Transfection of neural stem cells with Lipofectamine Stem Transfection Reagent in StemPro medium

Similar documents
Stem cell transfection guide

Versatility and performance of Lipofectamine Stem Transfection Reagent

Electroporation of human induced pluripotent stem (ips) cells

Protocols for Neural Progenitor Cell Expansion and Dopaminergic Neuron Differentiation

Electroporation of Cas9/Synthetic RNA Ribonucleoprotein (RNP) Complexes for CRISPR/Cas9 Genome Editing (Thermo Neon System)

TransIT -mrna Transfection Kit

Transfection of CRISPR/Cas9 Nuclease NLS ribonucleoprotein (RNP) into adherent mammalian cells using Lipofectamine RNAiMAX

Nucleofection (electroporation) of Cas9/ synthetic RNA ribonucleoprotein (RNP) complexes for CRISPR/Cas9 genome editing (Lonza Nucleofection System)

Avalanche -Omni Transfection Reagent

Avalanche -Everyday Transfection Reagent

Reprogramming Peripheral Blood Mononuclear Cells (PBMCs) with the CytoTune -ips 2.0 Reprogramming Kit under feeder-free conditions

Contents Cat. No. Amount Storage Shelf life [2] 2. Mix the thawed supplement by gently inverting 3 5 times.

Cortical Neural Induction Kit. Protocol version 1.0

Induction of Neural Stem Cells from Human Pluripotent Stem Cells Using PSC Neural Induction Medium

ReproRNA -OKSGM is a non-integrating, self-replicating RNA-based reprogramming vector for generating induced pluripotent stem (ips)

Alt-R CRISPR-Cpf1 System:

Propagation of H7 hesc From: UW (John Stamatoyannopoulos) ENCODE group Date: 12/17/2009 Prepared By: S. Paige/S. Hansen (UW)

XactEdit Cas9 Nuclease with NLS User Manual

Neural Stem Cells (ipsc from Blood Cells; Male)

Culture and freezing methods for AICS cell lines

TransIT -293 Transfection Reagent

Genome Edited ipscs APOE -/- Knockout

B-27 Plus Neuronal Culture System

Culture of Human ipsc-derived Neural Stem Cells in a 96-Well Plate Format

STEMdiff Hematopoietic Kit

jetcrispr RNP transfection reagent PROTOCOL

TransIT Transfection Reagent

TransIT -293 Transfection Reagent

INTERFERin sirna transfection reagent

NutriStem V9 XF Medium

TransIT -LT1 Transfection Reagent

INTERFERin in vitro sirna/mirna transfection reagent PROTOCOL

TransIT -LT1 Transfection Reagent

T ECHNICAL MANUAL. Culture of Human Mesenchymal Stem Cells Using MesenCult -XF Medium

THE DELIVERY EXPERTS. INTERFERin in vitro sirna transfection reagent PROTOCOL

TransIT -Prostate Transfection Kit

jetprime in vitro DNA & sirna transfection reagent PROTOCOL

Transfection Kit Protocol for MIR 2900, 2904, 2905, 2906

TransIT -LT1 Transfection Reagent

Plasmid Midiprep Plus Purification Kit. Cat. # : DP01MD-P10/ DP01MD-P50 Size : 10/50 Reactions Store at RT For research use only

Corning BioCoat Matrigel Matrix 6-well Plates for Embryonic Stem (ES) Cell Culture. Catalog Number Guidelines for Use

TransIT-TKO Transfection Reagent

Cignal Reporter Assay Handbook

TransIT -Lenti Transfection Reagent

Terrific Validation, Tech Support and Prompt Delivery. User Guide for Selleck Human ipsc Enhancer Kit Cat. No. K2010. Guidelines for Use

TransIT Transfection Reagent

sirna Transfection Reagent

Amaxa 4D-Nucleofector Protocol for Undifferentiated Human Mesenchymal Stem Cells [MSC] For 4D-Nucleofector X Unit Transfection in suspension

pdsipher and pdsipher -GFP shrna Vector User s Guide

ExpiCHO Expression System

TransIT -BrCa Transfection Reagent

DeliverX and DeliverX Plus sirna Transfection Kits

TransIT -CHO Transfection Kit

TransIT -CHO Transfection Kit

Alt-R CRISPR-Cas9 system:

Transfection Reagent INTRODUCTION SPECIFICATIONS MATERIALS. For Research Use Only. Materials Supplied. Materials required, but not supplied

TransIT -CHO Transfection Kit

TransIT -BrCa Transfection Reagent

DeliverX and DeliverX Plus sirna Transfection Kits

Quick reference guide

TransIT -Keratinocyte Transfection Reagent

Corning PureCoat rlaminin-521 (Human) for Expansion and Differentiation of Human Neural Stem Cells

Protocol. Culture for human ips cells under the feeder-free condition

General Guidelines for Handling Feeder Free Human ipscs. Cells provided were cultured in the presence of Penicillin and Streptomycin.

Human Pluripotent Stem Cell Functional Identification Kit

OPPF-UK Standard Protocols: Mammalian Expression

StemXVivo. Mesoderm Kit. Catalog Number SC030B. Reagents for the differentiation of human pluripotent stem cells into mesoderm.

User Instructions:Transfection-ready CRISPR/Cas9 Reagents. Target DNA. NHEJ repair pathway. Nucleotide deletion. Nucleotide insertion Gene disruption

Transfection of Mouse ES Cells and Mouse ips cells using the Stemfect 2.0 -mesc Transfection Reagent

Accumax Cell Dissociation Solution

The RNAi Consortium (TRC) Broad Institute

Protocol: Stemgent StemRNA -NM Reprogramming Kit for Reprogramming Adult and Neonatal Human Fibroblasts

TransIT -Lenti Transfection Reagent

Stemgent mrna Reprogramming System

Quantos Cell Proliferation Assay Kit

Amaxa 4D-Nucleofector Basic Protocol for Human Stem Cells For 4D-Nucleofector X Unit Transfection in suspension

Convoy TM Transfection Reagent

TRANSFEX - SUPERIOR GENE EXPRESSION FOR HARD-TO-TRANSFECT CELL TYPES. Kevin Grady Product Line Business Manager ASCB Vendor Showcase Dec.

Clonetics Skeletal Muscle Myoblast Cell Systems HSMM Instructions for Use

User s Guide MegaTran 1.0 Transfection Reagent

ab Hypoxic Response Human Flow Cytometry Kit

THE DELIVERY EXPERTS PROTOCOL

Lentiviral Propagation

HiMesoXL TM Mesenchymal Stem Cell Expansion Medium

All quality control test results are reported on a lot specific Certificate of Analysis which is available at or upon request.

Instructions. Fuse-It-siRNA. Shipping and Storage. Overview. Kit Contents. Specifications. Note: Important Guidelines

mtesr 1 Medium kit (STEMCELL Technologies, cat. no ; Maintenance Medium for Human Embryonic Stem Cells).

Generation and Culture of Neural Progenitor Cells using the STEMdiff Neural System

Protocol. High-throughput Transfection Protocol for GoClone Reporter Assays. Tech support: Luciferase Assay System

TECHNICAL BULLETIN NUCLEI EZ PREP NUCLEI ISOLATION KIT. Product Number NUC-101 Store at 2-8 C

Protocol for Small-Scale Microcarrier Culture

Human ipsc-derived Sensory Neuron Progenitors. For the generation of ipsc-derived sensory neurons

Standard Operating Procedure

CHOgro Expression System

Transfection Reagents That Really Work

GeneCellin TM Transfection Reagent Protocol

Calcein AM Cell Viability Kit

Growth and Maintenance of the 293A Cell Line

DuraScribe T7 Transcription Kit

Human Dermal Fibroblast Manual

Transcription:

TRANSFECTION PROTOCOL Lipofectamine Stem Transfection Reagent Transfection of neural stem cells with Lipofectamine Stem Transfection Reagent in StemPro medium NSC media, passaging reagents, and complexation medium Component Cat. No. StemPro NSC SFM A100901 CTS GlutaMAX-I Supplement A1286001 Geltrex LDEV-Free, hesc-qualified, Reduced Growth Factor Basement Membrane Matrix A1413302 Dulbecco s Phosphate Buffered Saline (DPBS) without calcium and magnesium 14190144 StemPro Accutase Cell Dissociation Reagent A111001 Opti-MEM I Reduced Serum Medium 3198062 Starting with undifferentiated human primary neural stem cells (NSCs) or pluripotent stem cell (PSC) derived NSCs, expanded in a defined culture system such as Gibco StemPro NSC Serum-Free Medium (SFM) on Gibco Geltrex matrix, is ideal for efficient transfection. Passaging Maintain NSCs in the format of your choice, such as 6-well plates, 60 cm dishes, T-2 flasks, or T-7 flasks coated with Geltrex matrix, in StemPro SFM. Propagating NSCs in T-2 flasks and transfecting in 24-well plates are convenient formats used in this protocol. Passage NSCs every 3 to days at 90 100% confluence. Precoating 24-well plates with Geltrex matrix for transfection 1. Prepare a 1:100 dilution of Geltrex matrix in cold Gibco DMEM/F-12 with Gibco GlutaMAX Supplement (Cat. No. 106). 2. Add 300 µl of diluted Geltrex matrix to each well of a 24-well plate and incubate at 37 C for 1 hour, before use. Tip: Geltrex matrix coated plates can be prepared ahead of time and stored for up to 2 weeks at 4 C. Equilibrate at room temperature for 1 hour before plating cells. Use Gibco StemPro Accutase Cell Dissociation Reagent to generate a single-cell suspension of NSCs for both expansion and seeding for transfection.

Seeding cells for transfections 1. When NSC cultures are ~90 100% confluent, remove the StemPro NSC SFM. 2. Wash NSCs once with 10 ml of DPBS without calcium and magnesium; aspirate the medium and discard. 3. Add 1 ml of room-temperature StemPro Accutase reagent to each T-2 flask, swirl to evenly coat the NSCs, and incubate for 2 minutes at room temperature. Important: To maximize transfection efficiency, seeding a single-cell suspension of NSCs prepared with StemPro Accutase reagent is recommended. 4. Observe cells on an inverted microscope to confirm that NSCs are detached; firmly tap the flask to aid in the detachment of NSCs, as necessary.. Add 9 ml of StemPro NSC SFM to inactivate the StemPro Accutase reagent. 6. Gently triturate and rinse the flask to generate a single-cell suspension, and transfer the cell suspension into a 1 ml conical tube. 8. Aspirate the supernatant and resuspend the pellet to a single-cell suspension in 3 ml of StemPro NSC SFM. 9. Perform a total viable cell count with the Invitrogen Countess II Automated Cell Counter or another method. 10. Dilute with additional StemPro NSC SFM to a final concentration of 10,000 cells/ml. 11. Aspirate the Geltrex matrix from the wells of a precoated 24-well plate. Important: Proliferating NSC cultures need room to expand during transfection, so plate the recommended starting number of cells (step 12) to achieve 30 60% confluence on the day of transfection. 12. Add 0. ml of the NSC suspension in StemPro NSC SFM to plate 7,000 cells/well in the precoated 24-well plate. 13. Return the plate to the incubator and culture at 37 C with % CO 2 Important: You do not need to change the medium on the day of transfection. 7. Centrifuge the NSC cell suspension at 200 x g for 4 minutes. 2

DNA transfection protocol Perform the following steps, which have been optimized for using Invitrogen Lipofectamine Stem Transfection Reagent with NSCs: Step Tube Complexation component Amount per well (24-well plate) 1 Tube 1 Lipofectamine Stem reagent 1 µl 2 Tube 2 DNA (0. µg/µl) 00 ng 3 Add tube 2 solution to tube 1, and mix well. 4 Incubate mixture from step 3 for 10 minutes at room temperature. Add 0 µl of complex from step 4 to each well; gently swirl plate to ensure even distribution of the complex across the entire well. 6 Return culture dish to incubator and culture at 37 C with % CO 2 7 The following day, overlay an additional 0. ml of StemPro NSC SFM per well, if NSCs are going to be transfected for 48 hours. Analysis of transfection efficiency Observe NSCs transfected with a GFP reporter construct at 24 and 48 hours posttransfection by fluorescence microscopy or flow cytometry for endpoint analysis (Figure 1). A Tips and tricks The amount of Lipofectamine Stem reagent required for optimal transfection depends on the amount of NSCs plated and the amount of DNA used. If cytotoxicity from the DNA preparation is evident, reducing the amount of DNA to 20 ng per well can improve survival while maintaining efficient transfection. B Using a plasmid with a promoter that is active in human NSCs, such as the EF1α promoter, is critical for assessing transfection efficiency; some promoters such as the cytomegalovirus (CMV) promoter can be transcriptionally silenced in NSCs. Figure 1. Posttransfection analysis of NSCs. (A) Fluorescence image demonstrating 9% transfection efficiency, and (B) bright-field image. NSCs are shown 24 hours after transfection with 00 ng of a 6 kb EF1α-GFP plasmid and 1 µl of Lipofectamine Stem reagent in StemPro NSC SFM on Geltrex matrix. 3

mrna transfection protocol Perform the following steps, which have been optimized for using Lipofectamine Stem reagent with NSCs: Step Tube Complexation component Amount per well (24-well plate) 1 Tube 1 Lipofectamine Stem reagent 1 µl 2 Tube 2 mrna (0. µg/µl) 20 ng 3 Add tube 2 solution to tube 1, and mix well. 4 Incubate mixture from step 3 for 10 minutes at room temperature. Add 0 µl of complex from step 4 to each well; gently swirl plate to ensure even distribution of the complex across the entire well. 6 Return culture dish to incubator and culture at 37 C with % CO 2 7 The following day, overlay an additional 0. ml of StemPro NSC SFM per well, if NSCs are going to be transfected for 48 hours. Analysis of transfection efficiency Observe PSCs transfected with a fluorescent mrna at 24 and 48 hours posttransfection by fluorescence microscopy or flow cytometry for endpoint analysis (Figure 2). A Tips and tricks The amount of mrna required to generate a specific biological readout will vary by user application; Lipofectamine Stem reagent efficiently delivers mrna into NSCs across a range of dosages. Including an independent GFP mrna (0 ng) in addition to your transcript of interest allows an independent assessment of transfection efficiency. B If cytotoxicity from the mrna preparation is evident, reducing the amount of mrna to 12 ng per well can improve survival while maintaining efficient transfection. The method of generation and purification of in vitro transcribed (IVT) mrna can contribute to toxicity as well as translational repression. An anti-reverse cap analog (ARCA) system, included in the Invitrogen mmessage mmachine Kit for in vitro transcription, and Invitrogen MEGAclear columns can be used to eliminate uncapped transcripts and small unincorporated nucleotides that can contribute to cytotoxicity. Figure 2. Posttransfection analysis of NSCs. (A) Fluorescence image demonstrating 70% transfection efficiency, and (B) bright-field image. ipsc-derived NSCs (NCRM1) are shown 36 hours after transfection with 20 ng of GFP mrna and 1 μl of Lipofectamine Stem reagent in StemPro NSC SFM on Geltrex matrix. 4

Ribonucleoprotein (RNP) transfection protocol RNP complex components: Invitrogen GeneArt Platinum Cas9 Nuclease (Cat. No. B2641) grna (see Designing and generating grna by in vitro transcription ) Perform the following steps, which have been optimized for using Lipofectamine Stem reagent with NSCs: Step Tube Complexation component Amount per well (24-well plate) 1 Tube 1 Lipofectamine Stem Reagent 1 µl 2 Tube 2 Cas9 nuclease 00 ng grna (0.1 0. µg/µl) 12 ng 3 Add tube 2 solution to tube 1, and mix well. 4 Incubate mixture from step 3 for 10 minutes at room temperature. Add 0 µl of complex from step 4 to each well; gently swirl plate to ensure even distribution of the complex across the entire well. 6 Return culture dish to incubator and culture at 37 C with % CO 2 7 The following day, overlay an additional 0. ml of StemPro NSC SFM per well, if NSCs are going to be transfected for 48 hours. Analysis of transfection efficiency Observe PSCs transfected with a GFP reporter construct at 24 and 48 hours posttransfection by fluorescence microscopy or flow cytometry, and analyze double-stranded break (DSB) formation using the Invitrogen GeneArt Genomic Cleavage Detection Kit or a similar assay (Figure 3). Tips and tricks Adding 0 ng of GFP mrna to the transfection complex along with the RNP complex can provide an independent measure of transfection efficiency. A B C NSCs Lipofectamine Stem reagent volume: Control 1 µl Indel formation: 6% Figure 3. Posttranfection analysis of NSCs. (A) Fluorescence image demonstrating 60% transfection efficiency, and (B) bright-field image. ipsc-derived NSCs (NCRM1) are shown 24 hours posttransfection with 00 ng of GeneArt Platinum Cas9 Nuclease, 12 ng of grna, 0 ng of GFP mrna, and 1 µl of Lipofectamine Stem reagent in StemPro NSC SFM on Geltrex matrix. (C) Genomic cleavage detection analysis of ipsc-derived NSCs 48 hours posttransfection, demonstrating 6% indel formation within the EMX1 locus.

Designing and generating grna by in vitro transcription In addition to RNP transfection efficiency, the efficiency of DSB/indel formation at a given locus can depend on grna design. Use the Invitrogen GeneArt CRISPR Search and Design Tool, available at thermofisher.com/crisprdesign, to search our database of >600,000 predesigned grna sequences specific to every gene in the human genome. These predesigned grnas are optimized for gene knockout and typically target the first 3 transcribed exons per gene. Clone and generate your own grna using the Invitrogen GeneArt Precision grna Synthesis Kit (Cat. No. A29377). grna concentration can be quantified on the Invitrogen Qubit 3 Fluorometer (Cat. No. Q33216) coupled with the Invitrogen Qubit RNA BR Assay Kit (Cat. No. Q10210). Find out more at thermofisher.com/transfection For Research Use Only. Not for use in diagnostic procedures. 2017 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. COL21892 0617