The Effect of Repair Welding Number on Microstructure of Hastelloy X Fabricated via TIG Process

Similar documents
related to the welding of aluminium are due to its high thermal conductivity, high

I. Hajiannia 1 *, M. Shamanian 2, M. Kasiri 3 1,3

Overmatching Superalloy Consumable Inco-weld 686CPT Broadens its Applications to Include Welding Super Austenitic and Super Duplex Stainless Steels

The effect of ER4043 and ER5356 filler metal on welded Al 7075 by metal inert gas welding

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process

SUPER-NICKEL ALLOY CASTINGS

Heat treatment and effects of Cr and Ni in low alloy steel

Effect of Postweld Heat Treatment on Microstructures and Hardness of TIG Weldment between P22 and P91 Steels with Inconel 625 Filler Metal

The Effect of welding method and heat treatment on creep resistance of Inconel 718 sheet welds Zenon A. Opiekun 1, Agnieszka Jędrusik 2

Mechanism of Building-Up Deposited Layer during Electro-Spark Deposition

Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds

Investigation of Impact Behavior of TIG Welded Inconel 718 at Aircraft Engine Operating Temperatures. Yağız Uzunonat a,

CHARACTERIZATION OF THE DISSIMILAR WELDING - AUSTENITIC STAINLESS STEEL WITH FILLER METAL OF THE NICKEL ALLOY

ATI 718 ATI 718. Technical Data Sheet. Nickel-Base Superalloy INTRODUCTION FORMS AND CONDITIONS AVAILABLE SPECIFICATIONS. (UNS Designation N07718)

The Evaluation of Corrosion Behavior of AISI 347 Stainless Steel to ASTM A335 Low Alloy Steel Dissimilar Welds

Good welding practice Stainless Steels

Investigation on Microstructure and Wear Resistance of the Plain Carbon Steel Hardfaced by the Fe-Cr-C Electrodes Containing Mo, W, V Elements

Estimation of Dilution and Carbon Content of Laser Cladding on Stellite 6 Coatings Deposited on an AISI 316L Stainless Steel Substrate

Solidification and phase transformations in welding

LASER BEAM WELDING OF QUENCHED AND TEMPERED ASTM A 517 GR.B STEEL

Mechanical Property Variation within Inconel 82/182 Dissimilar Metal. Weld between Low Alloy Steel and 316 Stainless Steel

XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel

Hastelloy G-30 (UNS N06030) Chemical Composition

The Need For Protecting The Weld And Rationale

CHROMESHIELD 22 STAINLESS STEEL

EFFECT OF VOLUME FRACTION OF (Cr,Fe) 7 C 3 CARBIDES ON CORROSION RESISTANCE OF THE Fe-Cr-C HARDFACING ALLOYS AT

(1) In the same alloy significantly more B was present at the grain boundaries of the air-cooled specimen as compared to the waterquenched

The Microstructure and Mechanical Properties of Inconel 718 Fine Grain Ring Forging

Study on Microstructure, Tensile Test and Hardness 316 Stainless Steel Jointed by TIG Welding

Friction Stir Processing of 304L Stainless Steel for Crack Repair

WELDING METALLURGY AND WELDABILITY OF NICKEL-BASE ALLOYS

CLAD STAINLESS STEELS AND HIGH-NI-ALLOYS FOR WELDED TUBE APPLICATION

CHAPTER 2 - OBJECTIVES

THE EFFECT OF WELDING CONDITIONS ON MECHANICAL PROPERTIES OF SUPERDUPLEX STAINLESS STEEL WELDED JOINTS

Power density and welding process Keywords: 4.1 Introduction

Matching consumables for type 800 alloys. Development history, metallurgy and performance. A W Marshall and J C M Farrar

Rajiv Suman 1, Dr. P.C.Gope 2 1 Research Scholar, Department of mechanical Engineering, College of Technology. Pantnagar (GBPUAT) Uttarakhand,INDIA

Crack Prevention in NiCr-Alloys when Processed by AM (L-PB) William Jarosinski March 8, 2017

VIRGO 15.5 PH: A 15Cr 5Ni 3Cu precipitation hardening martensitic stainless steel

LONG TERM THERMAL EXPOSURE OF HAYNES 282 ALLOY

Arch. Metall. Mater. 62 (2017), 2,

DEVELOPMENT OF Ni BASE SUPERALLOY FOR INDUSTRIAL GAS TURBINE

Development of Welding Methods for Dissimilar Joint of Alloy 690 and Stainless Steel for PWR Components

Effect of Zn content on microstructure, mechanical properties and fracture behavior of Mg-Mn alloy

Study on Effect of Welding Speed on Micro Structure and Mechanical Properties of Pulsed Current Micro Plasma Arc Welded Inconel 625 Sheets

A Study of Parameters Affecting to Mechanical Property of Dissimilar Welding between Stainless Steel (AISI 304) and Low Carbon Steel

Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1

POROSITY DEVELOPMENT AND CRACKING BEHAVIOR OF Al-Zn-Mg-Cu ALLOYS FABRICATED BY SELECTIVE LASER MELTING

MSE-226 Engineering Materials

Effect of Modified AA5356 Filler on Corrosion Behavior of AA6061 Alloy GTA Welds

ScienceDirect. Effect of Heat Treatment on Microstructure and Mechanical Properties of Inconel 625 Alloy Fabricated by Pulsed Plasma Arc Deposition

APPLICATION OF NEW GMAW WELDING METHODS USED IN PREFABRICATION OF P92 (X10CRWMOVNB9-2) PIPE BUTT WELDS

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304

Y. Zhou, X. Zhou, Q. Teng, Q.S. Wei, Y.S. Shi

Effect of the plasma arc welding procedure on mechanical properties of DP700 steel

UR 2202 is a low nickel, low molybdenum stainless steel designed to match the corrosion resistance of 304L in most environments.

The Effect of La Addition on the Microstructure and Tensile Properties of Hot-Extruded Al 15%Mg 2 Si Composite

VDM Alloy 80 A Nicrofer 7520 Ti

SEGREGATION BEHAVIOR OF PHOSPHORUS AND ITS EFFECT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES IN ALLOY SYSTEM Ni-Cr-Fe-Mo-Nb-Ti-Al*

Improvement in mechanical properties of C300 maraging steel by application of VAR process

Influence of Shielding Gas on Aluminum Alloy 5083 in Gas Tungsten Arc Welding

THE MECHANICAL AND MICROSTRUCTURAL STUDY OF WELDED AA7075 USING DIFFERENT FILLER METALS

Tensilel Properties of AA6061-T6/SiC p Surface Metal Matrix Composite Produced By Friction Stir Processing

Forta SDX 2507 EN , ASTM UNS S32750

SEMASPEC Test Method for Metallurgical Analysis for Gas Distribution System Components

Tensile Strength and Pseudo-elasticity of YAG Laser Spot Melted Ti-Ni Shape Memory Alloy Wires

VIRGO 17.4 PH: A 17Cr 4Ni 3Cu precipitation hardening martensitic stainless steel

304/304L STAINLESS STEEL

Investigation of low stress rupture properties in Inconel-718 super alloy

STRESS CORROSION CRACKING OF STAINLESS STEELS IN HIGH PRESSURE ALKALINE ELECTROLYSERS

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding

Arcos Has You Covered

Dissimilar Steel Welding of Super Heater Coils for Power Boiler Applications

Microstructure and Strength Properties of Austenitic and Ferritic Stainless Steels When Brazed with Ni-Cr-P Amorphous Brazing Foils

HIGH-CYCLE I-ATIGUE EFFECTS OF AN ELECTRON-BEAM COSMETIC PASS OR. A GAS-TUNGSlEN-ARC WELD OVERLAY ON MICROFISSURED ALLOY 718

A study on influence of δ-ferrite phase on toughness of P91 steel welds

TO ANALYSIS THE EFFECT OF PARAMETERS ON ALUMINIUM ALLOY 6063-T6 IN TIG WELDING

MATERIAL CHARACTERISTIC STUDY OF COLD ROLLED GRADED THIN SHEET BY USING TIG WELDING PROCESS FOR RAIL COACHES

Results are presented in Table 1. The tube was fabricated from a Type 347 and no unusual conditions were noted.

Microstructure Study of Diffusion Bonding of Centrifuged Structural Steel-Bronze

Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding Keyword: 16.1 Selection of pulse parameters

Characteristics of centrifugally cast GX25CrNiSi18-9 steel

Click to edit Master title style

Design of 10%Cr Martensitic Steels for Improved Creep Resistance in Power Plant Applications

Strengthening of Forged Inconel Superalloy by Age Hardening Heat Treatment

The principle Of Tungsten Inert Gas (TIG) Welding Process

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline

PTA WELDING OF DUPLEX STAINLESS STEEL USİNG Cu/Ni INTERLAYER

The microstructure and mechanical properties of Cromanite welds

Effect of Precipitation Hardening on Microstructural Characteristics of 15-5 Ph Steel

Lecture 23. Chapter 30 Fusion Welding Processes. Introduction. Two pieces are joined together by the application of heat

Steel Properties. History of Steel

Available online at ScienceDirect. Physics Procedia 56 (2014 ) Veli Kujanpää*

WELDING CHARACTERISTICS OF CORROSION RESISTANT NI-BASED ALLOYS MONEL 400 AND HASTELLOY C-276 THIN FOIL WELDED BY PULSED ND:YAG LASER 1

Seam Welded Air-Hardenable Corrosion Resistant Steel Tubing: Automotive Applications Overview

Effects of GMAW conditions on the tensile properties of hot rolled Complex Phase 780 steel. Carlos Cardenas Luis Hernandez Jaime Taha-Tijerina

THE APPLICATION OF FRICTION STIR WELDING (FSW) OF ALUMINIUM ALLOYS IN SHIPBUILDING AND RAILWAY INDUSTRY

The Many Facets and Complexities of 316L and the Effect on Properties

Transcription:

International Journal of Materials Science and Applications 2016; 5(2): 43-48 http://www.sciencepublishinggroup.com/j/ijmsa doi: 10.11648/j.ijmsa.20160502.12 ISSN: 2327-2635 (Print); ISSN: 2327-2643 (Online) The Effect of Repair Welding Number on Microstructure of Hastelloy X Fabricated via TIG Process Mohammad Reza Abedi 1, Hamed Sabet 1, *, Hossein Razavi 2 1 Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran 2 Department of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran Email address: h-sabet@kiau.ac.ir (H. Sabet) * Corresponding author To cite this article: Mohammad Reza Abedi, Hamed Sabet, Hossein Razavi. The Effect of Repair Welding Number on Microstructure of Hastelloy X Fabricated via TIG Process. International Journal of Materials Science and Applications. Vol. 5, No. 2, 2016, pp. 43-48. doi: 10.11648/j.ijmsa.20160502.12 Received: November 22, 2015; Accepted: December 5, 2015; Published: March 21, 2016 Abstract: The effect of repair welding number on microstructure of the hastelloy X fabricated via TIG process was investigated. The SEM, EDS and OM were used to determine mechanical properties and the microstructure of HAZ zone, respectively. Results showed that the grain size of base metal determined by OM and SEM was 64.11 µm with M 6 C and M 23 C 6 carbides (6.16, 18.71 µm respectively). Also, using welding for three times caused increase of grain size (15%, 22%, 26% respectively) and the heat input made some carbides dissolve. The grain growth through HAZ zone venially affected the strength of alloy. The results of tensile test demonstrated that UTS increased by repair welding, 1%, 2% and 3% respectively. As the UTS of base metal was 727 MPa, the fracture phenomenon occurred. Furthermore, repair welding of mentioned alloy did not exceed more than three times. Keywords: GTAW, Hastelloy X, Microstructure, Carbides 1. Introduction Super alloys are widely used in many industrial fields because of its superior properties such as high strength at high temperatures and high oxidation and hot corrosion resistant. Nickel-based super alloys are widely used as high temperature turbine components. Hastalloy X alloy is used in high temperature applications that are often under high stresses and cyclic loadings conditions. Hastelloy X super alloy is a nickel based alloy strengthened by solid solution [1]. Its alloying elements are chosen in a way increasing the mechanical properties and improving high temperature corrosion, creep resistance, fracture toughness, and structural stability [2, 3]. Nickel base super alloys like Hastelloy X can be welded by all fusion welding processes such as GTAW, GMAW, SMAW, SAW, PAW, EBW and RSW. GTAW is widely used for all parts of material especially for thin parts. The GTAW welding parameters influence the quality, productivity and cost of welding joint. The perfect arc can be achieved if all the welding parameters are conformed. The matrix of this super alloy is austenite. In fusion welding process, depending on the heating and cooling conditions and heat input, microstructure, chemical composition and mechanical properties of heat-affected HAZ drastically differ from the unaffected base metal (BM). During the welding, in heat-affected zone of Hastelloy X, the amounts of M 6 C and M 23 C 6 carbides change. The γ ' precipitations are not observed in the microstructure due to high amounts of Al and Ti. Since the amount of the elements such as Al, Hf, Ta, and Ti is very low in Hastelloy X, formation of γ ' does not occur in structure of this alloy. Microstructure composition of the alloy contains an austenite matrix and M 6 C and M 23 C 6 carbides enriched in Mo and Cr elements, respectively [3]. Most previous investigations focus on the one-time welding of Hastelloy X. Stolloff [5] observed that precipitation of fine carbide particles in the matrix of Hastelloy X increased the strength of the alloy. Effects of minor elements were considered by Richards and Chaturvedi [6]. Wang et al [7] focused on the influences of parameters of tungsten inert gas arc welding on the morphology, microstructure, tensile property and fracture of

International Journal of Materials Science and Applications 2016; 5(2): 43-48 44 welded joints of Ni-base super alloy. Results show that the increase of welding current and the decrease of welding speed bring about the large amount of heating put in welding pool and the enlargement of width and deepness of the welding pool. The heat input increases with the decrease of welding speed and the increase of welding current [7]. Zhang Lee et al [9] Worked on the hardness and strength in the welding zone of the Hastelloy X is due to M 6 C carbides and their distribution. Zhang et al. [8] suggested about analysis on the micro fissuring behavior in the heat- affected zone in Nickel-base super alloy and observed that during the CO 2 laser welding, Hastelloy X dissimilar with Mar-M247 alloy was formed through the epitaxial growth process in the interface of weld metal and base metal in the Hastelloy X [8]. According to the high price of super alloys and also its need to frequent repairing, there is no evidence research about the number of repair welding on these super alloys. This study investigated effect of the welding parameters such as number of repair on morphology and mechanical properties of the hastelloy X fabricated via TIG process. Experimental Procedure Firstly, the samples were cut to reach the required dimensions, 350 150 2 mm, according to ISO 15614-1. Standard square butt joints were used for the welding of samples. Specially designed fixture was used for welding process to avoid distortion and oxidation. Chemical composition of Hastelloy X has been provided in Table 1. Table 1. Chemical composition of Hastelloy x (Wt%) [4]. Element Ni Cr Fe Mo Co W C Mn Si B (Wt%) 47 22 18 9 1.5 0.6 0.10 1 1 0.008 Parameters of the manual gas tungsten arc welding (GTAW) such as welding current, voltage, heat input and etc. are shown in table 2. ERNiCrMo-3 was used as filler metal. Firstly, the joint areas of sheets were cleaned by alcohol. Optimal parameters were applied through Welding process. The samples were conductively Welded and protected with highly pure argon gas. Table 2. Welding condition. Filler metal Length Current Voltage Speed Process Pass Dia (mm) (mm) (A) (V) cm/min TIG 1 1.6 350 60 13 Manual After welding of the plates with mentioned dimensions and analysis of HAZ zones, near of the weld zone was cut in order to imply second time welding. As shown in figure 1, this process was repeated three times. Figure 1. Schematic image of specimens. Finally, OM and SEM were used to determine microstructure and grain size. Table 3. Chemical composition of wire welding ERNiCrMo-3 (Wt%) [7]. Element Ni Cr Fe Mo Nb/Ta Ti C Mn Si Al Cu S P Wt% a 58 20-23 5 8-10 3-4 0.4 0.10 0.5 0.5 0.4 0.5 0.015 0.02 Table 4. Mechanical properties of ERNiCrMo-3 [7]. Ultimate Tensile Strength(MPa) Yield Strength at 0.2% Offset (MPa) Elongation (%) 786 455 35 Figure 2. Schematic image of tensile test.

45 Mohammad Reza Abedi et al.: The Effect of Repair Welding Number on Microstructure of Hastelloy X Fabricated via TIG Process After welding of all specimens, the samples were cut perpendicular using a cut-off machine. The microstructure was revealed using an etchant. The microstructures of samples were studied by optical microscope equipped with image analysis software (MEIJI Techno), scanning electron microscope (SEM- Seron tech) using backscattered (BSE) and energy dispersive spectrometry (EDS) with 16.0 kv accelerated voltage. Tensile test was done according to the EN 895 that two samples are provided for each of the three specimens as shown in figure 2. 2. Results and Discussion 2.1. Microstructure and SEM Analysis Figure 4 indicates OM micrographs of Hastelloy X. As observed, the microstructure of this alloy included continuous phase γ (austenite) in the mixture. Grain size of base metal measured via image analysis software was 64.11, 6.16 and 18.71 µm, for M6C and for M23C6 inclusive samples, respectively. Increase of Grain size was 15, 22 and 26% for one-time, two-time and three- time welding, respectively. Moreover, decrease of M6C carbides was 34, 49 and 50%, respectively. Also, increase of M23C6 carbides was 32, 39 and 50% for one- time, two -time and three time welding. Fig 6 and 7 provide EDS spectroscopy results performed as a elemental analysis. As seen, M6C and M23C6 carbides were significantly observed in matrix and boundaries, respectively. A significant difference was observed between weight percent of nickel and other elements. The microstructure of this alloy included fine particles and carbides distributed in the context, as shown in Fig 4 and 5. Table 5. Grain sizes and carbides sizes in HAZ. Sample Base metal one-time Welding two-time Welding three-time Welding Grain sizes (µm) 64.11 73.94 78.648 81.335 Percentage (increasing) 15% 22% 26% M6C (µm) 6.16 4.015 3.099 3.08 Percentage (decreasing) 34% 49% 50% M23C6 18.71 24.70 26.15 28.24 Percentage (increasing) 32% 39% 50%

International Journal of Materials Science and Applications 2016; 5(2): 43-48 Figure 3. Sizes of grain and carbides. Heat input during the welding caused grain growth and dissolution of carbides. Figure 4. (a) HAZ area for one- time welding, (b) two- times welding, (c) three- times welding. Figure 5. (a) SEM image of one- time welding, (b) two- times welding and (c) three- times welding. Figure 6. SEM image and EDS analysis of M6C carbides. ( 6). 46

47 Mohammad Reza Abedi et al.: The Effect of Repair Welding Number on Microstructure of Hastelloy X Fabricated via TIG Process Figure 7. SEM image and EDS analysis of M6C ( 6) and M23C6 ( 3.83). Table 6. Atomic table of EDS analysis for 6 (M6C). (1) Elements Atomic C 9.922 Cr 24.864 Fe 2.103 Ni 2.229 Mo 56.753 W 4.129 Total 100.000 (2) Elements Atomic C 11.615 Cr 15.411 Fe 3.261 Ni 2.742 Mo 66.462 W 2.510 Total 100.000 Table 7. Atomic table of EDS analysis for carbides. Elements Atomic Elements Atomic Elements Atomic C 9.332 C 7.593 C 15.130 Cr 18.174 Cr 30.347 Cr 56.851 Fe 7.969 Fe 19.616 Fe 8.334 Mo 54.855 Mo 24.512 Mo 10.688 W 9.670 W 17.932 W 8.997 Total 100.000 Total 100.000 Total 100.000 (1) (2) (3) Figure 3 illustrates the OM micrograph of HAZ of the samples. It can be observed that the structure of all samples was fine grained. SEM and EDS micrographs confirmed attention of two different carbides such as M 6 C and M 23 C 6 (tables 6, 7). Also, EDS analysis showed that the mixture particles were M 6 C carbides enriched by molybdenum. Thus, Cr can be replaced with M in M 23 C 6. The size of carbides in base metal was measured to compare the size of different carbides in HAZ zone. Average size of carbides in base metal was 6.16 and 18.71 µm for M 6 C and M 23 C 6, respectively. Comparison of Grain sizes between HAZ zone and base metal as well as weight percent of carbides played a important role on evaluation of mechanical properties [3, 4] (Fig. 5). The M 23 C 6 carbides precipitated coherently in the matrix. Microstructure of HAZ zone contained fine grains (grain size number 5) GTAW method. Grain size in HAZ zone and in base metal were determined via image analysis software [8, 9]. Due to less grain size and carbides, hardness of the HAZ zone was higher than base metal. SEM micrographs of carbides of HAZ showed that carbides uniformly were distributed through the zone and size of carbides in HAZ was much less than that in base metal (Table 5) [10]. 2.2. Tensile Test Results of tensile test (DIN EN 895) performed for three specimens showed that "UTS" was approximately the same in all specimens. The strength of HAZ zone was higher than that in base metal which can be attributed to the dissolved carbides mentioned in table 5. As shown in table 8 and figure 8, increase of UTS was 1, 2, and 3%, respectively, which caused fracture of base metal in all three specimens [11, 12]. Table 8. The results of tensile tests. Specimen UTS (MPa) Average (MPa) Y. S (MPa) 1-1 747 380 735 1-2 723 395 2-1 748 420 743 2-2 738 430 3-1 749 410 753 3-2 757 438 Figure 8. Tensile test of base metal and three specimens. 3. Conclusions 1. The hastelloy X was successfully fabricated via TIG process and the effect of repair welding number on its microstructure and mechanical properties was investigated. 2. Grain size of base metal was 64.11 µm. Also, that of

International Journal of Materials Science and Applications 2016; 5(2): 43-48 48 HAZ zone at one-time, two-time and three-time welding was 73.96, 78.648 and 81.335 µm, respectively. In other words, grain growth percent was 15, 22 and 26%, respectively. 3. The carbides observed in the base metal and HAZ zone were rich in molybdenum (M 6 C) and chromium (M 23 C 6 ) with 6.16 and 18.71µm in size, respectively which were dissolved because of the heat. Besides, reduction of carbides was 34, 49 and 50% for M 6 C and increasing 32, 39 and 50% for M 23 C 6, respectively). 4. As the UTS of base metal was 727 MPa and increased 1, 2 and 3% during welding, respectively, the fracture phenomenon occurred. 5. Repair welding of hastelloy X successfully continued to three times. References [1] Fude Wang, Mechanical property study on rapid additive layer manufacture Hastelloy X alloy by selective laser melting technology, The International Journal of Advanced Manufacturing Technology, 5-8, 2012, 545-551. [2] Jeremie Graneix, Jean Denis Beguin, Joël Alexis, Talal Masri, Weldability of Superalloys Hastelloy X by Yb: YAG Laser", Advanced Materials Research, Vol 1099, pp. 61-70, Apr. 2015. [3] J. C. Lippold, J. W. Sowards, G. M. Murray, B. T. Alexandrov, A. J. Ramirez, Weld Solidification Cracking in Solid-Solution Strengthened Ni-Base Filler Metals, 2008, pp. 147-170. [4] J. Matthew, S. Donachie, J. Donachie, Superalloys, A Technical Guide, 2nd ed., ASM International, USA, New York, 2002, pp. 192-265. [5] N. S. Stoloff, Speciality Steels and Heat- Resistant Alloy, Metals Handbook, 1ST ed., Vol. 1, ASM Handbook, 2005, pp. 1478-1549. [6] N. L. Richards and M. C. Chaturvedi, "Effect of minor elements on weldability of Nickle base superalloys", international Materials Reviews, Vol. 45, 2000. [7] Q. Wang, D. L. Sun, Y. Na, Y. Zhou, X. L. Han, J. Wang, "Effects of TIG Welding Parameters on Morphology and Mechanical Properties of Welded Joint of Ni-base Superalloy", Procedia engineering, 11th International Conference on the Mechanical Behavior of Materials (ICM11), 2011, 37-41. [8] Li. Zhang, S. L. Gobbi, K. H. Richter, Autogenous Welding of Hastelloy X to Mar-M 247 by Laser, J MaterPro Tech, 70, 1997, pp. 285-292. [9] M. Pang, G. Yu, H. H. Wang, C. Y. Zheng, Microstructure Study of Laser Welding Cast Nickel-Based Super Alloy K418, Journal of Materials Processing Technology, 207, 2008, pp. 271 275. [10] R. Sihotang; P. Sung-Sang; B. Eung-Ryul, Effects of heat input on microstructure of tungsten inert gas welding used hastelloy X, Volume 18, Issue S2 (May 2014), pp. S2-1074-S2-1080. [11] W. G. Kim, S. N. Yin, W. S. Ryu, J. H. Chang, S. J. Kim, "Tension and creep design stresses of the Hastelloy X alloy for high temperature gas cooled reactors", Materials science and engineering, 2008, p 495-497. [12] G. D. Janaki Ram, A. Venugopal Reddy, K. Prasad Rao, G. M. Reddy, J. K. Sarin Sundar, Microstructure and Tensile Properties of Inconel 718 Pulsed Nd-YAG Laser Welds, Journal of Materials Processing Technology, 167, 2005, pp. 73 82.