X X 22 Dilution of Blym3 with Tonsil2 (2,5%Blym-97,5% Tonsil) Dilut2 X X 23 Dilution of Blym3 with Tonsil2 (5%Blym-95% Tonsil) Dilut3 X X 24 Dilution of Blym3 with Tonsil2 (10%Blym-90% Tonsil) Dilut4 X X 25 Dilution of Blym3 with Tonsil2 (100%Blym-0% Tonsil) Dilut5 (= sample 9) X X 26 Input range Blym4 (2,5ng) InpBlym1 X X 27 Input range Blym4 (5ng) InpBlym2 X X 28 Input range Blym4 (10ng) InpBlym3 X X 29 Input range Blym4 (20ng) InpBlym4 X X 30 Input range Blym4 (40ng) InpBlym5 (= sample 10) X X 31 Input range Tonsil2 (2,5 ng) InpTonsil1 X X 32 Input range Tonsil2 (5 ng) InpTonsil2 X X 33 Input range Tonsil2 (10 ng) InpTonsil3 X X 34 Input range Tonsil2 (20 ng) InpTonsil4 X X 35 Input range Tonsil2 (40 ng) InpTonsil5 (= sample 4) X X 36 Input range Tonsil4 (2,5 ng) InpTonsil6 X X 37 Input range Tonsil4 (5 ng) InpTonsil7 X X 38 Input range Tonsil4 (10 ng) InpTonsil8 X X 39 Input range Tonsil4 (20 ng) InpTonsil9 X X 40 Input range Tonsil4 (40 ng) InpTonsil10 (= sample 6) X X

B-cell clonality feasibility study Technical validation of the primers / protocols Reproducibility How low can you go? Input / sensitivity Samples: FFPE DNA Suboptimal DNA quality (FFPE), Low tumor loads Performance NGS - spectratyping Defining SOPs, including for ARReST / Interrogate

PBMC1 IGHV FR3 raw total w junction IGHV-FR3 LAB Sample count % count % count % Berlin PBMC1 233723 100.00% 110313 47.20% 29005 12.41% Nijmegen PBMC1 71348 100.00% 50616 70.94% 16245 22.77% Rotterdam PBMC1 62302 100.00% 49717 79.80% 31225 50.12% Tübingen PBMC1 205846 100.00% 120965 58.76% 8748 4.25% Left right: BERLIN-NMGN-RDAM-TÜB feature type A: 5 gene feature type B: 3 gene

PBMC1 IGK raw total w junction IGK V-J Intron-KDE LAB Sample count % count % count % count % Berlin PBMC1 233723 100.00% 110313 47.20% 57837 24.75% 4532 1.94% Nijmegen PBMC1 71348 100.00% 50616 70.94% 23966 33.59% 3647 5.11% Rotterdam PBMC1 62302 100.00% 49717 79.80% 13468 21.62% 854 1.37% Tübingen PBMC1 205846 100.00% 120965 58.76% 91219 44.31% 784 0.38% Left right: BERLIN-NMGN-RDAM-TÜB feature type A: 5 gene feature type B: 3 gene

Tonsil 1 (fresh frozen vs. FFPE) IGHV FR3 raw total w junction IGHV-FR3 LAB Sample count % count % count % Nijmegen Frozen 82136 100.00% 66966 81.53% 4768 5.81% Nijmegen FFPE 108145 100.00% 94968 87.82% 12518 11.58% Left: frozen Right: FFPE feature type A: 5 gene feature type B: 3 gene

Tonsil 1 (fresh frozen vs. FFPE) - IGHD raw total w junction IGHD LAB Sample count % count % count % Nijmegen Frozen 82136 100.00% 66966 81.53% 36848 44.86% Nijmegen FFPE 108145 100.00% 94968 87.82% 34087 31.52% Left: frozen Right: FFPE feature type A: 5 gene feature type B: 3 gene

B-cell clonality feasibility study Technical validation of the primers / protocols Reproducibility How low can you go? Input / sensitivity Samples: FFPE DNA Suboptimal DNA quality (FFPE), Low tumor loads Performance NGS - spectratyping Defining SOPs, including for ARReST / Interrogate

Tonsil 2 IGHV FR3 raw total w junction IGHV-FR3 IGHD IgK LAB Sample count % count % count % count % count % Rotterdam 2.5 59558 100.00% 50339 84.52% 10773 18.09% 9324 15.66% 26776 44.96% Rotterdam 5 56742 100.00% 48237 85.01% 8512 15.00% 23329 41.11% 15273 26.92% Rotterdam 10 29812 100.00% 26054 87.39% 2562 8.59% 9680 32.47% 12008 40.28% Rotterdam 20 77405 100.00% 66652 86.11% 9703 12.54% 22390 28.93% 31920 41.24% Rotterdam 40 40476 100.00% 35221 87.02% 6824 16.86% 18403 45.47% 9362 23.13% Left -> Right: 2.5 5 10 20 40 ng feature type A: 5 gene feature type B: 3 gene

Tonsil 2 IGHD raw total w junction IGHV-FR3 IGHD IgK LAB Sample count % count % count % count % count % Rotterdam 2.5 59558 100.00% 50339 84.52% 10773 18.09% 9324 15.66% 26776 44.96% Rotterdam 5 56742 100.00% 48237 85.01% 8512 15.00% 23329 41.11% 15273 26.92% Rotterdam 10 29812 100.00% 26054 87.39% 2562 8.59% 9680 32.47% 12008 40.28% Rotterdam 20 77405 100.00% 66652 86.11% 9703 12.54% 22390 28.93% 31920 41.24% Rotterdam 40 40476 100.00% 35221 87.02% 6824 16.86% 18403 45.47% 9362 23.13% Left -> Right: 2.5 5 10 20 40 ng feature type A: 5 gene feature type B: 3 gene

Tonsil 4 IGK raw total w junction IGHV-FR3 IGHD / LAB Sample count % count % count % count % count % Berlin 2.5 127414 100.00% 77099 60.51% 15174 11.91% 15600 12.24% 39143 30.72% Berlin 5 137410 100.00% 108894 79.25% 17939 13.06% 46493 33.84% 36417 26.50% Berlin 10 213992 100.00% 176165 82.32% 19373 9.05% 57154 26.71% 79618 37.21% Berlin 20 213455 100.00% 170738 79.99% 51721 24.23% 66661 31.23% 45900 21.50% Berlin 40 214758 100.00% 182747 85.09% 15733 7.33% 45426 21.15% 110746 51.57% Left -> Right: 2.5 5 10 20 40 ng feature type A: 5 gene feature type B: 3 gene

Blym4 input range IGHV3-48 + IGHJ3 feature type A: 5 gene feature type B: 3 gene 1: 2.5 ng 2: 5 ng 3: 10 ng 4: 20 ng 5: 40 ng feature type A: aa length feature type B: clon. type

Dilution of Blym-3 with Tonsil-2 feature type A: aa length feature type B: clon. type Blym3 (100%) IGHD2-2 + IGHJ6 24 1: 0% Blym 100% Tonsil 2: 1% Blym 99% Tonsil 3: 2.5% Blym 97.5% Tonsil 4: 5% Blym 95% Tonsil 5: 10% Blym 90% Tonsil

Dilution of Blym-3 with Tonsil-2 IGHD2-2 + IGHJ6 feature type A: 5 gene feature type B: 3 gene feature type A: aa length feature type B: clonotype 5% 2.5%

Summary on polyclonal and technical samples Reproducible testing of polyclonal samples by multiple centers? General overlap between four centers for IGHV-FR3, IGH D-J, and IGK Are all functional genes (V/J) detected by the primers? All the low represented genes are ORFs, except for IGHV4-30-1 Reproducibility and performance of primers and protocols in polyclonal samples (including FFPE fresh frozen DNA comparison)? Equal detection of clonotypes in frozen tissue and FFPE Minimal input DNA for robust performance? Minimal input DNA is around 5-10 ng Sensitivity of detection? Clone can be detected at 5% in polyclonal background

B-cell clonality feasibility study Technical validation of the primers / protocols Reproducibility How low can you go? Input / sensitivity Samples: FFPE DNA Suboptimal DNA quality (FFPE), Low tumor loads Performance NGS - spectratyping Defining SOPs, including for ARReST / Interrogate

Monoclonal and paired Dx-Re samples Laboratories performing the NGS IG-clonality experiments Sample Sample types (Lab of origin; original sample number) Sample number FS Nijmegen Rotterdam Berlin Tuebingen 7 Monoclonal patient samples DLBCL abdomen FFPE (Nijmegen; DPA12-00926) Blym1 X X 8 EBV-positive B-cell lymphoma FFPE (Nijmegen; DPA16-00294) Blym2 X X 9 DLBCL skin (Nijmegen; DPA13-01063) Blym3 X X 10 Low-grade gastrointestinal MZL FFPE (Berlin; 1082-15) Blym4 X X 11 Paranasal sinus B-cell lymphoma FFPE (Berlin; 1325-15) Blym5 X X 12 EBV-positive PTLD (Nijmegen; DPA14-01568) Blym6 X X 13 Paired diagnosis-relapse samples DLBCL Uterine cervix FFPE (Nijmegen; DPA12-00726) Diag1 X X 14 DLBCL Vermiform appendix FFPE (Nijmegen; DPA12-00728) Relap1 X X 15 DLBCL testis FFPE (Nijmegen; DPA13-00689) Diag2 X X 16 CLL/SLL bone marrow FFPE (Nijmegen; DPA13-00690) Relap2 X X 17 MZL, partial involvement FFPE (Nijmegen; DPA14-01349) Diag3 X X 18 MZL FFPE (Nijmegen; DPA15-00208) Relap3 X X 19 Glandula parotis DLBCL FFPE (Nijmegen; DPA17-00891) Diag4 X X 20 Extranodal MZL FFPE (Nijmegen; DPA17-00892) Relap4 X X

Summary NGS-GS comparison

Concordance between centers and NGS-GS BIOMED-2 IGH VJ FR3 IGH DJ IGK VJ IGK V/intron- KDE Blym1 (Uterine DLBCL ) C128 C263 C148 C285+C371 IGK VJ Clonotype/ junction aa length IGK VJ IGKV1(D)-39 & IGKJ4 IGKV/intron-KDE Clonotype/ junction aa length IGKV/intron-KDE IGKV2(D)-30 & KDE Intron & KDE

Discordance between centers BIOMED-2 IGH VJ FR3 IGH DJ IGK VJ IGK V/intron- KDE Blym1 (Uterine DLBCL ) C128 C263 C148 C285+C371 IGH DJ Clonotype/ junction aa length IGH DJ Low reads: inefficient annealing primers? 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 IGHD5-5=5-18 & IGHJ6 IGHD2-2 & IGHJ6 1= Lab 1 (Reads: 4133) 2= Lab 2 (Reads: 4162)

Improved performance NGS vs. GS BIOMED-2 IGH VJ FR3 IGH DJ IGK VJ IGK V/intron- KDE Blym5 (B cell lymphoma) Oligoclonal C258 C131/C181 C241/C278 IGH FR3 IGH VJ FR3 IGHV3-7=3-11=3-21=3-48=3-69-1=3-74 & IGHJ3 The IGHV3 & IGHJ3 clone is missed due to mismatches with VH3-FR3 BIOMED-2 primer. Green=tccagagacaacgccaaaaacacagtgtatctacacatgactggtttgagagccgaggacacggctctctattacTGTGCGAGAGATG AAGTCAGTGGTTCTGATGCTCTTGACCTCTGGggccaagggacagtggtcaccgtctcctcaggtgag

Improved performance NGS vs. GS BIOMED-2 IGH VJ FR3 IGH DJ IGK VJ IGK V/intron- KDE Blym2 (EBV + lymphoma) C112 +PCB C240 +PCB C197+PCB C274/C286+PCB IGK VJ Clonotype/ junction aa length IGK VJ IGKV3(D)-7 & IGKJ5 IGKV4-1 & IGKJ4 This IGKV4-J rearrangement is only detected by NGS-clonality, not by conventional BIOMED- 2; suboptimal DNA will not allow detection of IGKV4-J R (260-300 bp) IGKV/intron-KDE IGKV/intron-KDE Intron & KDE Intron & KDE

Discordance between NGS and GS BIOMED-2 IGH VJ FR3 IGH DJ IGK VJ IGK V/intron- KDE Blym5 (B cell lymphoma) Oligoclonal C258 C131/C181 C241/C278-C280 IGK VJ IGK VJ IGKV3(D)-15 & IGKJ4-p IGKV3(D)-15 & IGKJ4-up C131 clone not detected by NGS; Sequence PCR fragment

Comparison Dx-Re BIOMED-2 IGH VJ FR3 IGH DJ IGK VJ IGK V/intron- KDE Diagnosis#1 (D1) C100 C250 C135 C277/C281 Relapse#1 (R1) C100 C250 C135 C277/C283 IGH FR3 IGH DJ ARResT output: 5 and 3 genes D1 R1 IGHV4-34 D1 R1 IGHD5-24 IGK D1R1 D1R1 D1R1 IGKV1-8 IGKV5-2 Intron

Comparison Dx-Re BIOMED-2 IGH VJ FR3 IGH DJ IGK VJ IGK V/intron- KDE Diagnosis#2 (D2) nsp C254 C146/C195 C276/C281 Relapse#2 (R2) C121 C149 C282 C242/Cw281 IGH FR3 IGHV3-23(D) IGH DJ IGHV3-13 IGHV3-23 IGHV3-30 IGHV3-66 D2R2 D2R2 D2R2 D2R2 ARResT output: 5 and 3 genes D2R2 IGKV2-29 IGKV3-11 D2 R2 IGHD2-21 IGKV4-1 IGK D2 R2 IGHD6-6 IGKV1-12 D1R1 IGK Intron D2 R2 D2 R2 D2 R2 D2 R2 D2 R2

B-cell clonality feasibility study Technical validation of the primers / protocols Reproducibility How low can you go? Input / sensitivity Samples: FFPE DNA Suboptimal DNA quality (FFPE), Low tumor loads Performance NGS - spectratyping Defining SOPs, including for ARReST / Interrogate

Summary EuroClonality-NGS IG primers technically validated for detection of clonality (3-tube reaction/ion Torrent PGM) Increased sensitivity and specificity by NGS-based approach NGS-based clonality provides valuable clonotype sequence information Scheijen, Meijers et al., ms. in preparation

Future directions T-cell clonality feasibility study Illumina-based detection Biological validation IG - define threshold for clonality detection using reactive lesions - comparison GS vs NGS-based clonality in different disease entities - define procedures for interpretation - sufficient samples (reactive, defined categories, FFPE/FF) - Pathology review meeting spring 2018 Guidelines for interpretation clonality (after biological validation study) (minimal amount of reads, assignment of a minor clone, etc )

Acknowledgements Radboud University Medical Center, Nijmegen (NL) Blanca Scheijen, Jos Rijntjes, Michiel van den Brand, Patricia Groenen Erasmus Medical Center, Rotterdam (NL) Ruud Meijers, Michèle van der Klift, Ton Langerak Charité-University Medicine, Berlin (DE) Markus Möbs, Michael Hummel University Hospital and Comprehensive Cancer Center, Tübingen (DE) Julia Steinhilber, Falko Fend CEITEC, Brno (CZ) / University Schleswig-Holstein, Kiel (DE) Tomas Reigl, Nikos Darzentas Kiel and Paris teams for IGH FR3 and IGH D-J primer design

EuroClonality-NGS, Belfast, October 2017

PBMC1 IGHD raw total w junction IGHD LAB Sample count % count % count % Berlin PBMC1 233723 100.00% 110313 47.20% 9493 4.06% Nijmegen PBMC1 71348 100.00% 50616 70.94% 1059 1.48% Rotterdam PBMC1 62302 100.00% 49717 79.80% 2384 3.83% Tübingen PBMC1 205846 100.00% 120965 58.76% 13809 6.71% Left right: BERLIN-NMGN-RDAM-TÜB feature type A: 5 gene feature type B: 3 gene

Tonsil 1 (fresh frozen vs. FFPE) - IGK raw total w junction IGK V-J Intron-KDE LAB Sample count % count % count % count % Tübingen Frozen 76847 100.00% 50846 66.17% 34457 44.84% 262 0.34% Tübingen FFPE 113767 100.00% 73314 64.44% 46549 40.92% 343 0.30% Left: frozen Right: FFPE feature type A: 5 gene feature type B: 3 gene

Concordance between centers and NGS-GS BIOMED-2 IGH VJ FR3 IGH DJ IGK VJ IGK V/intron- KDE Blym4 (Low-grade MZL) C130 C135+PCB C197 C281 IGH FR3 Clonotype/ junction aa length IGH VJ FR3 IGHV3-48 & IGHJ3 IGH DJ Clonotype/ junction aa length IGH DJ IGHD3-22 & IGHJ3