Steel Cladding for Animal Confinement Buildings

Similar documents
NON-CLEANING AND OPTIMIZED FOR CORROSIVE ENVIRONMENTS. Hilti HIT-Z-F and HIT-HY 200 ultimate performance chemical anchor system

Corrosion Protection & Coatings Repair. DN Issue 001

White Paper. By Jeffrey T. Kochelek and Adam H. Hilton V.1.0.0

Galvanized Steel TECHNICAL BULLETIN #1

Revere Copper Products, Inc.

STAYFLEX CORROSION CONTROL AND THERMAL INSULATION SYSTEM

Moisture Considerations for Insulated Building Assemblies

SECTION WELDED STEEL PICKET FENCE. 1. Fusion welded and rackable ornamental steel picket fence system.

AIR INTAKE VENTS. Special air intake Models for

Technical Note SALES. Page

THE BRITE THING TO DO

MECHANICAL TUBE DIVISION

Management, Sanitation and Diseases Prevention In Poultry Farms. Edited by. Hussein A. Kaoud Cairo University

Spandrel Glass Types and Recommendations

STUCCO FAILURES and REMEDIATION Roger G. Morse AIA

A. Meet at Project site <insert number> days before starting installation.

SECTION G RELIEF VENTS A-0

Advanced technologies for enhancing the building envelope. 3M Building and Construction Market

LP SmartSide Perfection Shingle

Prevention Strategies Design and Coatings

INSTALLATION GUIDE.

2001 National Workshop on State Building Energy Codes July th, 2001 Burlington, Vermont

Performance, Beauty & Long Life STAINLESS STEEL CARE & MAINTENANCE. Stainless Steel Performance. Stain less Steel

Metal Buildings and Condensation. Welcome to Metalcon Condensation Description. Program Objectives. Dew Point Temperatures

Crawl Space Moisture Control

SECTION SECTIONAL OVERHEAD DOORS

PPG Guide Specification

ALLMET CONTINENTAL INSTALLATION GUIDE

MATERIAL SAFETY DATA SHEET. Polypropylene

Pioneer Forced Draft Cooling Tower Specifications

Black s Metals Installation Guide

Hot-Dip Galvanized Fabrication Considerations

White Paper. Galvanized Pipe Failures in Dry Pipe Sprinkler Systems (April 2016) By Lucas Kirn, PE

Installation Guide Wall Panels

Container Installation Guide

KNIGHT WALL SYSTEMS GUIDE DETAILS:

FlexClad Duct and Pipe Sealing System

The Use of FRP (Fiberglass-Reinforced Plastic) in Phosphate Fertilizer and Sulfuric Acid Processes

Page 1 of 5

INSTALLATION MANUAL Heritage Series

Application Instructions for Dryvit Backstop NT For Use Beneath Claddings Other Than Dryvit EIFS

Pacific Tile Counter Batten and Batten

DURABILITY OF COLD-FORMED STEEL FRAMING MEMBERS

SECTION TURBINE VENTILATORS

Figure 2. By John H. Koester

SIDER-POOL. Product Data. Features and Uses

FIRESTONE RUBBERGARD. EPDM: The roofing membrane for the 21 ST CENTURY.

10 Steps to Save Energy in Your House

KNIGHT WALL SYSTEMS GUIDE DETAILS:

CUI (CORROSION UNDER INSULATION) MECHANISM THEORY AND PRACTICE

The Olympia Difference

Kingspan Day-Lite Klick

Louis Armstrong New Orleans International Airport NOAB Project # North Terminal Development Program Phase 1

Built to Last a Lifetime

Construction. Pulastic Coating-221 W. 2 Component Polyurethane

Dependable Buildings To House Your Livestock

Radiator Maintenance

Application Guide HI-TEMP 1027 APPLICATION GUIDE. Number: AG-3001 Revision: Page 1 of Introduction. 2. Where to apply Hi-Temp 1027

Approx. 12 m² per litre depending on surface porosity, profile. Application methods

SECTION METAL BUILDING SYSTEMS

Cathodic Protection for Steel Water Storage Tanks Pocket Field Guide. David H. Kroon, P.E.

Anti-Corrosion - Technical Training

SECTION PRE-ENGINEERED BUILDING INSULATION

Table of Contents. C. Recommended Remediation Firms: upon request

Encapsulated, Sealed & Closed Crawlspace Installation Manual

Safety Data Sheet. Section 1: Identification. Product identifier Product Name

Commercial Roof Cover Maintenance and Repair Risk Engineering Your Business Insurance Specialists

STORAGE AND TRANSPORTION

TECHNICAL INFORMATION GRANODINE 20

Field Determination of Water Penetration of Windows using Blowerdoor and Infrared Camera

PIPE AND TUBE RAILINGS

GUIDELINES FOR THE PACKAGING AND STORAGE OF PESTICIDES FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

by Rollfab Metal Products

U.S. General Services Administration Historic Preservation Technical Procedures. Galvanized Iron And Steel: Characteristics, Uses And Problems

SECTION MANUFACTURED ROOF EXPANSION JOINTS

FREQUENTLY ASKED QUESTIONS

SECTION PRE-ENGINEERED MEMBRANE STRUCTURE

Also consult with the local plant to determine if established Area Classifications apply.

General Overview SECTION PBR & R PANEL - PREFORMED ROOF AND WALL PANELS

General Applications Before applying, mix the pre-measured catalyst* into Liquid Roof by following label directions.

FIRE STATION 55 June 14, 2010

SECTION INSULATED METAL WALL PANELS. ATAS International, Inc. General Specification for Commercial/Industrial and Architectural Applications

Corium Brick Rainscreen System Specifications

Eclipse Energy Guard. Product Information & Installation Manual General Installation Requirements

Activated Black Magic Plus Product Code: Revised Date: 10/26/2016. Activated Black Magic Plus Black Oxide Finish for Steel

MATERIAL SAFETY DATA SHEET (in accordance with Directive 1907/2006 EC) Revised Date:

CS-100 Guide Specifications

Insulation Board. Knauf Data Sheet PE-DS

Michigan Energy Code Training and Implementation Program

Specifications for FL-100 Soffit Panel

1 Exam Prep Prov Module: Thermal and Moisture Protection Questions and Answers

Radon Control Methods for Existing and New Residential Structures

Tile Roofing Inspection

Olympia is recognized as one of the industry leaders in providing superior quality, service and durability at low prices.

SL150 Guide Specification

Scibond SL-23 Polymeric Lubrication System for Tube Drawing

Roof e Flat r xhaust trap oof ventilators 4 models for FLAT ROOF

SECTION ACOUSTICAL PANEL CEILINGS

Eziform Ridge Vent Natural Roof Ventilators

White Paper. Fire Sprinkler Riser Corrosion. (May 2014) Jeffrey Kochelek (Engineered Corrosion Solutions, LLC) V.1.0.1

Transcription:

COLOURCOIL INDUSTRIES SDN. BHD. www.colourcoil.com s CTJ 09/03 BACKGROUND Aluminum-zinc coated sheet steel has outstanding corrosion resistance in a wide variety of environments, including rural, industrial and marine regions. Atmospheric exposure for more than twenty five years has clearly demonstrated that it is at least two to four times more durable in these environments than Z275 1 galvanized sheet. Aluminum-zinc coated sheet steel easily meets its twenty five-year warranty requirements, even in regions of acid rain. In certain applications, however, the relative corrosion rates of materials change. One of these applications is animal confinement buildings for hogs, cattle, and poultry. In these environments, the corrosion of aluminum-zinc coated sheet steel is more rapid than hot-dip galvanized. For this reason, Colourcoil Industries neither recommends nor warrants the use of aluminum-zinc coated sheet steel in animal confinement applications. Various types of livestock, including cattle, hogs, and poultry, live all or most of their lives in confinement buildings. Animal waste and waste decomposition by-products generated in these buildings create corrosion problems for metal building materials. Longer confinement times make the environment more corrosive. The business of raising livestock is very competitive. Building cost effective housing is an important aspect of this competition. Careful design and proper maintenance is a very important part of keeping the overall cost of metal animal confinement buildings as low as possible. CORROSION PROBLEMS WITH ANIMAL CONFINEMENT BUILDINGS Animal confinement buildings are highly corrosive environments. The waste products generated contain sulfides, ureas, amines and other corrosive agents. They are rich in bacteria that oxidize the waste materials to organic acids that readily attack aluminum, iron, and zinc. Dust typically carries bacteria to all interior areas of the building. The constant high humidity from the animals, the waste and the cleaning water adds to the corrosivity of the environment. Direct contact of the building panels with animal wastes will quickly corrode and perforate the steel. The moisture will carry the corrosive ingredients through any paint film, corroding painted steel. 1 Z275 is the coating designation where both sides zinc coating mass totals to 275 g/m 2 using the Triple Spot Test, ASTM A90/A90M 1

Building panels that do not come in direct contact with animal wastes are still subject to extremely corrosive conditions. Waste gases and gases from waste decomposition, when combined with water, form a very corrosive solution. Water condenses on cool areas, absorbing these corrosive gases and bacteria laden dust from the air. The resulting solution severely attacks the metal coating, even through paint. The most severe attack comes on the underside of the roof, in crevices, at the bottom of sidewalls, near exhaust ports on the sidewalls and roof, or between insulation and an exterior wall. These areas dry slowly because of poor air circulation or severe condensation. Exterior areas near ventilation ports are exposed to much the same corrosive atmosphere as interior areas with only the natural washing effects of rain to cleanse them. BUILDING DESIGN Building design factors that affect the corrosivity of these environments include insulation, ventilation practices, and interior cleanliness. Corrosion in confinement buildings can occur on both the exterior and interior of roofing and sidewall panels. Ventilation exposes some areas on the exterior of the roof or sidewalls to these corrosive fumes. The dominant factor in determining the building s corrosion resistance is the building design. The steel material used is not the key factor in the building s life. INSULATION AND VAPOR BARRIER Rigid type insulation, combined with a vapor barrier, protects the inside of the panels from corrosive gases and keeps the building comfortable for the animals. Well-sealed joints and vapor barriers maintain moisture tightness such that corrosive vapors do not penetrate between the insulation boards and condense on the inside of the roof cladding. The top and bottom sidewall and roof edges, as well as any cut edges, need a good vapor barrier because of the close proximity to fasteners. Condensation between the insulation and roofing is exceptionally aggressive because of the long drying time associated with small gaps. A designed gap between the insulation and wall allows easier drying, should moisture penetrate the system. Because some minor leaking of the barrier always occurs, the use of sprayed-in insulation should be avoided. This material holds moisture well and dries exceptionally slowly when wet. Additionally, it settles and creates un-insulated pockets at the top of walls and sloped roofs. In an environmentally controlled building, the use of a good insulation and vapor barrier system also helps reduce energy costs. VENTILATION Any and all efforts to ventilate the corrosive fumes generated within an animal confinement building will reduce the severity of corrosion from these gases. The decreased concentration of the corrosive gases would 2

make any leaks in the vapor barrier less of a problem. The dew point decreases with any decrease in humidity, causing less condensation. The odor of a building is a rough indication of the ventilation s effectiveness because the corrosive gases are very aromatic. The use of stacks of discharge tubes to release the gases away from the building greatly reduces the corrosive effects on the building exterior because the fumes discharged with either power or natural ventilation could cause a corrosive attack on the exteriors in close proximity to the discharge. Eave venting requires special attention to areas near the openings, such as the drip edge or cut edges. The underside of a vented overhang requires protection, such as an extension of the insulation and vapor barrier from inside the building. MATERIALS Colourcoil Industries recommends painted Z275 hot-dip galvanized (Z275 HDG) for animal confinement applications. The design factors above are the dominant factors in determining the building s corrosion resistance. Improving building design is more cost effective than using heavier zinc coatings. Adequate ventilation, proper maintenance, good insulation and a vapor barrier provide enough protection so that interior corrosivity will not harm the steel. Painted HDG gives excellent exterior corrosion protection. INTERIOR CLEANLINESS The most important aspect of interior cleanliness is efficient removal of animal waste. The method and frequency of removal strongly affects the corrosivity of the atmosphere. In an environment as conducive to bacterial growth as animal confinement, keeping the building clean is easier if the bacterial growth is not allowed to progress. Frequent cleanings will require less effort than infrequent cleanings. Regular cleaning of all areas of the building keeps the corrosivity of the waste and the bacteriological by-products to a minimum. Cleanliness is not just a corrosion issue, it is a health issue for animals and workers. WASTE REMOVAL The most aggressive waste removal systems involve water mixtures, or slurries, often used in hog confinement to flush the wastes away from the building. The natural moisture associated with hog and cattle wastes, together with these waste removal systems, make cattle and hog confinement buildings extremely corrosive environments. Often in poultry, broiler or breeder houses, dry wood chips or sawdust hold the animal wastes until replenishment or replacement. Many egg-laying operations keep the chickens in tiered cages from which the wastes fall to a lower level and are removed. The drier nature of poultry waste, together with improved methods for removal, make poultry houses somewhat less corrosive in nature than hog and cattle confinement buildings. 3

In some hog and cattle confinement buildings, a mechanical blade periodically drags the wastes to one end of the building for subsequent removal. This method increases humidity and the release of corrosive gases into the atmosphere. Development of improved waste disposal systems will relieve some of the need for highly efficient ventilation systems. This will improve the overall cost effectiveness of the building. Bacteria decompose animal waste to amines and acids. This decomposition makes animal confinement buildings even more corrosive because these by-products can aggressively attack metal and are volatile enough to be in the air constantly. Sites of corrosion can occur anywhere because the bacteria become air-borne and settle on surfaces from dust or mist. Any water can absorb bacteria and waste gases that will support growth of the bacteria. The most severe problems come in the less thoroughly cleaned areas, where corrosive waste and decomposition products can accumulate. The most important steps in reducing bacteriological decomposition are an efficient waste removal system, a regular cleaning program and an easily cleaned building. Cleaning should be frequent enough that the waste does not accumulate. This depends on the rate of waste generation, the efficiency of the removal system and the efficiency of the previous cleaning. Easily cleaned buildings will either be cleaner or make cleaning less of an effort. It involves not having water-trap areas, having good drainage capabilities, and minimal crevices. If good cleanliness is difficult to maintain, antiseptic cleaners can control bacterial growth. MAINTENANCE The interior vapor barrier will occasionally need to be repaired in order to maintain its original barrier properties. Frequent cleaning could cause minor rips. Sealing tape could come loose. Normal wear could also cause holes. The exterior may show early signs of corrosion if the original venting design provided inadequate protection, such as unsealed vent-stack seams. Prompt attention to breaks in the vapor barrier are especially important in cold weather as condensation is more likely. If moisture is trapped in the insulation, interior corrosion of the roof or sidewall will occur. Mistakes or oversights in building design can result in severe localized corrosion. Diligent observation of the building can often catch these problems while there is still time to correct the problem. Addressing these issues promptly will prolong building life. SUMMARY 1. Insulate the building using a vapor barrier in such a manner that the corrosive gases and high humidity cannot attack the interior walls and roof. Use rigid type insulation with a good vapor barrier. Seal all joints well. Colourcoil Industries recommends not using sprayed insulation. 4

2. Maintain the vapor barrier to its original high standards. Check if the original design provided adequate protection for exterior venting areas. 3. Good ventilation reduces interior corrosivity. Ventilate sufficiently to avoid localized exterior corrosion. The ventilation should release the gases far enough from the sidewalls or roof so that mixing with fresh air will serve to dilute the corrosivity sufficiently to not harm the building. Eave venting requires extra corrosion protection at the site of gaseous release. 4. Design the building for efficient, easy cleaning, especially with regard to waste removal. Clean the interior frequently enough and thoroughly enough that the humidity, corrosive gases and bacteriological growth will not accumulate and become a corrosion issue. 5. Highly corrosion resistant fasteners, typically stainless steels, with neoprene gaskets are preferable. 6. For poultry, hog and cattle applications, painted Z275 HDG combined with proper attention to building design should provide a reasonable service life. The building life will depend primarily on good design rather than on the construction material. 7. Painted, zinc phosphate-treated Z275 HDG is the preferred material. It, however, requires a vapor barrier and insulation to protect it from the corrosive interior environment. Colourcoil Industries does not recommend using aluminum-zinc coated sheet steel for animal confinement applications. DISCLAIMER The technical information in this paper is intended for general information only. Any use of this information in relation to any specific application should be based on independent examination and verification of its unrestricted availability for such use, and a determination of suitability for the application by professionally qualified personnel. Those making use of or relying upon the material assume all risks and liability arising from such use or reliance. For further assistance on the use of steel building panels or related topics, contact Colourcoil Industries: Colourcoil Industries Sdn. Bhd. Km 25, Off Jalan Tuaran, Telipok P.O. Box 21918, 88777 Luyang Kota Kinabalu, Sabah Malaysia Tel: +60 88 496222 Fax: +60 88 499918 info@colourcoil.com 5