PROPERTIES OF ADVANCED SEMICONDUCTOR MATERIALS

Similar documents
LANDOLT-BORNSTEIN. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. Neue Serie. Gesamtherausgabe: K.-H. Hellwege

Halbleiter Prof. Yong Lei Prof. Thomas Hannappel

Modeling and Electrical Characterization of Ohmic Contacts on n-type GaN

Introduction Joachim Piprek

Effects of impurities on the lattice parameters of GaN

Calculation of critical dimensions for wurtzite and cubic zinc blende coaxial nanowire heterostructures

Environmental Physics

I. GaAs Material Properties

Some Aspects of Sublimation Growth of SiC Ingots p. 41 Growth of Highly Aluminum-Doped p-type 6H-SiC Single Crystals by the Modified Lely Method

Semiconductor Very Basics

Chapter 18: Electrical Properties

Assignment Questions

Contents FUNDAMENTALS OF STRUCTURAL ANALYSIS. Section A1 Elasticity... 3

Impurity Photovoltaic Effect in Multijunction Solar Cells

OUTLINE. Preparation of III Nitride thin 6/10/2010

Material Evaporation Application Comment MP P / Optical films, Oxide films, Electrical contacts. Doping, Electrical contacts.

Thermal Conductivity. Theory, Properties, and Applications. Terry M. Tritt. Kluwer Academic/Plenum Publishers

Robust Sensors for Structural Health Monitoring in Extreme Harsh Environments

Calculated strain energy of hexagonal epitaxial thin films

Advanced Materials for Thermal Management of Electronic Packaging

Figure 16.31: Two-dimensional representations of (a) a quartz crystal and (b) a quartz glass.

Preface... VII ForewordbyDr.FranzAlt... IX Foreword by Dr. Hermann Scheer... XIII Table of Contents... XV. 1.3 Global warming by CO

MOCVD Technology for LED

Microstructure-Properties: I Lecture 5B The Effect of Grain Size. on Varistors

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity?

id : class06 passwd: class06

The Structure of Materials

Development and Applications of Wide Bandgap Semiconductors

SIMS Quantification of Matrix and Impurity Species in Al x Ga 1-x N

Poly-SiGe MEMS actuators for adaptive optics

Impurities and Defects in Group IV-IV and III-V Compounds

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity?

r^a light-emitting diodes (LEDs) Nitride semiconductor Materials, technologies and applications JianJang Huang, Hao-Chung Kuo and Shyh-Chiang Shen

Solar Electric Power Generation - Photovoltaic Energy Systems

Challenges of Silicon Carbide MOS Devices

e-marketing Applications of information technology and the Internet within marketing Cor Molenaar Routledge Taylor & Francis Croup LONDON AND NEW YORK

Chapter 1 - Introduction

Chapter 12: Structures & Properties of Ceramics

High Thermal Conductivity of Gallium Nitride (GaN) Crystals Grown by HVPE Process

Advanced Gate Stack, Source/Drain, and Channel Engineering for Si-Based CMOS 6: New Materials, Processes, and Equipment

Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and Nano-Sized Boron Nitride

Solids SECTION Critical Thinking

Light Emitting Diodes (LEDs)

arxiv:cond-mat/ v1 28 Oct 1998

METALLIC MATERIALS SPECIFICATION HANDBOOK

R Sensor resistance (Ω) ρ Specific resistivity of bulk Silicon (Ω cm) d Diameter of measuring point (cm)

Semiconductor Nanostructures

3.7GHz, Low Loss, 100MHz Bandwidth, Single Crystal, Aluminum Nitride on Silicon Carbide Substrate (AlN-on-SiC) BAW Filter

Correlation Between Energy Gap and Defect Formation of Al Doped Zinc Oxide on Carbon Doped Silicon Oxide

LANDOLT-BÖRNSTEIN. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. Neue Serie. Gesamtherausgabe: O. Madelung

Materials, Electronics and Renewable Energy

Packaging Technologies for SiC Power Modules

Magnetic semiconductors

Planar Defects in Materials. Planar Defects in Materials

3.46 OPTICAL AND OPTOELECTRONIC MATERIALS

Electron Transport Properties of Ternary alloysgallium Indium Phosphide

Making III-V contact with silicon substrates

OPTIMAL SELECTION OF PROCESS PARAMETERS OF ULTRASONIC MACHINING (USM) SYSTEM

22. Silicon-Germanium: Properties, Growth and Applications

Optical Properties and Growth Dynamics of Oxides on Single Crystal AIN

Developing Ohmic Contacts to Gallium Nitride. for High Temperature Applications. Shirong Zhao

2014 the Nobel Prize in Physics Awarded to Isamu Akasaki

REVIEW Silicon carbide and diamond for high temperature device applications

Thermal Model and Control of Metal-Organic Chemical Vapor Deposition Process

MOVPE growth of GaN and LED on (1 1 1) MgAl

CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES

Investigation on Dielectric Constant of Zinc Oxide

THE PAST, PRESENT, AND FUTURE OF LIGHTING

ERP: Making It Happen

AP Chemistry A. Allan Chapter 18 - The Representative Elements: Groups 1A through 4A

Germanium and silicon photonics

Layout-related stress effects on TID-induced leakage current

74 Brazilian Journal of Physics, vol. 27/A, no. 4, december, Chris G. Van de Walle. Xerox Palo Alto Research Center,

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications

1. Introduction. What is implantation? Advantages

Device Simulation of Grain Boundaries in Lightly Doped Polysilicon Films and Analysis of Dependence on Defect Density

LANDOLT-BÖRNSTEIN. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. Neue Serie. Gesamtherausgabe: K.-H. Hellwege O.

Improve the performance of MOCVD grown GaN-on-Si HEMT structure

How to Make Micro/Nano Devices?

Chapter 5 Epitaxial Growth of Si 1-y C y Alloys

Molecular Beam Epitaxy Growth of GaAs 1-x Bi x

Solar Cells and Photosensors.

Introduction to Dislocation Mechanics

Low Temperature Epitaxial Growths of III-Nitride Semiconductors on ITO Glass Substrates

o Ref 1: Solar Vapor Generation Enabled by Nanoparticles. Day, Jared; Halas, Naomi; Lal

METAL NANOPOWDERS MAGNETIC CURVE OTHER INFO SURFACE AREA DISTRIBUTION DESCRIPTION AV SIZE SPECIFIC m2/g. SN1601 $20/gram.

FINE STRUCTURE OF THE 3.42 ev EMISSION BAND IN GaN

X-Ray Diffraction by Macromolecules

Semiconductor Technology

A Review of Gallium Nitride (GaN) based devices for High Power and High Frequency Applications

Contents. 1. Introduction to Materials Processing Starting Materials 21. Acknowledgements

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS

"Plasma CVD passivation; Key to high efficiency silicon solar cells",

ION IMPLANTATION INTO GALLIUM NITRIDE

Research Article Optical and Electrical Properties of Ag-Doped In 2 S 3 Thin Films Prepared by Thermal Evaporation

Aluminum is a very useful metal Where does it come from? All "Bauxite" to begin with A mix of aluminum, iron, and silicon oxides

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu

Indium gallium nitride multijunction solar cell simulation using silvaco atlas

Author(s) Negoro, Y; Katsumoto, K; Kimoto, T; Citation Journal of Applied Physics (2004),

BLUE/UV EMITTING GaN LASER

Transcription:

PROPERTIES OF ADVANCED SEMICONDUCTOR MATERIALS GaN, AIN, InN, BN, SiC, SiGe Edited by Michael E. Levinshtein The Ioffe Institute, Russian Academy of Sciences Sergey L. Rumyantsev The Ioffe Institute, Russian Academy of Sciences Michael S. Shur Rensselaer Polytechnic Institute A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

Contents Contributors Preface xiii xv Chapterl Gallium Nitride (GaN) 1 V. Bougrov, M. Levinshtein, S. Rumyantsev, and A. Zubrilov 1.1. Basic Parameters at 300 K / 1 1.2. Band Structure and Carrier Concentration / 3 1.2.1. Temperature Dependences / 4 1.2.2. Dependence on Hydrostatic Pressure / 6 1.2.3. Band Discontinuities at Heterointerfaces / 7 1.2.4. Effective Masses / 7 1.2.5. Donors and Acceptors / 8 1.3. Electrical Properties / 9 1.3.1. Mobility and Hall Effect / 9 1.3.2. Two-Dimensional Electron Gas Mobility at AlGaN/GaN Interface / 12 1.3.3. Transport Properties in High Electric Field / 13 1.3.4. Impact Ionization / 15 1.3.5. Recombination Parameters / 15 1.4. Optical Properties / 16 vii

viii Contents 1.5. Thermal Properties / 22 1.6. Mechanical Properties, Elastic Constants, Lattice Vibrations, Other Properties / 24 References / 28 Chapterl Aluminum Nitride (AIN) 31 Yu. Goldberg 2.1. Basic Parameters at 300 K / 31 2.2. Band Structure and Carrier Concentration / 33 2.2.1. Temperature Dependences / 33 2.2.2. Dependences on Hydrostatic Pressure / 34 2.2.3. Band Discontinuities at Heterointerfaces /35 2.2.4. Effective Masses / 35 2.2.5. Donors and Acceptors / 36 2.3. Electrical Properties / 37 2.3.1. Mobility and Hall Effect / 37 2.3.2. Recombination Parameters / 38 2.4. Optical Properties / 39 2.5. Thermal Properties / 41 2.6. Mechanical Properties, Elastic Constants, Lattice Vibrations, Other Properties / 44 References / 46 Chapter3 Indium Nitride (InN) 49 A. Zubrilov 3.1. Basic Parameters at 300 K / 49 3.2. Band Structure and Carrier Concentration / 51 3.2.1. Temperature Dependences / 51 3.2.2. Dependence on Hydrostatic Pressure / 53 3.2.3. Band Discontinuities at Heterointerfaces / 53 3.2.4. Effective Masses / 53 3.2.5. Donors and Acceptors / 54 3.3. Electrical Properties / 54 3.3.1. Mobility and Hall Effect / 54

Contents IX 3.3.2. Transport Properties in High Electric Field / 56 3.3.3. Impact Ionization / 57 3.3.4. Recombination Parameters / 58 3.4. Optical Properties / 58 3.5. Thermal Properties / 61 3.6. Mechanical Properties, Elastic Constants, Lattice Vibrations, Other Properties / 63 References / 65 Chapter 4 Boron Nitride (BN) 67 S. Rumyantsev, M. Levinshtein, A.D. Jackson, S.N. Mohammad, GL. Harris, M.G. Spencer, and M.S. Shur 4.1. Basic Parameters at 300 K / 68 4.2. Band Structure and Carrier Concentration / 70 4.2.1. Dependence on Hydrostatic Pressure / 72 4.2.2. Effective Masses / 73 4.2.3. Donors and Acceptors / 75 4.3. Electrical Properties / 75 4.4. Optical Properties / 76 4.5. Thermal Properties / 80 4.6. Mechanical Properties, Elastic Constants, Lattice Vibrations, Other Properties / 86 References / 91 Chapter 5 Silicon Carbide (SiC) 93 Yu. Goldberg, M. Levinshtein, and S. Rumyantsev 5.1. Basic Parameters at 300 K / 93 5.2. Band Structure and Carrier Concentration / 96 5.2.1. Temperature Dependences / 97 5.2.2. Dependence on Hydrostatic Pressure / 100 5.2.3. Energy Gap Narrowing at High Doping Levels / 101 5.2.4. Effective Masses / 102 5.2.5. Donors and Acceptors / 104

X Contents 5.3. Electrical Properties / 106 5.3.1. Mobility and Hall Effect / 106 5.3.2. Transport Properties in High Electric Field / 111 5.3.3. Impact Ionization / 114 5.3.4. Recombination Parameters / 119 5.4. Optical Properties / 122 5.5. Thermal Properties / 132 5.6. Mechanical Properties, Elastic Constants, Lattice Vibrations, Other Properties / 138 References / 143 Chapterb Silicon-Germanium (Si 1x Ge x ) 149 F. Schäffler 6.1. Basic Parameters in Unstrained Bulk Material at 300 K / 151 6.2. Band Structure and Carrier Concentration / 154 6.2.1. Temperature Dependences / 157 6.2.2. Dependence of Energy Gap on Hydrostatic Pressure / 160 6.2.3. Strain-Dependent Band Discontinuity / 160 6.2.4. Effective Masses / 164 6.3. Electrical Properties / 168 6.3.1. Mobility and Hall Effect / 168 6.3.2. Two-Dimensional Electron Gas / 169 6.3.3. Two-Dimensional Hole Gas / 171 6.4. Optical Properties / 173 6.5. Thermal Properties / 176 6.6. Mechanical Properties, Elastic Constants, Lattice Vibrations, Other Properties / 179 References / 186 Appendixes 189 1. Basic Physical Constants / 189 2. Periodic Table of the Elements / 190

Contents xi 3. Rectangular Coordinates for Hexagonal Crystal / 191 4. The First Brillouin Zone for Wurtzite Crystal / 191 5. Zinc Blende Structure / 192 6. The First Brillouin Zone for Zinc Blende Crystal / 192 Additional References 193