Research Letter Comparison of the Solid Solution Properties of Mg-RE (Gd, Dy, Y) Alloys with Atomistic Simulation

Similar documents
Formability and Crystallographic Texture in Novel Magnesium Alloys

Module-6. Dislocations and Strengthening Mechanisms

Wrought Aluminum I - Metallurgy

An atomistic study of dislocation-solute interaction in Mg-Al alloys

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..)

Development Center, Warren, MI , USA 3 State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing , China

Microstructure and Properties of Elektron 21 Magnesium Alloy

Development of creep-resistant magnesium casting alloys for high temperature automotive applications

Torsional properties of bamboo-like structured Cu nanowires. Haifei Zhan and Yuantong Gu *

Lecture # 11 References:

Fundamentals of Plastic Deformation of Metals

arxiv: v1 [cond-mat.mtrl-sci] 8 Nov 2016

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction

Materials and their structures

Influences of Silicon on Properties of Hard Drawn Aluminium Wire

Design of High Strength Wrought Magnesium Alloys!

Characterization of β and Mg 41 Nd 5 equilibrium phases in Elektron 21 magnesium alloy after long-term annealing

TOPIC 2. STRUCTURE OF MATERIALS III

The Deformation Behavior of Rare-earth Containing Mg Alloys

International Conference on Material Science and Application (ICMSA 2015)

STRENGTHENING MECHANISM IN METALS

Objective To study the time and temperature variations in the hardness of Al-4% Cu alloy on isothermal aging.

Metals I. Anne Mertens

Strengthening Mechanisms

Effect of Zn content on microstructure, mechanical properties and fracture behavior of Mg-Mn alloy

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress?

The effect of composition and temperature on the deformation behaviour of magnesium-aluminium binary alloys

Titanium and titanium alloys. Josef Stráský

Mechanical Properties of Metals. Goals of this unit

Excess Volume at Grain Boundaries in hcp Metals

EFFECT OF MICROSTRUCTURAL PARAMETERS ON TWINNING ACTIVITY OF MAGNESIUM ALLOYS

EFFECT OF RARE EARTH ADDITIONS ON THE TEXTURE OF WROUGHT MAGNESIUM ALLOYS: THE ROLE OF GRAIN BOUNDARY SEGREGATION

Effect of Li Addition on Synthesis of Mg-Ti BCC Alloys by means of Ball Milling

Origins of Strength and Ductility in Mg Y Alloys. Xiaohui Jia ( Supervisor: Dr.Marek Niewczas ) 701 Graduate Seminar 18 th December,2012

A STUDY OF CASTING CHARACTERISTICS FOR DIE-CAST ALUMINUM ALLOY

Computer Simulation of Nanoparticle Aggregate Fracture

ASTM Conference, Feb , Hyderabad, India

Anisotropic Mechanical Properties of Pr(Co,In) 5 -type Compounds and Their Relation to Texture Formation in Die-upset Magnets

Influence of Phosphorus on Deformation Mechanism and Mechanical Properties of IN718 Alloy

MICROSTRUCTURAL INVESTIGATION OF SPD PROCESSED MATERIALS CASE STUDY

Strain Capacities Limits of Wrought Magnesium Alloys: Tension vs. Expansion

Molecular dynamic simulations of the high-speed copper nanoparticles collision with the aluminum surface

CHAPTER 4 NANOINDENTATION OF ZR BY MOLECULAR DYNAMICS SIMULATION. Introduction to Nanoindentation

The Anisotropy of Hexagonal Close-Packed and Liquid Interface Free Energy using Molecular Dynamics Simulations based on Modified Embedded-Atom Method

Effects of Nd/Gd ratio on the microstructures and mechanical properties of Mg-Gd-Y-Nd-Zr alloys

Engineering 45: Properties of Materials Final Exam May 9, 2012 Name: Student ID number:

AND Ti-Si-(Al) EUTECTIC ALLOYS Introduction. temperatur-dependent

Materials Science & Engineering A

Influence of minor additions of boron and zirconium on shape memory properties and grain refinement of a Cu-Al-Mn shape memory alloy

Simulation of Hydrogen Embrittlement at Crack Tip in Nickel Single Crystal by Embedded Atom Method

Mohammad Anwar Karim Id :

Superelasticity in TiNi Alloys and Its Applications in Smart Systems. Wei Cai, Yufeng Zheng, Xianglong Meng and Liancheng Zhao

Physics of Nanomaterials. Module II. Properties of Nanomaterials. Learning objectives

Microstructure and Microhardness of an Al-Zr-Ti-Fe Alloy

Creep behavior study of join of nano crystalline Stainless steel and nanocrystalline Nickel using molecular dynamics simulation

Defense Technical Information Center Compilation Part Notice

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals

Impurities in Solids. Crystal Electro- Element R% Structure negativity Valence

TENSION/COMPRESSION ASYMMETRY IN CREEP BEHAVIOR OF A Ni-BASED SUPERALLOY

THE TEXTURE STRENGTHENING EFFECT IN A MAGNESIUM ALLOY PROCESSED BY SEVERE PLASTIC DEFORMATION

ME -215 ENGINEERING MATERIALS AND PROCESES

Lightweighting is a well-known

Final Examination. Instructions. Guidelines. UNIVERSITY OF CALIFORNIA College of Engineering Department of Materials Science & Engineering

1) Fracture, ductile and brittle fracture 2) Fracture mechanics

Effect of tensile strain rates on flow stress for extruded AZ31 and AZ61 magnesium alloys

Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1

Accepted Manuscript Not Copyedited

Effect of Stacking Fault Energy on Evolution of Recrystallization Textures in Drawn Wires and Rolled Sheets

Chapter 12: Structures & Properties of Ceramics

CHAPTER 5: DIFFUSION IN SOLIDS

Heat Treatment of Aluminum Alloy 7449

Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions

Texture Characteristics and Anisotropic Superplasticity of AZ61 Magnesium Alloy

Influence of Grain Size and Texture on the Yield Asymmetry of Mg-3Al-1Zn Alloy

THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 304L STAINLESS STEEL INTRODUCTION

The Effect of La Addition on the Microstructure and Tensile Properties of Hot-Extruded Al 15%Mg 2 Si Composite

MAGNESIUM ALLOY CONTAINING SILVER FOR DEGRADABLE BIOMEDICAL IMPLANTS

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline

Characterization of Mechanical Properties of SiC/Ti-6Al-4V Metal Matrix Composite (MMC) Using Finite Element Method

The University of Jordan School of Engineering Chemical Engineering Department

Nanocrystalline structure and Mechanical Properties of Vapor Quenched Al-Zr-Fe Alloy Sheets Prepared by Electron-Beam Deposition

Ceramic Processing Research

EFFECT OF GRAIN BOUNDARY MISORIENTATION ON THE ASYMMETRY, ANISOTROPY, AND NUCLEATION STRESSES OF {10 2} TWINNING AND NON-BASAL SLIP IN MAGNESIUM

Chapter Outline. How do atoms arrange themselves to form solids?

ZHOU, CAIZHI EDUCATION RESEARCH INTERESTS EXPERIENCE

Defects and Diffusion

Module 1. Principles of Physical Metallurgy: an introduction to the course content. Lecture 1

Tensile Properties of Forged Mg-Al-Zn-Ca Alloy

Refined Microstructure and Enhanced Mechanical Properties of Mg-6Al-0.5Ca-0.5Mn Alloy by Sn Addition

Key factors for warm rolled bond of 6111-aluminium strip

Influence of compound deoxidation of steel with Al, Zr, rare earth metals, and Ti on properties of heavy castings

Chapter Outline: Failure

ENGN2340 Final Project Computational rate independent Single Crystal Plasticity with finite deformations Abaqus Umat Implementation

A DISLOCATION MODEL FOR THE PLASTIC DEFORMATION OF FCC METALS AN ANALYSIS OF PURE COPPER AND AUSTENITIC STEEL

The use of magnesium has grown dramatically in the. Section thickness-dependent tensile properties of squeeze cast magnesium alloy AM60 CHINA FOUNDRY

Recrystallization Theoretical & Practical Aspects

Deformation Twinning in Bulk Aluminum with Coarse Grains

Influence of Niobium or Molybdenum in Titanium Alloy for Permanent Implant Application Yuswono Marsumi 1, a and Andika Widya Pramono 1,b

World Academy of Science, Engineering and Technology International Journal of Materials and Metallurgical Engineering Vol:8, No:4, 2014

Transcription:

Research Letters in Physics Volume 2008, Article ID 476812, 4 pages doi:10.1155/2008/476812 Research Letter Comparison of the Solid Solution Properties of Mg-RE (Gd, Dy, Y) Alloys with Atomistic Simulation Yurong Wu 1 and Wangyu Hu 2 1 Department of Materials, College of Electromechanical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China 2 Department of Applied Physics, Hunan University Changsha, Hunan 410082, China Correspondence should be addressed to Wangyu Hu, wangyuhu2001cn@yahoo.com.cn Received 30 May 2008; Accepted 11 September 2008 Recommended by Ravindra Pandey Molecular dynamic simulations have been performed to study the solid solution mechanism of Mg100-xREx (RE = Gd, Dy, Y, x = 0.5, 1, 2, 3, 4 at.%). The obtained results reveal that the additions of Gd, Dy and Y increase the lattice constants of Mg-RE alloys. Also the axis ratio c/a remains unchanged with increase in temperature, restraining the occurrence of nonbasal slip and twinning. Furthermore, it is confirmed that bulk modulus of Mg alloys can be increased remarkably by adding the Gd, Dy, Y, especially Gd, because the solid solubility of Gd in Mg decrease sharply with temperature in comparison with Dy and Y. Consequently, the addition of the RE can enhance the strength of Mg-based alloys, which is in agreement with the experimental results. Copyright 2008 Y. Wu and W. Hu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. INTRODUCTION Magnesium alloys are becoming increasingly important due to potential weight saving in comparison with aluminumbased alloys. However, the mechanical properties of magnesium alloys in some respects are inferior to those of aluminum alloys which are also light-weight materials. Recently, it was reported that the addition of rare earth elements (REs), such as Gd, Dy, Y [1 6], especially Gd [7], can remarkably improve the mechanical properties of magnesium at room and high temperatures [1 4, 8]. The effects of RE have been explained by two mechanisms. One is solution-hardening and the other is precipitation-hardening. Experimentally, the equilibrium solid solubility of Dy, Y, and Gd in magnesium is relatively high. Their values are 3.5, 3.75, and 4.53 at.%, respectively. The solid solubility decreases sharply with temperature, especially Gd. For example, the maximum solid solubility of Gd in Mg is relatively high (4.53 at.% at 821 K) and decreases exponentially with temperature (to 0.61 at.% at 573 K). It has been reported that the addition of Gd, Dy, and Y is effective for improving strength and creep resistance of magnesium alloys at elevated temperature [1 3, 9]. So the aim of this work is to investigate the solid solution properties of the Mg-RE alloy by the addition of different atomic fraction of Gd, Dy, and Y at room temperature and elevated temperature (500 K) using the modified analytical-embedded atom method (EAM) [10], which has been successfully applied in the calculations of some Mg-rare earth alloys [11 13]. 2. SIMULATION PROCEDURE The interactions between Mg, Gd, Dy, Y atoms are described by an analytical-embedded atom method (EAM) potential [11 13]. In the simulation runs, simulations were performed for 10944 atoms based on HCP unit cell, which comprise pure Mg, and Mg 100-x -Gd x,mg 100-x -Dy x,andmg 100-x -Y x (x = 0.5, 1, 2, 3, 4 at.%) alloys. The periodic boundary conditions were applied on the fundamental directions of molecular dynamic (MD) cell. Molecular dynamics calculations are carried out in two successive ensembles. The lattice constants for simulation systems are determined from the constant temperature-constant pressure (NPT) ensemble simulations. And then the constant volume-constant temperature (NVT) ensemble is used to compute the elastic constants of the systems. In integration of the classic equations of motion, we used a fourth-order gear predictor-corrector algorithm with a time step of 3 femtoseconds [14]. The simulation

2 Research Letters in Physics 0.329 0.328 0.327 0.326 Lattice parameter, a (nm) 0.326 0.325 0.324 0.323 0.322 Lattice parameter, a (nm) 0.324 0.322 0.321 0.32 0.319 Mg-Gd 0 200 400 600 800 1000 Temperature 0.32 Mg-Dy 0 200 400 600 800 Temperature Mg-0.5Gd Mg-1Gd Mg-2Gd Mg-3Gd Mg-4Gd Mg-0.5Dy Mg-1Dy Mg-2Dy Mg-3Dy (a) (b) Axial ratio, c/a 1.6275 1.627 1.6265 1.626 1.6255 1.625 1.6245 1.624 1.6235 1.623 300 400 500 600 700 800 900 1000 Temperature (K) Mg-0.5Gd (c) Figure 1: The lattice parameter as a function of the temperature for Mg-RE alloys by the use of Gd and Dy additions. systems are relaxed by 50 000 time steps at room and elevated temperature, and all of the statistical data are collected from further 50 000 MD time steps. 3. RESULTS AND DISCUSSION 3.1. Effect of Gd, Dy, and Y on lattice parameters in Mg Magnesium with hexagonal close-packed crystal structure has three slip systems: a basal slip system of (0001) 1120, a prismatic slip system, such as {1010} 1120, and the pyramidal slip system, such as {101 1} 1120 and {1122} 1123. The latter two slip systems act together in many cases and are called the nonbasal slip system versus the basal slip system. Magnesium is plastic-deformed by the basal slip and twinning mainly at relatively low temperature. The critical resolved shear stress for the basal slip in pure magnesium is very low, approximately 0.60.7 MPa, at room temperature. It is also independent of temperature. In contrast, the critical shear stress for the nonbasal slip is over 40 MPa at low temperature, which is two orders of magnitude higher than that for the basal slip, and drastically decreases to 2-3 MPa with increasing temperature [16]. The variation of lattice parameters with temperature in pure Mg, Mg 100-x -Gd x,andmg 100-x -Dy x (x = 0.5, 1, 2, 3, 4 at.%) alloys is shown in Figure 1, along with the experimental data [17]. The temperature dependence of the lattice parameters for Mg 100-x -Y x alloys is similar to those

Y. Wu and W. Hu 3 42 300 k 500 k 41 40 39 35 34 35 0 1 2 3 4 Content of Gd 33 0 1 2 3 4 5 Content of Gd (a) (b) Figure 2: Bulk modulus of Mg as function of Gd content at room and high temperature, as well as the experimental data [15]. of Mg 100-x -Gd x and Mg 100-x -Dy x alloys. By adding the Gd and Dy, the lattice parameters a and the axis ratio (c/a) become larger. The lattice parameters in the pure Mg, Mg 100-x -Gd x and Mg 100-x -Dy x alloys increase linearly with temperature increasing. We can also see that the values from EAM calculations are larger than experimental values. As an example of Mg-0.5Gd, as shown in Figure 1(c), the c/a in Mg-0.5Gd alloy almost keeps a constant with increasing temperature, whereas pure metal Mg does not exhibit this behavior. Thus, the RE metals (Gd, Dy, and Y) give rise to the variation of lattice parameters, whereas the c/a remains unchanged with increasing temperature, which indicates that the temperature-independent c/a restrains the occurrence of nonbasal slip and twinning. Because the slip and twining in HCP metals may be related to the axis ratio, c/a. Nonbasal slip hardly occurs when the c/a is large, whereas at high temperature, where the c/a becomes lower, the nonbasal slip can occur [18, 19]. This phenomenon has been reported in Mg-Y alloys [19]. 3.2. Comparison of the solid strength of Mg-RE alloys As discussed above, the addition of RE metals can vary the lattice parameter for Mg-Gd, Mg-Dy, and Mg-Y alloys. The larger the rare earth metal content, the larger the lattice parameters for Mg-RE alloys. At the same time, the addition of rare earth metals also varies the solid strength for Mgrare earth alloys. As an example of Mg-Gd alloys, the bulk modulus of pure Mg and Mg 100-x -Gd x alloys at room and high temperature are presented in Figure 2, along with the experimental data [15]. It can be noted that the addition of Gd gives rise to the sudden increase of bulk modulus of Mg at room and high temperature. The Mg-Dy and Mg-Y alloys exhibit a similar solid strength behavior. This behavior 42 41 40 39 300 k Mg-Gd Mg-Dy Mg-Y 0 1 2 3 4 RE content Figure 3: Comparison of the bulk modulus for Mg-RE alloys with different rare earth content at room temperature. indicates that the addition of Gd, Dy, and Y can enhance strength of Mg, which is in agreement with experiments [1 3, 20, 21]. Furthermore, the bulk modulus of Mg increases with increasing the content of Gd, Dy, and Y. The comparison of the bulk modulus for Mg-RE alloys with various rare earth metal compositions at room temperature is shown in Figure 3. The magnitude of the bulk modulus of Mg-Gd is the largest one among the three Mg- RE alloys, which demonstrate that the addition of Gd can further improve the strength of Mg-RE alloys [8]. This behavior may be explained in terms of the equilibrium solid solubility of Gd in Mg decreasing sharply with temperature in comparison with Dy and Y. For example, the maximum solid solubility of Gd in Mg is 4.53 at.% at 821 K and decreases exponentially with temperature, to 0.61 at.% at 573 K.

4 Research Letters in Physics 4. CONCLUSIONS In this paper, the solid solution properties of Mg-RE (RE = Gd, Dy, Y) alloys with different RE contents have been investigated in terms of molecular dynamic simulation using an analytical-embedded atom method. It has been found that the lattice parameters of magnesium alloys containing Gd, Dy, and Y increase. However, the axis ratio c/a almost keeps a constant with increasing temperature, which restrains the occurrence of nonbasal slip and twinning. Furthermore, the addition of the RE also gives rise to the variation of bulk modulus, which indicates that the strength of Mg alloys can be improved by Gd, Dy, and Y, especially Gd. This behavior may be interpreted by the idea that the equilibrium solid solubility of Gd in Mg decreasing more sharply with temperature in comparison with Dy and Y. ACKNOWLEDGMENTS This work is financially supported by the National Natural Science Foundation under Contracts nos. 505710 and 50671035. REFERENCES [1] G. W. Lorimer, P. J. Apps, H. Karimzadeh, and J. F. King, Improving the performance of Mg-rare earth alloys by the use of Gd or Dy additions, Materials Science Forum, vol. 419 422, pp. 279 284, 2003. [2] M. Suzuki, H. Sato, K. Maruyama, and H. Oikawa, Creep behavior and deformation microstructures of Mg-Y alloys at 550 K, Materials Science and Engineering A, vol. 252, no. 2, pp. 248 255, 1998. [3] S. M. He, L. M. Peng, X. Q. Zeng, W. J. Ding, and Y. P. Zhu, Comparison of the microstructure and mechanical properties of a ZK60 alloy with and without 1.3 wt.% gadolinium addition, Materials Science and Engineering A, vol. 433, no. 1-2, pp. 175 181, 2006. [4] V. G. V. Gärtnerová, Z. Trojanová, A. Jäger, and P. Palček, Deformation behaviour of Mg-0.7 wt.% Nd alloy, Alloys and Compounds, vol. 8, no. 1-2, pp. 180 183, 2004. [5] Y. Zhang, X. Q. Zeng, L. Liu, et al., Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg-Zn-Y-Zr alloys, Materials Science and Engineering A, vol. 3, no. 1-2, pp. 320 327, 2004. [6] L. L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals, Taylor & Francis, London, UK, 2003. [7] M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura, Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate, Scripta Materialia, vol. 53, no. 7, pp. 799 803, 2005. [8] H. Karimzadeh, J. M. Worrall, R. Pilkington, and G. W. Lorimer, Tensile and creep fracture of a Mg-Y-RE alloy, in Proceedings of International Conference on Magnesium Technology, pp. 1 141, The Institute of Metals, London, UK, March 1986. [9] M. Suzuki, H. Sato, K. Maruyama, and H. Oikawa, Creep deformation behavior and dislocation substructures of Mg-Y binary alloys, Materials Science and Engineering A, vol. 319 321, pp. 751 755, 2001. [10] M. S. Daw and M. I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Physical Review Letters, vol. 50, no. 17, pp. 1285 1288, 1983. [11]W.Hu,H.Deng,X.Yuan,andM.Fukumoto, Point-defect properties in HCP rare earth metals with analytic modified embedded atom potentials, The European Physical Journal B, vol. 34, no. 4, pp. 429 440, 2003. [12] Y. Wu and W. Hu, Molecular dynamics simulations of thermodynamics, elastic constants and solid solution strengths for Mg-Gd alloys, The European Physical Journal B,vol.57,no.3, pp. 305 312, 2007. [13] Y. Wu, W. Hu, and L. Sun, Elastic constants and thermodynamic properties of Mg-Pr, Mg-Dy, Mg-Y intermetallics with atomistic simulations, Physics D, vol. 40, no. 23, pp. 7584 7592, 2007. [14] M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method, Applied Physics, vol. 52, no. 12, pp. 7182 7190, 1981. [15] L. J. Slutsky and C.W. Garland, Elastic constants of magnesium from 4.2 K to 300 K, Physical Review, vol. 107, no. 4, pp. 972 976, 1957. [16] H. Numakura and M. Koiwa, Dislocations in metals and alloys with the hexagonal close-packed structure, Metallurgical Science and Technology, vol. 16, no. 1-2, pp. 4 19, 1998. [17]Y.S.Touloukian,R.K.Kirby,R.E.Taylor,andP.D.Desai, Thermal Expansion Metallic Elements and Alloys, vol. 12, IFI/Plenum, New York, NY, USA, 1977. [18]J.E.DornandJ.B.Mitchell,High-Strength Materials, John Wiley & Sons, New York, NY, USA, 1964. [19] S.-Y. Chang, T. Nakagaido, S.-K. Hong, D. H. Shin, and T. Sato, Effect of yttrium on high temperature strength of magnesium, Materials Transactions, vol. 42, no. 7, pp. 1332 13, 2001. [20] L. L. Rokhlin and N. I. Nikitina, Magnesium gadolinium and magnesium gadolinium yttrium alloys, Zeitschrift für Metallkunde, vol. 85, no. 12, pp. 819 823, 1994. [21] Q. Peng, Y. Wu, D. Fang, J. Meng, and L. Wang, Microstructures and properties of melt-spun and as-cast Mg-20Gd binary alloy, Rare Earths, vol. 24, no. 4, pp. 466 470, 2006.

The Scientific World Journal Gravity Photonics Condensed Matter Physics Soft Matter Aerodynamics Fluids Submit your manuscripts at International International Optics Statistical Mechanics Thermodynamics Computational Methods in Physics Solid State Physics Astrophysics Physics Research International High Energy Physics International Superconductivity Atomic and Molecular Physics Biophysics Astronomy