HiChIP Protocol Mumbach et al. (CHANG), p. 1 Chang Lab, Stanford University. HiChIP Protocol

Similar documents
Supplementary Figure 1. HiChIP provides confident 1D factor binding information.

Ren Lab ENCODE in situ HiC Protocol for Tissue

1. Cross-linking and cell harvesting

GENERATION OF HIC LIBRARY

Zebrafish ChIP-array protocol: version 1 August 5 th 2005

Myers Lab ChIP-seq Protocol v Modified January 10, 2014

IMMUNOPRECIPITATION (IP)

MeDIP-seq library construction protocol v2 Costello Lab June Notes:

ChIP-chip protocol adapted for the mod-encode project

EPIGENTEK. EpiQuik Chromatin Immunoprecipitation Kit. Base Catalog # P-2002 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE

supplementary information

The preparation of native chromatin from cultured human cells.

Procedure & Checklist - Preparing SMRTbell Libraries using PacBio Barcoded Universal Primers for Multiplex SMRT Sequencing

Preparation of Reduced Representation Bisulfite Sequencing (RRBS) libraries

TruSeq ChIP Sample Preparation

ChIP-Adem-Kit AutoMag Solution (Cat #04643) Instruction manual for automation protocol

Analysis of Chromatin Interactions Mediated by Specific Architectural Proteins in Drosophila Cells

#9005. SimpleChIP Plus Enzymatic Chromatin IP Kit (Magnetic Beads) n 1 Kit. (30 Immunoprecipitations) Store at RT, 4 C, and 20 C

ChIP cross-link Gold. ChIP grade reagent I Separately available. Cat. No. C Version 1 I 06.15

Supplemental File 1: Modified Nextera XT DNA Sample Preparation Guide (Illumina, USA, Part # rev. C, October 2012).

Procedure & Checklist - Preparing Asymmetric SMRTbell Templates

Tissue & Cell Genomic DNA Purification Kit. Cat. #:DP021/ DP Size:50/150 reactions Store at RT For research use only

EZ-10 SPIN COLUMN GENOMIC DNA MINIPREPS KIT HANDBOOK

ab ChIP-Seq High Sensitivity Kit

ab ChIP Kit Magnetic One-Step

BIOO LIFE SCIENCE PRODUCTS

ideal ChIP-seq kit for Transcription Factors

KAPA Library Preparation Kits

CUT&RUN.salt protocol 1

Can be prepared in advance and stored at -80º

ab Ran Activation Assay Kit

GST Fusion Protein Purification Kit

Ion ChIP-Seq Library Preparation on the Ion Proton System

IgG TrueBlot Protocol for Mouse, Rabbit or Goatderived Antibodies - For Research Use Only

Hybridization capture of DNA libraries using xgen Lockdown Probes and Reagents

Jan 25, 05 His Bind Kit (Novagen)

Library Preparation for Illumina Sequencing

ipure kit v2 Magnetic DNA Purification kit for epigenetic applications Cat. No. C (x24) C (x100) Version 2 I 07.15

Library Loading Bead Kit (EXP-LLB001) NEBNext FFPE Repair Mix (M6630) Magnetic rack. NEBNext End repair / da-tailing Module (E7546)

Genome Reagent Kits v2 Quick Reference Cards

Library Loading Bead Kit (EXP-LLB001) Agencourt AMPure XP beads Vortex mixer. Freshly prepared 70% ethanol in nucleasefree

Single Cell 3 Reagent Kits v2 Quick Reference Cards

Gateway Cloning Protocol (Clough Lab Edition) This document is a modification of the Gateway cloning protocol developed by Manju in Chris Taylor's lab

Sample Preparation Demonstrated Protocol

Auto ideal ChIP-seq kit for Histones

Single Cell 3 Reagent Kits v2 Quick Reference Cards

ChIP-exo Kit. (version A4) Catalog No

Presto Mini Plasmid Kit

EZ-10 SPIN COLUMN GENOMIC DNA MINIPREPS KIT HANDBOOK

Supplemental Information. PARP1 Represses PAP and Inhibits Polyadenylation during Heat Shock

Quick and easy 7 minute protocol to select for 300 bp, 200 bp, 150 bp, 100 bp, 50 bp DNA fragments or perform a double size selection

SideStep Lysis and Stabilization Buffer

Presto Soil DNA Extraction Kit

truxtrac FFPE DNA microtube Kit - Bead Purification (24)

Auto ChIPmentation for Histones

Immunoprecipitation Protocol

Instruction Manual Version DNA Elution Module. Cat. No. C (mc-magme-002)

PROCEDURE FOR USE NICKEL NTA Magnetic Agarose Beads (5%)

A General Protocol for GST Pull-down Lili Jing *

SERVA Ni-NTA Magnetic Beads

ideal ChIP-seq kit for Histones

Archer ALK, RET, ROS1 Fusion Detection v1 Illumina Platform

1D^2 Sequencing Kit (SQK-LSK308) Pipettes P2, P10, P20, P100, P200, P1000 Freshly prepared 70% ethanol in nucleasefree

scgem Workflow Experimental Design Single cell DNA methylation primer design

Chromatrap spin column ChIP kit for qpcr

ChIA-PET Protocol Standards for ENCODE4

Chemicals Ordering Information

FOR RESEARCH USE ONLY. NOT FOR HUMAN OR DIAGNOSTIC USE.

Rapid GST Inclusion Body Solubilization and Renaturation Kit

TIANamp Yeast DNA Kit

E.Z.N.A. Blood DNA Maxi Kit. D preps D preps

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, USA

KAPA HiFi HotStart Uracil+ ReadyMix PCR Kit

Library Loading Bead Kit (EXP-LLB001) Agencourt AMPure XP beads Vortex mixer. Freshly prepared 70% ethanol in nucleasefree

TruSeq Nano DNA Library Prep Protocol Guide

Cellular Fractionation

Blood DNA Extraction Kit

PROTOCOL: Illumina Barcoded Paired-End Capture Library Preparation

Polymerase Chain Reaction (PCR)

Preparing Samples for Analysis of Small RNA

Preparing Samples for Digital Gene Expression-Tag Profiling with DpnII

Ligation Sequencing Kit 1D (SQK-LSK108) Ice bucket with ice NEBNext End repair / da-tailing Module (E7546)

Presto Stool DNA Extraction Kit

Mag-Bind Total Pure NGS. M ml M ml M ml

truxtrac FFPE DNA microtube Kit Column Purification (25)

KAPA Library Preparation Kit with Real-time PCR Library Amplification for Illumina Platforms

Attention all MYbaits users: The following MYbaits protocol has been replaced with a newer version, which can be accessed from:

Axygen AxyPrep Magnetic Bead Purification Kits. A Corning Brand

NEBNext. for Ion Torrent LIBRARY PREPARATION KITS

ab G alpha i Activation Assay Kit

DNA isolation from tissue DNA isolation from eukaryotic cells (max. 5 x 106 cells) DNA isolation from paraffin embedded tissue

Kinase Reaction and Alkylation Protocol

Cloning small RNAs for Solexa Sequencing version 2.0 by Nelson Lau Page 1 of 5 (Modified from Solexa sequencing protocol from Bartel lab)

For Research Use Only Ver

Chapter 13. Allelic Imbalance Assays to Quantify Allele-Specific Gene Expression and Transcription Factor Binding. Francesca Luca and Anna Di Rienzo

PowerMag Soil DNA Isolation Kit (Optimized for KingFisher )

Specifications. Kit Specifications. Alcohol Precipitation: Up to 100 ml Column Purification: Up to 5 ml Column Binding Capacity 25 µg

Preparing Samples for Digital Gene Expression-Tag Profiling with NlaIII

Conversion of plasmids into Gateway compatible cloning

Amplicon Library Preparation Method Manual. GS FLX Titanium Series October 2009

Transcription:

HiChIP Protocol Mumbach et al. (CHANG), p. 1 HiChIP Protocol Citation: Mumbach et. al., HiChIP: Efficient and sensitive analysis of protein-directed genome architecture. Nature Methods (2016). Cell Crosslinking 1. Pellet detached adherent or suspension cells and resuspend in freshly made 1% formaldehyde (methanol free) at a volume of 1 ml of formaldehyde for every one million cells. 2. Incubate cells at room temperature for 10 minutes with rotation. 3. Add glycine to a final concentration of 125 mm to quench the formaldehyde, and then incubate at room temperature for 5 minutes with rotation. 4. Pellet cells, wash in PBS, pellet again, and then store in -80 or proceed into the HiChIP protocol. Lysis and Restriction Digest 1. Resuspend up to 15 million crosslinked cells in 500 μl of ice-cold Hi-C Lysis Buffer and rotate at 4 for 30 minutes. For cell amounts greater than 15 million, split the pellet in half for contact generation and then recombine for the sonication. 2. Spin down at 2500 rcf for 5 minutes and discard the supernatant. 3. Wash pelleted nuclei once with 500 μl of ice-cold Hi-C Lysis Buffer. 4. Remove the supernatant and resuspend pellet in 100 μl of 0.5% SDS. 5. Incubate at 62 for 10 minutes and then add 285 μl of H2O and 50 μl of 10% Triton X- 100 to quench the SDS. 6. Mix well and incubate at 37 for 15 minutes. 7. Add 50 μl of 10X NEB Buffer 2 and 375 U of MboI restriction enzyme (NEB, R0147), and digest chromatin for 2 hours at 37 with rotation. For lower starting material, less restriction enzyme was used: 15 μl was used for 10-15 million cells, 8 μl for 5 million cells, and 4 μl for 1 million cells. 8. Heat inactivate MboI at 62 for 20 minutes. Incorporation and Proximity Ligation 1. To fill in the restriction fragment overhangs and mark the DNA ends with biotin, add 52 μl of fill-in master mix: Fill-in Master Mix 0.4 mm biotin-datp (Thermo 19524016) 37.5 μl 10 mm dctp 1.5 μl 10 mm dgtp 1.5 μl 10 mm dttp 1.5 μl 5U/μL DNA Polymerase I, Large (Klenow) 10 μl Fragment (NEB, M0210) 2. Mix and incubate at 37 for 1 hour with rotation. 3. Add 948 μl of ligation master mix: Ligation Master Mix 10X NEB T4 DNA ligase buffer with 10 mm 150 μl ATP (NEB, B0202) 10% Triton X-100 125 μl 50 mg/ml BSA 3 μl 400 U/μL T4 DNA Ligase (NEB, M0202) 10 μl 660 μl 4. Incubate at room temperature for 4 hours with rotation. 5. Pellet nuclei at 2500 rcf for 5 minutes and remove supernatant.

HiChIP Protocol Mumbach et al. (CHANG), p. 2 Sonication 1. Bring pellet up to 880 μl in Nuclear Lysis Buffer. 2. Transfer to a Covaris millitube and shear (we use a Covaris E220) using the following parameters. We kept the sonication constant at 4 minutes for different amounts of cell starting material, although sonication time may need to be adjusted for different cell types. The ideal sonication time will be as short as possible to allow for efficient ChIP signal over background. Too long of a sonication can lead to separation of the protein factor from the biotin contact, which will increase the likelihood of a DNA fragment not making it through both enrichments and a loss in sample complexity. Fill Level 10 Duty Cycle 5 PIP 140 Cycles/Burst 200 Time 4 minutes Preclearing, Immunoprecipitation, IP Bead Capture, and Washes 1. Clarify sample for 15 minutes at 16100 rcf at 4 degrees. 2. Add 2X volume of ChIP Dilution Buffer (split into two tubes of ~400 μl each and add 750 μl Dilution Buffer). For the Smc1a antibody (Bethyl A300-055A), we dilute 1:2 in ChIP Dilution Buffer to achieve a SDS concentration of 0.33%. However, for other antibodies a lower SDS amount may be necessary, and lysate can be diluted up to 1:9 to achieve a SDS concentration of 0.1%. 3. Wash 60 μl of Protein A beads for every 10m cells in ChIP Dilution Buffer. Amounts of beads (for preclearing and capture) and antibody should be adjusted linearly for different amounts of cell starting material. The amounts given are for Smc1a HiChIP; other factors may require different amounts or conditions. 4. Resuspend Protein A beads in 50 μl of Dilution Buffer per tube (100 μl per HiChIP), add to sample and rotate at 4 for 1 hour. 5. Put samples on magnet and transfer supernatant into new tubes. 6. Add 7.5 ug of antibody for every 10m cells and incubate at 4 overnight with rotation. 7. Wash 60 μl of Protein A beads for every 10m cells in ChIP Dilution Buffer. 8. Resuspend Protein A beads in 50 μl of Dilution Buffer (100 μl per HiChIP), add to sample and rotate at 4 for 2 hours. 9. Wash beads three times each with Low Salt Wash Buffer, High Salt Wash Buffer, and LiCl Wash Buffer. Washing was performed at room temperature on a magnet by adding 500 μl of a wash buffer, swishing the beads back and forth twice by moving the sample relative to the magnet, and then removing the supernatant. ChIP DNA Elution 1. Resuspend ChIP sample beads in 100 μl of DNA Elution Buffer (make fresh). 2. Incubate at RT for 10 minutes with rotation, followed by 3 minutes at 37 shaking. 3. For ChIP samples, place on magnet and remove supernatant to a fresh tube. Add another 100 μl of DNA Elution Buffer to ChIP samples and repeat incubations. 4. Remove ChIP samples supernatant again to the new tube. There should now be 200 μl of ChIP sample. 5. Add 10 μl of Proteinase K to each sample and incubate at 55 for 45 minutes with shaking. 6. Increase temperature to 67 and incubate for at least 1.5 hours with shaking. 7. Zymo purify the samples and elute in 10 μl of water. 8. Quantify post-chip DNA to estimate the amount of Tn5 needed to generate libraries at the correct size distribution. This is assuming contact libraries were generated properly, samples were not oversonicated, and material will robustly capture on streptavidin beads. For Smc1a HiChIP with 10m cells an expected yield of post-chip DNA can be anywhere from 15 ng 50 ng depending on the cell type.

HiChIP Protocol Mumbach et al. (CHANG), p. 3 9. For libraries with greater than 150 ng of post-chip DNA, set aside material and take a maximum of 150 ng into the biotin capture step. Biotin Pull-Down and Preparation for Illumina Sequencing 1. Prepare for biotin pull-down by washing 5 μl of Streptavidin C-1 beads with Tween Wash Buffer. 2. Resuspend the beads in 10 μl of 2X Biotin Binding Buffer and add to the samples. Incubate at room temperature for 15 minutes with rotation. 3. Separate on a magnet and discard the supernatant. 4. Wash the beads twice by adding 500 μl of Tween Wash Buffer and incubating at 55 for 2 minutes shaking. 5. Wash the beads in 100 μl of 1X (from 2X) TD Buffer 6. Resuspend beads in 25 μl of 2X TD Buffer, the appropriate amount of Tn5 for your material amount (2.5 μl for 50 ng of post-chip DNA), and water to 50 μl. Adjust Tn5 amount linearly for different amounts of post-chip DNA, with a maximum amount of 4 μl of Tn5. For example for 25 ng of DNA transpose using 1.25 μl of Tn5, while for 125 ng of DNA transpose with 4 μl of Tn5. Using the correct amount of Tn5 is critical to the HiChIP protocol to achieve an ideal size distribution. An overtransposed sample will have shorter fragments and will exhibit lower alignment rates (when the junction is close to a fragment end). An undertransposed sample will have fragments that are too large to cluster properly on an Illumina sequencer. A maximum amount of Tn5 is used in order to save on Tn5 costs, and considering that a library with this much material will be amplified in 5 cycles and have enough complexity to be sequenced deeply regardless of how fully transposed the library is to achieve an ideal size distribution. 7. Incubate at 55 with interval shaking for 10 minutes. 8. Place samples on magnet and remove supernatant. 9. Add 50 mm EDTA to samples and incubate at 50 for 30 minutes, then quickly place on magnet and remove supernatant. 10. Wash samples twice with 50 mm EDTA at 50 for 3 minutes, removing quickly on magnet. 11. Wash samples twice in Tween Wash Buffer at 55 for 2 minutes, removing quickly on magnet. 12. Wash samples in 10 mm Tris. PCR and Post-PCR Size Selection 1. Resuspend beads in 50 μl of PCR master mix. PCR Master Mix Phusion HF 2X 25 μl Nextera Ad1.1 (Universal) 12.5 um 1 μl Nextera Ad2.x (Barcoded) 12.5 um 1 μl 23 μl 2. Run the following PCR program. Cycle number can be estimated using one of two different methods: (1) First run 5 cycles on a regular PCR and then remove from beads. Add 0.25X SYBR green and then run on a qpcr and pull out samples at the beginning of exponential amplification. (2) Run reactions on a PCR and estimate cycle number based on the amount of material from the post-chip Qubit (greater than 50 ng was ran in five cycles, while approximately 50 ng was ran in six, 25 ng was ran in seven, 12.5 ng was ran in eight, etc.). PCR Program 72C 5 minutes 98C 1 minute Cycle 98C 15 seconds 63C 30 seconds 72C 1 minute

HiChIP Protocol Mumbach et al. (CHANG), p. 4 3. Place libraries on a magnet and elute into new tubes. Zymo purify and elute in the same 10 μl of water. PAGE purify libraries (we use 6%) from a size range of 300 700. Note that if the bulk of the material is smaller those sizes can be included but the paired-end libraries will have a lower alignment rate. In the future Tn5 amount should be adjusted accordingly. 4. Instead of PAGE, a two-sided size selection with Ampure XP beads can be performed. After PCR place libraries on a magnet and elute into new tubes. Then add 25 μl of Ampure XP beads and keep the supernatant to capture fragments less than 700 bp. Transfer supernatant to a new tube and add 15 μl of fresh beads to capture fragments greater than 300 bp. 5. Final elution (from either PAGE purification or Ampure XP) is in 10 μl of water. Quantify libraries with qpcr against Illumina primers and/or Bioanalyzer. Buffer List Hi-C Lysis Buffer Final Amount (10 ml) 1 M Tris-HCl ph 8.0 10 mm 100 μl 5 M NaCl 10 mm 20 μl 10% NP-40 0.2% 200 μl 50X protease inhibitors 1X 200 μl 9.68 ml Nuclear Lysis Buffer Final Amount (10 ml) 1 M Tris-HCl ph 7.5 50 mm 500 μl 0.5 M EDTA 10 mm 200 μl 10% SDS 1% 1 ml 50X Protease Inhibitor (1 ml) 1X 200 μl 8.3 ml ChIP Dilution Buffer Final Amount (10 ml) 10% SDS 0.01% 10 μl 10% Triton X-100 1.1% 1.1 ml 500 mm EDTA 1.2 mm 24 μl 1M Tris ph 7.5 16.7 mm 167 μl 5M NaCl 167 mm 334 μl 8.365 ml Low Salt Wash Buffer Final Amount (10 ml) 10% SDS 0.1% SDS 100 μl 10% Triton X-100 1% Triton X-100 1 ml 0.5M EDTA 2 mm EDTA 40 μl 1M Tris-HCl ph 7.5 20 mm Tris-HCl 200 μl 5M NaCl 150 mm NaCl 300 μl 8.36 ml High Salt Wash Buffer Final Amount (10 ml) 10% SDS 0.1% SDS 100 μl 10% Triton X-100 1% Triton X-100 1 ml 0.5M EDTA 2 mm EDTA 40 μl 1M Tris-HCl ph 7.5 20 mm Tris-HCl 200 μl 5M NaCl 500 mm NaCl 1 ml 7.66 ml

HiChIP Protocol Mumbach et al. (CHANG), p. 5 LiCl Wash Buffer Final Amount (10 ml) 1M Tris ph 7.5 10 mm 100 μl 5M LiCl 250 mm 500 μl 10% NP-40 1% 1 ml 10% Na-Doc 1% 1 ml 0.5M EDTA 1 mm EDTA 20 μl 7.38 ml DNA Elution Buffer Final Amount (5 ml) 1 M NaHCO3 (make fresh) 50 mm 250 μl 10% SDS 1% 500 μl 4.25 ml Tween Wash Buffer Final Amount (50 ml) 1M Tris-HCl ph 7.5 5 mm 250 μl 0.5 M EDTA 0.5 mm 50 μl 5 M NaCl 1 M 10 ml 10% Tween-20 0.05% 250 μl 39.45 ml 2X Biotin Binding Buffer Final Amount (10 ml) 1 M Tris-HCl ph 7.5 10 mm 100 μl 0.5 M EDTA 1 mm 20 μl 5 M NaCl 2 M 4 ml 5.88 ml 2X TD Buffer Final Amount (1 ml) 1M Tris-HCl ph 7.5 20 mm 20 μl 1M MgCl2 10 mm 10 μl 100% Dimethylformamide 20% 200 μl 770 μl