Modeling of the deoxidization process on submerged arc weld metals

Similar documents
Lecture 23. Chapter 30 Fusion Welding Processes. Introduction. Two pieces are joined together by the application of heat

Submerged Arc Welding: A discussion of the welding process and how welding parameters affect the chemistry ofcorrosion Resistant Overlays (CRO)

EFFECT OF DEVELOPED FLUX AND PROCESS PARAMETERS ON HARDNESS OF WELD IN SAW

related to the welding of aluminium are due to its high thermal conductivity, high

Dissolution Behavior of Mg from MgO into Molten Steel Deoxidized by Al

The Need For Protecting The Weld And Rationale

Effect of CO Gas Concentration on Reduction Rate of Major Mineral Phase in Sintered Iron Ore

Arc welding SMAW. CTU in Prague Faculty of Mechanical Engineering

Thermodynamics and Mechanism of Silicon Reduction by Carbon in a Crucible Reaction

Can Fluorspar be replaced in steelmaking? Eugene Pretorius Baker Refractories

Modification In Weld Overlay for Productivity and Corrosion Resistance

Titanium Welding Technology

Evaluation of Viscosity of Molten SiO_2-CaO-MgO- Al_2O_3 Slags in Blast Furnace Operation

FERRITE IN LEAN AUSTENITIC TYPE STAINLESS STEEL WELD METAL

Influence of Solid CaO and Liquid Slag on Hot Metal Desulfurization

Influence of hydrogen in weld joints

STUDIES ON DIRECT REDUCED IRON MELTING IN INDUCTION FURNACE

Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding Keyword: 16.1 Selection of pulse parameters

Lecture 14 Modern trends in BOF steelmaking

Electric Arc Furnace Simulation User Guide Version 1

Factors to be considered for selecting a suitable type of welding current and polarity

Conversion of CO 2 Gas to CO Gas by the Utilization of Decarburization Reaction during Steelmaking Process

MECHANICAL CHARACTERISTICS OF 9% Ni STEEL WELDED JOINT FOR LNG STORAGE TANK AT CRYOGENIC

Lecture 13 Submerged Arc Welding 13.1 Introduction 13.2 Components of SAW System

Synopsis: 1 Introduction 28 KAWASAKI STEEL TECHNICA REPORT

Effects of Post Weld Heat Treatment (PWHT) Temperature on Mechanical Properties of Weld Metals for High-Cr Ferritic Heat-Resistant Steel

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Slag Recycling in Submerged Arc Welding and its Influence on Chemistry of Weld Metal

Fundamental Aspects of Calciothermic Process to Produce Titanium

Effect of Oxygen Partial Pressure on Liquidus for the CaO SiO 2 FeO x System at K

Experimental study on effect of flux composition on element transfer during submerged arc welding

Hastelloy G-30 (UNS N06030) Chemical Composition

Development of Welding Methods for Dissimilar Joint of Alloy 690 and Stainless Steel for PWR Components

Materials engineering. Iron and steel making

Acta Metallurgica Slovaca - Conference, Vol. 4, 2014, p Acta Metall. Slovaca Conf. 138

Thermodynamic database of P 2 O 5 -containing oxide system for De-P process in steelmaking

Manganese Equilibrium Distribution between Carbon-saturated Iron. Melts and Lime Based Slags Containing MnO, BaO, and Na20*

TIG WELDING OPPORTUNITIES OF BIMETALLIC ENDLESS SAW BLADES

Copyright 1999 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES Welding NARRATION (VO):

Activities of SiO 2 in Some CaO Al 2 O 3 SiO 2 ( 10%MgO) Melts with Low SiO 2 Contents at K

A study on influence of δ-ferrite phase on toughness of P91 steel welds

71T1 - Gas Shielded Flux Cored Welding Wire Provides excellent performance in all position welding. Weld Metal - Chemistry

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding

Phase Equilibrium for the CaO SiO 2 FeO 5mass%P 2 O 5 5mass%Al 2 O 3 System for Dephosphorization of Hot Metal Pretreatment

Diffusion in Fe-base Thick Coatings Produced by Hot Extrusion

1. History of the FCW for carbon steels. Introduction

REFINING STEELS PRODUCED IN ELECTRIC ARC FURNACE

9. Welding Defects 109

RADIATION DAMAGE IN HIGH Ni-WELD OF Ni-Cr-Mo-V TYPE

Austarc 12P. Austarc 13S GENERAL PURPOSE ELECTRODES - MILD STEEL GENERAL PURPOSE ELECTRODES - MILD STEEL 76 CONTENTS CLASSIFICATION: DESCRIPTION:

DW For Super duplex stainless ASTM3275 and ASTM32760 grade. AWS A5.22 E2594T1-1,-4 DW-N625

ANALYSIS OF HETEROGENEOUS NUCLEATION IN DUCTILE IRON

Activity Measurement of CaO SiO 2 AlO 1.5 MgO Slags Equilibrated with Molten Silicon Alloys

Effect of TIG Welding Parameters on the Properties of 304L Automated Girth Welded Pipes Using Orbital Welding Machine

Improvement in mechanical properties of C300 maraging steel by application of VAR process

Impact 7 Steel. A Durable, Dependable Steel Solution For Harsh Environments. Technical Data. Alloy Description. Alloy Type. Typical Applications

Mechanism of Building-Up Deposited Layer during Electro-Spark Deposition

Click to edit Master title style

Available online at ScienceDirect. Procedia Engineering 81 (2014 )

Formation of MgO Al 2 O 3 Inclusions in High Strength Alloyed Structural Steel Refined by CaO SiO 2 Al 2 O 3 MgO Slag

The principle Of Tungsten Inert Gas (TIG) Welding Process

Solidification and Crystallisation 5. Formation of and control of granular structure

Improvement in Hot-Metal Dephosphorization

MAG wire. Welding Consumables Selection. MAG MIG wire/rod. Welding Consumables Selection. Specifi cation AWS JIS. Product name

AUTOMATED WELD CHARACTERIZATION USING THE THERMOELECTRIC

Briquette Smelting in Electric Arc Furnace to Recycle Wastes from Stainless Steel Production

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Introduction. 1 Method for making work rolls for cold rolling and characteristics required for rolls

Arch. Metall. Mater. 62 (2017), 2,

Recovery of Fe and P from CaO-SiO 2 -Fe t O-P 2 O 5 Slag by Microwave Treatment

Overmatching Superalloy Consumable Inco-weld 686CPT Broadens its Applications to Include Welding Super Austenitic and Super Duplex Stainless Steels

SECONDARY STEELMAKING

Effect of Full Annealing PWHT on a Long -term Creep Strength of 2.25Cr-1Mo Steel Welded Joint

Finite Element Simulation of Thermal Field in Double Wire Welding

Table of Contents. Preface...

Martensitic Steel Sheets of 1300 and 1500MPa Grades

EFFECT OF SHIELDING GASES/ MIXTURES ON PROPERTIES OF SS WELD OVERLAYS ON Cr-Mo STEEL

Effect of Charge Materials on Slag Formation in Ductile Iron Melts

where L is the molar latent heat of vaporization and R is the molar gas constant. If the latent heat of vaporization is assumed constant for the tempe

Development of High HAZ Toughness Steel Plates for Box Columns with High Heat Input Welding

Different forces acting in a typical welding arc zone

Sulphide Capacities of CaO Al 2 O 3 SiO 2 MgO MnO Slags in the Temperature Range K

Indira Gandhi Centre for Atomic Research, India 2 Fast Reactor Technology Group,

Effect of Ti on Charpy Fracture Energy and Other Mechanical Properties of ASTM A 710 Grade B Cu-Precipitation-Strengthened Steel

Heat Transfer &. Solidification Model CON1D

OK FLUX AWS A5.5.17/A5.23

Experimental Research on Submerged Multi-Arc Welding of API-5L-70X Steel

Corrosion of Nozzle Refractories by Liquid Inclusion in High Oxygen Steels

J = D C A C B x A x B + D C A C. = x A kg /m 2

Cast Steel Propellers W27. (May 2000) (Rev.1 May 2004)

Reoxidation of Al Ti Containing Steels by CaO Al 2 O 3 MgO SiO 2 Slag

Brazing of copper to stainless steel with a lowsilver-content

On the use of slag from silicomanganese production for welding flux manufacturing

Thermodynamic Assessment of Liquid Mn Fe C System by Unified Interaction Parameter Model

30ChGSA Included in 13 standards (CIS Countries)

Effect of Oxygen Content in He-O 2 Shielding Gas on Weld Shape for Ultra Deep Penetration TIG

Welding Consumables for Lean Duplex Stainless Steels

Thermochemistry and Kinetics of Iron Melt Treatment

4 Shielded Metal Arc Welding*

Effect of Chromium on Nitrogen Solubility in Liquid Fe Cr Alloys Containing 30 mass% Cr

Transcription:

Weld World (214) 58:41 45 DOI 1.17/s4194-13-1- RESEARCH PAPER Modeling of the deoxidization process on submerged arc weld metals Hirohisa Tanabe & Hiroyuki Hirata & Kazuhiro Ogawa & Masahiko Hamada Received: 18 October 212 /Accepted: 23 August 213 /Published online: 8 September 213 # The Author(s) 213. This article is published with open access at Springerlink.com Abstract Fixed welding tests were performed to investigate deoxidization during submerged arc welding and to develop a model for it. For all the chemical compositions of the fluxes used, the oxygen content of the weld metal decreased with increasing arcing time in the initial stage of welding. The oxygen content of the weld metal eventually became constant; this is assumed to be a quasi-equilibrium state. Both the rate of reduction of the weld metal oxygen content and the oxygen content of the quasi-equilibrium condition depend on the chemical composition of flux. The weld metal oxygen content in the quasi-equilibrium condition can be estimated thermodynamically. In addition, the rate of reduction of the weld metal oxygen content satisfies the following equation. ½OŠ¼exp k tþln ½OŠ i ½OŠ e þ½oše ð1þ Where [O] is the weld metal oxygen content at arcing time t, [O] e is the oxygen content in the quasi-equilibrium state, [O] i is the oxygen content immediately after starting welding, and t is the arcing time. We found that the coefficient k decreases with increasing viscosity of the molten slag, which mainly depends on the chemical composition of the flux. Based on these results, we found that deoxidization in weld metal during submerged arc welding can be predicted by estimating [O] e and k and briefly determining [O] i. Keywords Oxygen. Ferrous metals. Welding. Slag metal reactions. Viscosity 1 Introduction In recent years, high-strength pipelines are increasingly being used to reduce the material cost of pipelines by making their walls thinner and to reduce the transport costs of natural gas by transporting it at a higher pressure. Since most pipelines are installed in cold regions, the weld metal requires lowtemperature toughness. Reducing the oxygen content of weld metal improves its toughness because increasing the Charpy upper shelf energy reduces the volume of inclusions, which act as origination for ductile fracture [1]. The oxygen content of submerged arc weld metal is conventionally predicted from the flux basicity [2 4]. For example, Eagar investigated the relationship between the flux composition and the weld metal oxygen content and derived an equation to estimate the weld metal oxygen content from the flux basicity [2]. However, the oxygen content varies greatly at low basicities, while the dependence between the oxygen content and the flux basicity is unclear at high basicities. The present study investigates the deoxidization process during submerged arc welding and proposes a model for determining the weld metal oxygen content. This study investigates how the weld metal oxygen content varies with the arcing time by fixed welding (in which the welding torch is fixed), demonstrates the correlation between the flux property of slag viscosity and weld metal oxygen content, and proposes a model for determining the weld metal oxygen content using thermodynamic and kinetic calculations. 2 Experimental Doc. IIW-2416, recommended for publication by Commission IX "Behaviour of Metals Subjected to Welding". H. Tanabe (*): H. Hirata : K. Ogawa : M. Hamada Nippon Steel & Sumitomo Metal Corporation, Tokyo, Japan e-mail: tanabe.sn9.hirohisa@jp.nssmc.com 2.1 Fixed welding test To investigate how the weld metal oxygen content varies with the arcing time, fixed welding (in which the welding torch is

42 Weld World (214) 58:41 45 Table 1 Chemical compositions of materials used (mass %) C Si Mn P S Others.21.22.72.13.1 Ni, Cr, Mo Welding wire.6.21 1.95.7.6 Welding wire Welding torch fixed) was conducted. Commercial carbon steel-base metal was worked to a thickness of 25 or 6 mm, a width of 15 mm, and a length of 15 mm. The welding wire was 4mmindiameter.Table1 lists the chemical compositions of the base metal and welding wire and Table 2 shows that of the flux used in the fixed welding tests. Fixed welding was performed by fixing the location of the welding wire at the center of the base metal and surrounding the base metal with blocks to prevent molten slag leaking during welding. The following welding conditions were used: a current of 85 A, a voltage of 42 V, and arcing times in the range of 2 4 s. The height from the wire tip to the surface of the base metal was set to 35 mm up to an arcing time of 6 s and to 5 mm after 6 s to prevent the melting wire from contacting the molten metal. Figure 1 shows a schematic illustration of fixed welding. Figure 2 shows photographs of the test specimens after fixed welding (arcing time of 1 s). After welding, the mass of slag and deposited metal was measured and the oxygen content of the weld metal was determined by chemical analysis. 2.2 Measurement of molten pool temperature The temperature of the molten pool of fixed welding was measured using a tungsten rhenium thermocouple. As shown in Fig. 3, the thermocouple was set at a depth of 2 mm below the center of the base metal surface. 3 Results and discussion 3.1 Effect of arcing time on weld metal oxygen content Figure 4 shows the effect of the flux composition on deoxidization of the weld metal during fixed welding. Block 15 mm Fig. 1 Schematic illustration of fixed welding 15 mm 25 mm or 6 mm For all three chemical compositions of the flux, the weld metal oxygen content decreases with increasing arcing time in the initial stage of welding. The weld metal oxygen content eventually became constant; this is assumed to be a quasi-equilibrium state. The oxygen content of weld metal in this quasi-equilibrium state, the oxygen content immediately after the commencement of welding, and the reduction rate of the oxygen content of the weld metal all depend on the chemical composition of the flux. 3.2 Results of molten pool temperature measurements The measured molten pool temperature fluctuated (from 1,848 to 1,998 K), but its average temperature was 1,923 K. 3.3 Effect of arcing time on masses of slag and deposited metal Figure 5a shows the measured masses of slag and deposited metal (it was determined by the consumption of welding wire) for fixed welding with flux A as a function of arcing time; the measured masses of slag and deposited metal increases with increasing arcing time. In addition, the mass fraction of slag to deposited metal decreased with increasing arcing time (Fig. 5b). It Table 2 Chemical compositions of flux (mass %) Mark SiO 2 MnO CaO Others basicity[1] Viscosity at 1,773 K (Pa s) A 4 18 22 2.93.122 B 21 2 2 39 1.19.16 H 35 2 2 25 1.21.65 I 32 17 17 34 1.24.26 J 25 2 2 35 1.97.31

Weld World (214) 58:41 45 43 Fig. 2 Photographs of test specimens after fixed welding (arcing time=1 s) a b Before slag removal After slag removal became approximately constant at 1. when the arcing time exceeded 1 s. 3.4 Estimate of weld metal oxygen content in quasi-equilibrium state Figure 4 shows that the oxygen content of the weld metal decreases with increasing arcing time in the initial stage of welding and that it eventually becomes constant in what is assumed to be a quasi-equilibrium state. This behavior suggests that the deoxidization reaction reaches equilibrium in molten slag and molten metal. In addition, the weld metal oxygen content in the quasi-equilibrium condition depends on the chemical composition of the flux. Therefore, we estimated the oxygen content of the molten metal in the equilibrium condition between the molten slag and molten metal using thermodynamic calculation software (FactSage) and the estimated and experimental oxygen contents were compared. In the thermodynamic calculation, the temperature and mass fraction of the slag to the deposited metal were respectively taken to be 1,923 K and 1. based on experimental results. In addition, the chemical composition of the molten metal used in the Center of the base metal 2 mm Measured location Surface of the base metal Fig. 3 Measurement location of molten pool temperature equilibrium calculation (see Table 3) was determined from a dilution ratio of the base metal in fixed welding. Figure 6 shows the relationship between the experimental and estimated oxygen contents. The data point indicated by the arrow indicates the flux for which the oxygen content of the weld metal had not reached the quasi-equilibrium condition in this experiment. If the oxygen content of the weld metal had reached the quasi-equilibrium state, the experimental oxygen content would have been lower. With the exception of the data point indicated by the arrow, the estimated oxygen content approximately corresponds to the experimental oxygen content. This demonstrates that the weld metal oxygen content in the quasi-equilibrium state can be estimated thermodynamically. 3.5 Modeling of deoxidization of weld metal in fixed welding As shown in Fig. 4, the oxygen content of the weld metal decreases with increasing arcing time in the initial stage of welding and it eventually becomes constant in what is assumed to be a quasi-equilibrium state for all Oxygen content of weld metal (ppm) 6 5 4 3 2 1 A B I 1 2 3 4 Fig. 4 Effect of flux composition on deoxidization of weld metal during fixed welding

44 Weld World (214) 58:41 45 Fig. 5 a Measured masses of slag and deposited metal for fixed welding with flux A and b mass fraction of slag to deposited metal as a function of arcing time a Mass(g) 2 15 1 5 Deposited metal Slag b Mass fraction of slag to deposited metal 3. 2. 1. 1 2 3 4. 1 2 3 4 Table 3 Chemical composition of molten metal used in equilibrium calculation (mass%) C Si Mn Cu Ni Cr Mo Al Ti Fe.8.2 1.2.15 1..4.2.1.2 Bal. Weld metal oxygen content in quasi-equilibrium state (ppm) 1 8 6 4 4 6 8 1 Estimated weld metal oxygen content in equilibrium condition (ppm) Fig. 6 Relationship between estimated and experimental oxygen contents ln[([o] [O]e)/([O]i [O]e)] 1 8 6 4 2 k Basicity Viscosity.93.122Pa s 1.24.26Pa s 1.19.16Pa s 1 2 3 4 Arcing time t (s) Fig. 7 Relationship between arcing time and ln[([o]-[o]e)/([o]i-[o]e)] 1 Coefficient k (1/s).3.2.1 basicity.93 1.19 1.24 1.97..5.1.15 Slag viscosity (Pa s) Fig. 8 Relationship between coefficient k and slag viscosity chemical compositions of the flux. The rate of Si and Si-Mn deoxidization in TIG arc melting has been described by a linear reaction rate equation [5]. In addition, the deoxidization reaction between acidic slag and high-oxygen-content iron has been described by a linear reaction rate equation [6]. These experimental results suggest that it may be possible to describe the deoxidization of a submerged arc weld metal by molten slag under arc welding by a linear reaction rate equation. Therefore, we describe the deoxidization of weld metal during fixed welding by Eq. (1). When the flux for which the weld metal oxygen content has not reached a quasi-equilibrium state in this experiment, [O] e is determined by a thermodynamic calculation between the molten slag and molten metal. It is based on the result obtained in the previous section. ½OŠ ¼ exp k t þ ln ½OŠ i ½OŠ e þ O ½ Še ð1þ [O] i oxygen content immediately after welding starts (in parts per million) [O] e Oxygen content in quasi-equilibrium state (in parts per million) [O] Oxygen content at arcing time t (in parts per million) k Coefficient t Arcing time (in seconds)

Weld World (214) 58:41 45 45 Fig. 9 Schematic illustration of effect of slag viscosity on deoxidization Resistance of the slag viscosity Molten slag Resistance of the slag viscosity Molten slag Molten metal Increasing slag viscosity Molten metal Figure 7 shows the relationship between ln[([o]-[o] e )/ ([O] i -[O] e )], which was calculated using the experimental results in Fig. 4 and the arcing time. This relationship is linear. This confirms that deoxidization of submerged arc weld metal can be described by Eq. (1). In addition, it shows that coefficient k depends on the chemical composition of the flux. Figure 8 shows the relationship between the coefficient k and slag viscosity.for all flux basicities, this relationship is linear and coefficient k decreases with increasing viscosity of the molten slag. This tendency was confirmed by the following discussion and Fig. 9. We assume that deoxidization of a submerged arc weld metal proceeds by a reaction at the interface between the molten slag and molten metal during stirring. Increasing the slag viscosity will reduce the stirring rate of the molten metal due to the increasing resistance at the interface between the molten slag and molten metal. Therefore, coefficient k (i.e., the deoxidization rate) is expected to decrease with decreasing stirring rate of the molten metal. These results suggest that it may be possible to predict the oxygen content of submerged arc weld metal by the following procedure (see Fig. 1). 1. Deoxidization of submerged arc weld metal is described by Eq. (1). 2. Oxygen content of weld metal in quasi-equilibrium state [O] e is estimated thermodynamically. 3. Coefficient k is estimated from molten slag viscosity. 4. Oxygen content immediately after starting welding [O] i is determined by fixed welding. In the real moving heat source, such as during actual submerged arc welding, it may be considered that the arcing time is equal to the melting time of the weld metal. If the model is applied to real welding, it is necessary to change the arcing time to the melting time of the weld metal. 4 Conclusions This study clarified the deoxidization that occurs during submerged arc welding and proposed a model for determining the weld metal oxygen content. The conclusions are listed below. (1) The weld metal oxygen content decreased with increasing arcing time, eventually becoming constant in what is assumed to be a quasi-equilibrium state. (2) The deoxidization process of submerged arc weld metal can be described by a linear reaction rate equation. (3) The weld metal oxygen content in the quasi-equilibrium state, which depends on the chemical composition of the flux, can be estimated thermodynamically. (4) For all flux basicities, the coefficient k decreased with increasing molten slag viscosity. (5) The oxygen content of submerged arc weld metal can be estimated by describing the deoxidization process by a linear reaction rate equation, estimating the weld metal oxygen content in the quasi-equilibrium state [O] e and the coefficient k, and determining the oxygen content of weld metal immediately after starting welding [O] i. Oxygen content of weld metal (ppm) 4 3 2 1 4. Experiment [O] i [O] = exp[- k t + ln([o] i - [O] e ) ] + [O] e (1) 3. Estimate k 2. Estimate [O] e 1 2 3 Arcing time t (s) Fig. 1 Procedure for estimating oxygen content of submerged arc weld metal Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. References 1. Nakanishi M (1981) J Jpn Weld Soc 5:5 11, No. 1 2. Eagar TW (1978) Weld J 57:76 8, No. 3 3. Terashima H, Nishiyama N, Tsuboi J (1977) J Jpn Weld Soc 46:165 171, No. 3 4. Terashima H, Tsuboi J (1979) J Jpn Weld Soc 48:626 632, No. 8 5. Tsunetomi E, Katayama H, Fujita H (1969) J Jpn Weld Soc 38:874 88, No. 8 6. Sano N, Shiomi S, Matsushita Y (1965) Tetsu-to-Hagane 51:17 185, No. 2